Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T08:52:43.943Z Has data issue: false hasContentIssue false

4 - Ideal-Gas Shock Wave???Turbulent Boundary-Layer Interactions (STBLIs) in Supersonic Flows and Their Modeling: Two-Dimensional Interactions

Published online by Cambridge University Press:  05 June 2012

Holger Babinsky
Affiliation:
University of Cambridge
John K. Harvey
Affiliation:
Imperial College London
Get access

Summary

Introduction

Effective design of modern supersonic and hypersonic vehicles requires an understanding of the physical flowfield structure of shock wave–boundary layer interactions (SBLIs) and efficient simulation methods for their description (Fig. 4.1). The focus of this chapter is two-dimensional supersonic shock wave–turbulent boundary layer interactions (STBLIs); however, even in nominally two-dimensional/axisymmetric flows, the mean flow statistics may be three-dimensional. The discussion is restricted to ideal, homogeneous gas flow wherein the upstream free-stream conditions are mainly supersonic (1.1 ≤ M∞ ≤ 5.5). Computational fluid dynamics (CFD) simulations of two-dimensional STBLIs are evaluated in parallel with considerations of flowfield structures and physical properties obtained from both experimental data and numerical calculations.

Problems and Directions of Current Research

The main challenges for modeling of and understanding the wide variety of two- and three-dimensional STBLIs include the complexity of the flow topologies and physical properties and the lack of a rigorous theory describing turbulent flows. These problems have been widely discussed during various stages of STBLI research since the 1940s. In accordance with authoritative surveys [1, 2, 3, 4, 5, 6, 7] and monographs [8, 9, 10, 11], progress in understanding STBLIs can be achieved only on the basis of close symbiosis between CFD and detailed physical experiments that focus on simplified configurations (see Fig. 4.1) and that use recent advances in experimental diagnostics (e.g., planar laser scattering [PLS]; particle image velocimetry [PIV]); and turbulence modeling, including Reynolds-averaged Navier-Stokes [RANS], large eddy simulation [LES], and direct numerical simulation [DNS]).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zheltovodov, A. A. 1996
Zheltovodov, A. A 2006
Délery, J.Marvin, J. G 1986
Settles, G. SDolling, D. SSwept shock-wave/boundary-layer interactions. Tactical missile aerodynamicsProg. Astronautics and AeronauticsHemsch, MNeilsen, JNew YorkAIAA 1986 297Google Scholar
Knight, D. DDegrez, GShock wave boundary layer interactions in high Mach number flows: A critical survey of current CFD prediction capabilitiesAGARD Report 2 1998 1Google Scholar
Dolling, D. SFifty years of shock-wave/boundary-layer interaction research: What next?AIAA J 39 2001 1517CrossRefGoogle Scholar
Knight, D.Yan, HPanaras, A. GZheltovodov, AAdvances in CFD prediction of shock wave turbulent boundary layer interactionsProgress in Aerospace SciencesOxfordPergamon Press, 2003121
Chang, P. KSeparation of flowInternational Series of Monographs in Interdisciplinary and Advanced Topics in Science and EngineeringNew YorkPergamon 1970Google Scholar
Gogish, L. VStepanov, G. YuTurbulent Separated FlowsMoscowNauka, Central Edition of Physical-Mathematics Literature 1979Google Scholar
