Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:42:24.275Z Has data issue: false hasContentIssue false

Chapter 9 - Metric spaces

Published online by Cambridge University Press:  05 August 2012

Finnur Lárusson
Affiliation:
University of Adelaide
Get access

Summary

Examples of metric spaces

Much of the theory developed in Chapters 3, 4, and 5 can be extended to the vastly more general setting of metric spaces. Even if we were only interested in analysis on the real line, this would still be worthwhile. In the following chapter, we will use the abstract theory of this chapter to prove an existence and uniqueness theorem for solutions of differential equations.

9.1. Definition. A metric space is a set X with a function d : X × X → [0, ∞), such that:

  • d(x, y) = 0 if and only if x = y.

  • d(x, y) = d(y, x) for all x, yX.

  • d(x, z)d(x, y) + d(y, z) for all x, y, zX (triangle inequality).

We call d a metric or a distance function on X. We sometimes write (X, d) for the set X with the metric d.

It turns out that all we need in order to develop such notions as convergence, completeness, and continuity is the three simple properties that define a metric. Of the three, the triangle inequality is of course the most substantial.

Examples of metric spaces abound throughout mathematics. In the remainder of this section we will explore a few of them. Be sure to verify the three defining properties of a metric if some of the details have been left out.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Metric spaces
  • Finnur Lárusson, University of Adelaide
  • Book: Lectures on Real Analysis
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139208604.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Metric spaces
  • Finnur Lárusson, University of Adelaide
  • Book: Lectures on Real Analysis
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139208604.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Metric spaces
  • Finnur Lárusson, University of Adelaide
  • Book: Lectures on Real Analysis
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139208604.011
Available formats
×