Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T13:27:20.427Z Has data issue: false hasContentIssue false

69 - Herpes simplex vaccines

from Part VII - Vaccines and immunothgerapy

Published online by Cambridge University Press:  24 December 2009

George Kemble
Affiliation:
MedImmune Vaccines, Inc., Mountain View, CA, USA
Richard Spaete
Affiliation:
MedImmune Vaccines, Inc., Mountain View, CA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Genital herpes, caused by both herpes simplex virus (HSV) types 1 and 2, can result in painful vesicular and ulcerative lesions on the genitalia and the genital tract, and may cause both urologic and neurologic problems. Following primary infection, HSV establishes a latent infection in the local ganglia and can reactivate on multiple occasions with manifestations ranging from asymptomatic viral shedding to painful recurrences of genital or orofacial lesions (Whitley, 2001). HSV-2 is the predominant etiologic agent of genital herpes and data from the second and third National Health and Nutrition Examination Surveys, spanning 1976 to 1994, demonstrated that the prevalence of HSV-2 infection increased by 30% since the late 1970's with the highest rates in teenagers and young adults (Fleming et al., 1997). It is estimated that more than 1.6 million individuals are infected annually with HSV-2 in the USA (Armstrong et al., 2001). From the perspective of vaccine development, however, genital herpes caused by HSV-1 cannot be overlooked. Although genital herpes caused by HSV-1 is generally less severe than HSV-2, HSV-1 is ubiquitous, infects a larger portion of the population than HSV-2, and the percentage of HSV-1 positive cultures isolated from individuals presenting with genital herpes appears to be increasing (Ribes et al., 2001).