Borovoi, V. YaGas Flow Field and Heat Exchange in the Zones of Shock Waves Interactions with a Boundary LayerMoscowMashinostroenie 1983Google Scholar
Smits, A. JDussauge, J. PTurbulent Shear Layers in Supersonic FlowBerlin HeilderbergSpringer Science+Business Media 2006Google Scholar
Cebeci, T.Smith, AAnalysis of Turbulent Boundary LayersNew YorkAcademic Press 1974Google Scholar
Baldwin, B.Lomax, H 1978
Baldwin, B.Barth, T 1991
Johnson, D.King, L 1984
Jones, W.Launder, BThe prediction of laminarization with a two-equation model of turbulenceInt. J. Heat and Mass Transfer 15 1972 301CrossRefGoogle Scholar
Wilcox, D.Turbulence Modeling for CFDLa Canada, CADCW Industries 2002Google Scholar
Marvin, J.Turbulence modeling for computational aerodynamicsAIAA J 21 1983 941CrossRefGoogle Scholar
Knight, D. DNumerical simulation of compressible turbulent flows using the Reynolds-averaged Navier-Stokes equations: Turbulence in compressible fluidsAGARD Report 819 5 1997Google Scholar
Zhang, H. SSo, R. M. CGatski, T. BSpeziale, C. G 1993 209
Gnedin, M.Knight, D 1995
Zha, G.Knight, DThree-dimensional shock boundary layer interaction using Reynolds stress equation turbulence modelAIAA J 34 1996 1313CrossRefGoogle Scholar
Erlebacher, G.Hussaini, MSpeziale, CZang, TToward the large eddy simulation of compressible turbulent flowsJ. Flui. Mech 238 1992 1550Google Scholar
Lesieur, M.Comte, PLarge eddy simulations of compressible turbulent flows: Turbulence in compressible fluidsAGARD Report 819 1997 4Google Scholar
Domaradzki, J. ADubois, THonein, A 1998
Grinstein, F.Margolin, LRider, WImplicit Large Eddy SimulationNew YorkCambridge University Press 2007CrossRefGoogle Scholar
Xiao, X.Edwards, J. RHassan, H. ABaurle, R. AInflow boundary conditions for hybrid large eddy–Reynolds averaged Navier-Stokes simulationAIAA J 41 2003 1418CrossRefGoogle Scholar
Edwards, J. RChoi, J.-LBoles, J. ALarge-eddy/Reynolds-averaged Navier-corner interactionAIAA J 46 2008 977CrossRefGoogle Scholar
Menter, F. RTwo-equation eddy-viscosity turbulence model for engineering applicationsAIAA J 32 1994 1598CrossRefGoogle Scholar
Zheltovodov, A.Dvorak, RSafarik, PShock waves/turbulent boundary layer interaction properties at transonic and supersonic speeds conditionsIzvestiya SO AN SSSR, Seriya Tekhnicheskih Nauk 6 1990 31Google Scholar
Pearcey, H. H 1959
Grodzovskyi, L. G 1961
Zukoski, E. ETurbulent boundary-layer separation in front of a forward-facing stepAIAA J 5 1967 1746CrossRefGoogle Scholar
Sajben, M.Morris, M. JBogar, T. JKroutil, J. CConfined normal–shock/turbulent–boundary-layer interaction followed by an adverse pressure gradientAIAA J 29 1991 2115CrossRefGoogle Scholar
Kline, S. JBardina, J. LStrawn, R. CCorrelation of the detachment of two-dimensional turbulent boundary layersAIAA J 21 1983 68CrossRefGoogle Scholar
Chapman, D.Kuehn, DLarson, HInvestigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transitionNACA Report 1356 1958Google Scholar
Kutateladze, S. SLeont’ev, A. ITurbulent Boundary Layer of Compressible GasNovosibirskSO AN SSSR 1962Google Scholar
Morris, M. JSajben, MKroutil, J. CExperimental investigation of normal–shock/turbulent–boundary-layer interaction with and without mass removalAIAA J 30 1992 359CrossRefGoogle Scholar
