Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T15:06:25.634Z Has data issue: false hasContentIssue false

4 - Noise-induced phenomena in environmental systems

Published online by Cambridge University Press:  05 August 2011

Luca Ridolfi
Affiliation:
Politecnico di Torino
Paolo D'Odorico
Affiliation:
University of Virginia
Francesco Laio
Affiliation:
Politecnico di Torino
Get access

Summary

Introduction

Environmental systems are typically forced by a number of drivers, such as climate and natural or anthropogenic disturbances, that are not constant in time but fluctuate. With the exception of processes dominated by deterministic oscillations (e.g., daily and seasonal cycles), a significant part of environmental variability is random because of the uncertainty inherent in weather patterns, climate fluctuations and episodic disturbances such as hurricanes, landslides, earthquakes, fires, insect outbreaks, and epidemics (e.g., Ludwig et al., 1978; Benda and Dunne, 1997; D'Odorico et al., 2006b; Gilligan and van den Bosch, 2008). The recurrence of random drivers in biogeophysical processes motivates the study of how a stochastic environment may affect and determine the dynamics of natural systems.

Over the past few decades a number of studies have contributed to the observation, understanding, and modeling of stochastic processes in different areas of the biological (e.g., Bharucha-Reid, 1960; May, 1973; Tuckwell, 1988) and earth sciences (e.g., Krumbein and Graybill, 1965; Yevjevich, 1970; Bras and Rodriguez-Iturbe, 1994; Hipel and McLeod, 1994), leading to the development and application of several modeling frameworks for the study of random environmental fluctuations. This rather rich body of literature can be divided into two major classes, depending on the role played by noise in the dynamics of natural systems. In Chapter 3 we showed how random environmental drivers may either cause stochastic fluctuations of the system around the stable state(s) of the underlying deterministic dynamics (disorganizing effect of noise) or induce new dynamical behaviors and new ordered states (May, 1973; Horsthemke and Lefever, 1984) that do not exist in the deterministic counterpart of the process (organizing effect of noise).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×