Published online by Cambridge University Press: 04 August 2010
The stellar initial mass function (IMF) in star clusters is reviewed. Uncertainties in the observations are emphasized. We suggest there is a distinct possibility that cluster IMFs vary systematically with density or pressure. Dense clusters could have additional formation processes for massive stars that are not present in low-density regions, making the slope of the upper-mass IMF somewhat shallower in clusters. Observations of shallow IMFs in some super star clusters and in elliptical galaxies are reviewed. We also review mass segregation and the likelihood that peculiar IMFs, as in the Arches cluster, result from segregation and stripping, rather than an intrinsically different IMF. The theory of the IMF is reviewed in some detail. Several problems introduced by the lack of a magnetic field in SPH simulations are discussed. The universality of the IMF in simulations suggests that something more fundamental than the physical details of a particular model is at work. Hierarchical fragmentation by any of a variety of processes may be the dominant cause of the power-law slope. Physical differences from region to region may make a slight difference in the slope and also appear in the low-mass turnover point.
Introduction: Uncertainties
The stellar initial mass function (IMF) is difficult to measure because of systematic uncertainties, selection effects, and statistical variance. Stars in clusters may all have the same age and distance, making their masses relatively straightforward to determine, but mass segregation, field star contamination, variable extinction, and small number statistics can be problems in determining the IMF.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.