Haines, A. B27th Lanchester Memorial Lecture: Scale effects in transonic flowAeronauutical J 91 1987 291CrossRefGoogle Scholar
Inger, G. R 1980
Inger, G. R 1980
Stanewsky, E. 1981
Bohning, R.Zieper, J 1981
Hopkins, E.Inouye, MAn evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbersAIAA J 9 1971 993CrossRefGoogle Scholar
Johnson, C. DBushnell, D. M 1970
Zheltovodov, A. AAnalysis of Two-Dimensional Separated Flows at Supersonic Speeds ConditionsInvestigations of the Near-Wall Flows of Viscid GasAcademician, N.Yanenko, N.Novosibirsk 1979Google Scholar
Blosch, E.Carroll, BMorris, MNumerical simulation of confined transonic normal shock wave/turbulent boundary-layer interactionsAIAA J 31 1993 2241CrossRefGoogle Scholar
Viegas, J. RHorstman, C. CComparison of multiequation turbulence models for several shock separated boundary-layer interaction flowsAIAA J 17 1979 811CrossRefGoogle Scholar
Nakamori, I.Ikohagi, TLarge eddy simulation of transonic turbulent flow over an airfoil using a shock capturing scheme with zonal embedded meshProceedings of the Third AFOSR International Conference on DNS/LESColumbus, OHGreyden Press 2001Google Scholar
Bardina, J.Ferziger, JReynolds, W 1980
Pearcey, H. HOsborne, JHaines, A. BThe interaction between local effects at the shock and rear separation a source of significant scale effects in wind-tunnel tests on airfoils and wingsAGARD CP 35 1968Google Scholar
Wilcox, D.Formulation of the turbulence model revisedAIAA J 46 2008 2823CrossRefGoogle Scholar
Borisov, A. VZheltovodov, A. AMaksimov, A. IFedorova, N. NShpak, S. IExperimental and numerical study of supersonic turbulent separated flows in the neighborhood of two-dimensional obstaclesFlui. Dyn 34 1999 181Google Scholar
Horstman, C. CZheltovodov, A. ANumerical simulation of shock waves/expansion fans-turbulent boundary layer interactionInternational Conference on the Methods of Aerophysical ResearchRussiaNovosibirsk, Proc 1994Google Scholar
Hunter, L. GReeves, B. LResults of a strong interaction, wake-like model of supersonic separated and reattaching turbulent flowsAIAA J 9 1971 703CrossRefGoogle Scholar
Roshko, A.Thomke, G. LFlare-induced interaction length in supersonic, turbulent boundary layersAIAA J 14 1976 873CrossRefGoogle Scholar
Dem’yanenko, V. SZheltovodov, A. A 1977
Shang, J.Hankey, WNumerical solution for supersonic turbulent flow over a compression rampAIAA J 13 1975 1368CrossRefGoogle Scholar
Dolling, D. SHigh-speed turbulent separated flows: Consistency of mathematical models and flow physicsAIAA J 36 1998 725CrossRefGoogle Scholar
Appels, C.Richards, B. E 1975
Spaid, F. WFrishett, J. LIncipient separation of a supersonic, turbulent boundary layer, including effect of heat transferAIAA J 10 1972 915CrossRefGoogle Scholar
Settles, G. SBogdonoff, S. MVas, I. EIncipient separation of a supersonic turbulent boundary layer at high Reynolds numbersAIAA J 14 1976 50CrossRefGoogle Scholar
Settles, G. S 1975
Holden, M. SShock wave-turbulent boundary layer interaction in hypersonic flowAIAA Paper 72 1972Google Scholar
Elfstrom, G. MTurbulent hypersonic flow at a wedge-compression cornerJ. Flui. Mech 53 1972 113CrossRefGoogle Scholar
Zheltovodov, A. ASchülein, E. KhYakovlev, V. N 1983
Kuntz, D. WAmatucci, V. AAddy, A. LTurbulent boundary-layer properties downstream of the shock-wave/boundary-layer interactionAIAA J 25 1987 668CrossRefGoogle Scholar