In addition to the pain and potential complications (e.g. psychological distress), that genital herpes causes in the infected individual, it is also responsible for increasing the risk of sexual transmission of HIV (Holmberg et al., 1988).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1253 - 1261
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, G. L., Schillinger, J., Markowitz, L.et al. (2001). Incidence of herpes simplex virus type 2 infection in the United States.'Am. J. Epidemiol., 153(9), 912–920.CrossRefGoogle Scholar
Arvin, A. M. and Prober, C. G. (1997). Herpes simplex virus Type 2 – a persistent problem. N. Engl. J. Med., 337, 1158–1159.CrossRefGoogle ScholarPubMed
Barcy, S. and Corey, L. (2001). Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4+ T cells. J. Immunol., 166(10): 6242–6249.CrossRefGoogle ScholarPubMed
BenMohamed, L., Bertrand, G., McNamara, C. D.et al. (2003). Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J. Virol., 77(17), 9463–9473.Google Scholar
Bourne, N., Bravo, F. J., Francotte, M.et al. (2003). Herpes simplex virus (HSV) type 2 glycoprotein D subunit vaccines and protection against genital HSV-1 or HSV-2 disease in guinea pigs. J. Infect. Dis., 187(4), 542–549.CrossRefGoogle ScholarPubMed
Boursnell, M. E., Entwisle, C., Blakeley, D.et al. (1997). A genetically inactivated herpes simplex virus type 2 (HSV-2) vaccine provides effective protection against primary and recurrent HSV-2 disease. J. Infect. Dis., 175(1), 16–25.CrossRefGoogle ScholarPubMed
Brown, Z. A., Selke, S., Zeh, J.et al. (1997). The acquisition of herpes simplex virus during pregnancy. N. Engl. J. Med., 337(8), 509–515.CrossRefGoogle ScholarPubMed
Brown, Z. A., Wald, A., Morrow, R. A., Selke, S., Zeh, J., and Corey, L. (2003). Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. J. Am. Med. Assoc., 289(2), 203–209.CrossRefGoogle ScholarPubMed
Burke, R. L. (1993). Current status of HSV vaccine development. In The Human Herpesviruses. R. J. W. a. C. L. B. Roizman. New York, Raven Press, pp. 367–379.Google Scholar
Cadoz, M., Micoud, M., Mallaret, M.et al. (1992). Phase 1 trial of R7020: a live attenuated recombinant herpes simplex (HSV) candidate vaccine. ICAAC Washington DC (Abstract).
Chou, J., Kern, E. R., Whitley, R. J., and Roizman, B. (1990). Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science, 250(4985), 1262–1266.CrossRefGoogle ScholarPubMed
Corey, L., Langenberg, A. G., Ashley, R.et al. (1999). Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. J. Am. Med. Assoc., 282(4), 331–340.CrossRefGoogle ScholarPubMed
Da Costa, X. J., Bourne, N., Stanberry, L. R., and Knipe, D. M. (1997). Construction and characterization of a replication-defective herpes simplex virus 2 ICP8 mutant strain and its use in immunization studies in a guinea pig model of genital disease. Virology, 232(1), 1–12.CrossRefGoogle Scholar
Da Costa, X. J., Jones, C. A., and Knipe, D. M. (1999). Immunization against genital herpes with a vaccine virus that has defects in productive and latent infection. Proc. Natl Acad. Sci. USA, 96(12), 6994–6998.CrossRefGoogle ScholarPubMed
Farrell, H. E., McLean, C. S., Harley, C., Efstathiou, S., Inglis, S., and Minson, A. C. (1994). Vaccine potential of a herpes simplex virus type 1 mutant with an essential glycoprotein deleted. J. Virol., 68(2), 927–932.Google ScholarPubMed
Fleming, D. T., McQuillan, G. M., Johnson, R. E.et al. (1997). Herpes simplex virus type 2 in the United States, 1976 to 1994. N. Engl. J. Med., 337(16), 1105–1111.CrossRefGoogle ScholarPubMed
Flo, J., Tisminetzky, S., and Baralle, F. (2001). Oral transgene vaccination mediated by attenuated Salmonellae is an effective method to prevent Herpes simplex virus-2 induced disease in mice. Vaccine, 19(13–14), 1772–1782.Google Scholar
Galloway, D. A. (2003). Papillomavirus vaccines in clinical trials. Lancet. Infect. Dis., 3(8), 469–475.CrossRefGoogle ScholarPubMed
Gierynska, M., Kumaraguru, U., Eo, S. K., Lee, S., Krieg, A., and Rouse, B. T. (2002). Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes. J. Virol., 76(13), 6568–6576.CrossRefGoogle ScholarPubMed
Gyotoku, T., Ono, F., and Aurelian, L. (2002). Development of HSV-specific CD4+ Th1 responses and CD8+ cytotoxic T lymphocytes with antiviral activity by vaccination with the HSV-2 mutant ICP10DeltaPK. Vaccine, 20(21–22), 2796–2807.CrossRefGoogle ScholarPubMed
Hegde, N. R., Chevalier, M. S., and Johnson, D. C. (2003). Viral inhibition of MHC class II antigen presentation. Trends Immunol., 24(5), 278–285.CrossRefGoogle ScholarPubMed
Heineman, T. C., Connelly, B. L., Bourne, N., Stanberry, L. R., and Cohen, J. (1995). Immunization with recombinant varicella-zoster virus expressing herpes simplex virus type 2 glycoprotein D reduces the severity of genital herpes in guinea pigs. J. Virol., 69(12), 8109–8113.Google ScholarPubMed
Holmberg, S. D., Stewart, J. A., Gerber, A. R.et al. (1988). Prior herpes simplex virus type 2 infection as a risk factor for HIV infection. J. Am. Med. Assoc., 259(7), 1048–1050.CrossRefGoogle ScholarPubMed
Johnson, D. C. and Hill, A. B. (1998). Herpesvirus evasion of the immune system. Curr. Top. Microbiol. Immunol., 232, 149–177.Google ScholarPubMed
Kimberlin, D. W., Lin, C. Y., Jacobs, R. F.et al. (2001). Natural history of neonatal herpes simplex virus infections in the acyclovir era. Pediatrics, 108(2), 223–229.CrossRefGoogle ScholarPubMed