Thomas, F. OPutnam, C. MChu, H. COn the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactionsExperiments in Fluids 18 1994 69CrossRefGoogle Scholar
Ardonceau, P.Lee, D. HAlziary de Roquefort, TGoethals, R 1999
Goldfeld, M. ADolgov, V. N 1972
Goldfeld, M. ADolgov, V. NExperimental research of turbulent boundary layer on delta plate with wedgeIzv. SO AN SSSR, Ser. Tekhn. Nauk 8 1973 16Google Scholar
Korkegi, R. HComparison of shock-induced two- and three-dimensional incipient turbulent separationAIAA J 13 1975 534CrossRefGoogle Scholar
Zheltovodov, A.Schülein, EPeculiarities of turbulent separation development in disturbed boundary layersModelirovanie v Mekhanike (Modeling in Mechanics) 2 53 1988Google Scholar
Horstman, C.Hung, C. 1977
Visbal, M.Knight, DThe Baldwin–Lomax turbulence model for two-dimensional shock-wave/boundary-layer interactionsAIAA J 22 1984 921Google Scholar
Ong, C.Knight, DHybrid MacCormack and implicit Beam-Warming algorithms for a supersonic compression cornerAIAA J 25 1987 401CrossRefGoogle Scholar
Schülein, E.Zheltovodov, A. A 1998
Hahn, J. S 1969
Liepman, H.Roshko, AElements of GasdynamicsNew YorkJohn Wiley & Sons 1957Google Scholar
Zheltovodov, A. APeculiarities of development and modeling possibilities of supersonic turbulent separated flowsSeparated Flows and Jets IUTAM Symposium Novosibirsk, USSRKozlov, V. VDovgal, A. VBerlin HeilderbergSpringer-Verlag Berlin 1991Google Scholar
Zheltovodov, A. AZaulichnyi, E. GTrofimov, V. M 1990
Holden, M. S 1977
Zheltovodov, A.Zaulichniy, ETrofimov, VYakovlev, V 1987
Zheltovodov, A. AYakovlev, V. N 1986
Zheltovodov, A. ALebiga, V. AYakovlev, V. N 1989
Zheltovodov, A.Borisov, AKnight, DHorstman, CSettles, G 1992
Trofimov, V.Shtrekalkin, SLongitudinal vortices and heat transfer in reattached shear layersSeparated Flows and JetsKozlov, V. VDovgal, A. VBerlin HeilderbergSpringer-Verlag 1991Google Scholar
Bedarev, I.Zheltovodov, AFedorova, NSupersonic turbulent separated flows numerical model verificationInternational Conference on the Methods of Aerophysical Research – Part 1NovosibirskRussia30 1998Google Scholar
Borisov, A. VZheltovodov, A. AMaksimov, A. IFedorova, N. NShpak, S. IVerification of turbulence models and computational methods of supersonic separated flowsInternational Conference on the Methods of Aerophysical Research, Part 1NovosibirskRussia 1996Google Scholar
Efimtsov, B. MKuznetsov, V. BSpectrums of surface pressure pulsations at the supersonic flow over forward-facing stepUchenie Zapiski TSAGI (Scientific Notes of TSAGI 20 1989 111Google Scholar
Bibko, V. NEfimtsov, B. MKuznetsov, V. BSpectrums of surface pressure pulsations ahead of inside cornersUchenie Zapiski TSAGI (Scientific Notes of TSAGI) 20 1989 112Google Scholar
Bibko, V. NEfimtsov, B. MKorkach, V. GKuznetsov, V. B 1990
Plotkin, K. JShock wave oscillation driven by turbulent boundary layer fluctuationsAIAA J 13 1975 1036CrossRefGoogle Scholar
Ganapathisubramani, B.Clemens, N. TDolling, D. SEffects of upstream boundary layer on the unsteadiness of shock-induced separationJ. Flui. Mech 585 2007 369CrossRefGoogle Scholar
Urbin, G.Knight, DZheltovodov, A 1999
El-Askary, W. 2003
Borisov, A. VZheltovodov, A. AMaksimov, A. IFedorova, N. NShpak, S. IVerification of turbulence models and computational methods of supersonic separated flowsInternational Conference on the Methods of Aerophysical Research, Part 1RussiaNovosibirsk 1996Google Scholar
Adams, N. ADirect simulation of the turbulent boundary layer along a compression ramp at M = 3 and o = 1,685J. Flui. Mech 420 2000 47CrossRefGoogle Scholar
Urbin, G.Knight, D.Zheltovodov, A. 2000
Yan, H.Knight, DZheltovodov, ALarge eddy simulation of supersonic compression corner using ENO schemeThird AFOSR International Conference on DNS and LES, August 5–9ArlingtonUniversity of Texas 2001Google Scholar
Zheltovodov, A. APimonov, E. AKnight, D. D 2007
Schülein, E.Zheltovodov, A. APimonov, E. ALoginov, M. S 2009
Loginov, M.Adams, NZheltovodov, A 2004
Loginov, M.Adams, NZheltovodov, ALES of shock wave/turbulent boundary layer interactionProc. High Performance Computing in Science and Engineering’04Krause, EJäger, WResch, MBerlin HeilderbergSpringer-Verlag 2005Google Scholar
Loginov, M.Adams, NZheltovodov, ALarge-eddy simulation of shock-wave/turbulent-boundary-layer interactionJ. Flui. Mech 565 2006 135CrossRefGoogle Scholar
Loginov, M.Adams, N. AZheltovodov, A. AShock-wave system analysis for compression-decompression ramp flowFifth International Symposium on Turbulence and Shear Flow PhenomenonFriedrich, R.Adams, N. A.Eaton, J. KHumprey, J. A. CKasagi, NLeschziner, M. AMünchen, TUGarchingGermany 2007Google Scholar
Zheltovodov, A.Trofimov, VSchülein, EYakovlev, V 1990
Stolz, S.Adams, N. AAn approximate deconvolution procedure for large-eddy simulationPhys. Fluids 11 1999 1699CrossRefGoogle Scholar
Lüdeke, H.Radespiel, RSchülein, E 2004
Adelgren, R. GYan, HElliott, G. SKnight, D. DBeutner, T. JZheltovodov, A. AControl of Edney IV interaction by pulsed laser energy depositionAIAA J 43 2005 256CrossRefGoogle Scholar
Rizzetta, D.Visbal, M 2001
Ringuette, M.Wu, MMartin, M. PLow Reynolds number effects in a Mach 3 shock/turbulent-boundary-layer interactionAIAA J 46 2008 1883CrossRefGoogle Scholar
Green, J.Interactions between shock waves and turbulent boundary layersProg. Aerospace Sci 11 235 1970CrossRefGoogle Scholar
Landau, L.Lifshitz, EFluid MechanicsOxfordPergammon Press 1959Google Scholar
Petrov, G. ILikhushin, V. YaNekrasov, I. PSorkin, L. I 1952
Bogdonoff, S.Kepler, CSeparation of a supersonic turbulent boundary layerJ. Aero. Sci 22 1955 414CrossRefGoogle Scholar
Shang, J. SHankey, W. LLaw, C. HNumerical simulation of shock wave–turbulent boundary-layer interactionAIAA J 14 1976 1451Google Scholar
Xiao, X.Hassan, H. AEdwards, J. RGaffney, R. LRole of turbulent Prandtl numbers on heat flux at hypersonic Mach numbersAIAA J 45 2007 806CrossRefGoogle Scholar
Schülein, E. 2004
Schülein, E.Krogmann, PStanewsky, E 1996
Hayashi, M.Aso, STan, AFluctuation of heat transfer in shock wave/turbulent boundary-layer interactionAIAA J 27 1989 399CrossRefGoogle Scholar
Pirozzoli, S.Grasso, FDirect numerical simulation of impinging shock wave/turbulent boundary layer interaction at = 2.25Phy. Flui 18 2006 1Google Scholar
Deleuze, J. 1995
Laurent, H. 1996
Brazhko, V. NPeriodic flowfield and heat transfer structure in the region of attachment of supersonic flowsUchenie Zapiski TSAGI (Scientific Notes of TSAGI) X 1979 113Google Scholar
Spalart, P. R.Allmaras, S. R. 1992
Glushko, G. S. 1965

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×