Kohl, S., Charlebois, E. D., Sigouroudinia, M.et al. (2000). Limited antibody-dependent cellular cytotoxicity antibody response induced by a herpes simplex virus type 2 subunit vaccine. J. Infect. Dis., 181(1), 335–339.CrossRefGoogle ScholarPubMed
Koutsky, L. A., Ault, K. A., Wheeler, C. M.et al. (2002). A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med., 347(21), 1645–1651.CrossRefGoogle ScholarPubMed
Langenberg, A. G., Burke, R. L., Adair, S. F.et al. (1995). A recombinant glycoprotein vaccine for herpes simplex virus type 2: safety and immunogenicity [corrected]. Ann. Intern. Med., 122(12), 889–898.CrossRefGoogle Scholar
Langenberg, A. G., Corey, L., Ashley, R. L., Leong, W. P., and Straus, S. E. (1999). A prospective study of new infections with herpes simplex virus type 1 and type 2. Chiron HSV Vaccine Study Group. N. Engl. J. Med., 341(19), 1432–1438.CrossRefGoogle ScholarPubMed
Leib, D. A. (2002). Counteraction of interferon-induced antiviral responses by herpes simplex viruses. Curr. Top. Microbiol. Immunol., 269, 171–185.Google ScholarPubMed
Lorenzo, M. E., Ploegh, H. L., and Tirabassi, R. S. (2001). Viral immune evasion strategies and the underlying cell biology. Semin. Immunol., 13(1), 1–9.CrossRefGoogle ScholarPubMed
McLean, C. S., Erturk, M., Jennings, R.et al. (1994). Protective vaccination against primary and recurrent disease caused by herpes simplex virus (HSV) type 2 using a genetically disabled HSV-1. J. Infect. Dis., 170(5), 1100–1109.Google Scholar
Meignier, B., Longnecker, R., and Roizman, B. (1988). In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J. Infect. Dis., 158(3), 602–614.CrossRefGoogle ScholarPubMed
Meignier, B., Martin, B., Whitley, R. J., and Roizman, B. (1990). In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J. Infect. Dis., 162(2), 313–321.CrossRefGoogle Scholar
Mohr, I., Sternberg, D., Ward, S., Leib, D., Mulvey, M., and Gluzman, Y. (2001). A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J. Virol., 75(11), 5189–5196.CrossRefGoogle ScholarPubMed
Murphy, C. G., Lucas, W. T., Means, R. E.et al. (2000). Vaccine protection against simian immunodeficiency virus by recombinant strains of herpes simplex virus. J. Virol., 74(17), 7745–7754.CrossRefGoogle ScholarPubMed
O'Hagan, D., Goldbeck, C., Ugozzoli, M., Ott, G., and Burke, R. L. (1999). Intranasal immunization with recombinant gD2 reduces disease severity and mortality following genital challenge with herpes simplex virus type 2 in guinea pigs. Vaccine, 17(18), 2229–2236.CrossRefGoogle ScholarPubMed
Prichard, M. N., Kaiwar, R., Jackman, W. T.et al. (2005). Evaluation of AD472, a live attenuated recombinant herpes simplex virus type 2 vaccine in guinea pigs. Vaccine, 23, 5424–5431.CrossRefGoogle ScholarPubMed
Rees, R. C., McArdle, S., Mian, S.et al. (2002). Disabled infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer. Curr. Opin. Mol. Ther., 4(1), 49–53.Google Scholar
Ribes, J. A., Steele, A. D., Seabolt, J. P., and Baker, D. J. (2001). Six-year study of the incidence of herpes in genital and nongenital cultures in a central Kentucky medical center patient population. J. Clin. Microbiol., 39(9), 3321–3325.CrossRefGoogle Scholar
Simms, J. R., Heath, A. W., and Jennings, R. (2000). Use of herpes simplex virus (HSV) type 1 ISCOMS 703 vaccine for prophylactic and therapeutic treatment of primary and recurrent HSV-2 infection in guinea pigs. J. Infect. Dis., 181(4), 1240–1248.CrossRefGoogle ScholarPubMed
Spear, P., (1985). Glycoproteins specified by Herpes simplex viruses. In Roizman, B., ed. The Herpesviruses. New York: Plenum, 3, 315–356.Google Scholar
Spector, F. C., Kern, E. R., Palmer, J.et al. (1998). Evaluation of a live attenuated recombinant virus RAV 9395 as a herpes simplex virus type 2 vaccine in guinea pigs. J. Infect. Dis., 177(5), 1143–1154.CrossRefGoogle ScholarPubMed
Stanberry, L., Cunningham, A., Mertz, G. (1999). New developments in the epidemiology, natural history and management of genital herpes. Antiviral Res., 42(1), 1–14.CrossRefGoogle ScholarPubMed
Stanberry, L. R., Spruance, S. L., Cunningham, A. L.et al. (2002). Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Engl. J. Med., 347(21), 1652–1661.CrossRefGoogle ScholarPubMed
Strasser, J. E., Arnold, R. L., Pachuk, C., Higgins, T. J., and Bernstein, D. I. (2000). Herpes simplex virus DNA vaccine efficacy: effect of glycoprotein D plasmid constructs. J. Infect. Dis., 182(5), 1304–1310.CrossRefGoogle ScholarPubMed
Stratton, K., Durch, J., and Lawrence, R., eds. (2000). Vaccines for the 21st Century. A Tool for Decision Making. Washington, DC: National Academy Press.Google Scholar
Straus, S. E., Wald, A., Kost, R. G.et al. (1997). Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: results of a placebo-controlled vaccine trial. J. Infect. Dis., 176(5), 1129–1134.CrossRefGoogle Scholar
Varghese, S. and Rabkin, S. D. (2002). Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther., 9(12), 967–978.CrossRefGoogle ScholarPubMed
Wald, A., Zeh, J., Selke, S., Ashley, R. L., and Corey, L. (1995). Virologic characteristics of subclinical and symptomatic genital herpes infections. N. Engl. J. Med., 333(12), 770–775.CrossRefGoogle ScholarPubMed
Whitley, R. J. (2001). Herpes simplex viruses. In Knipe, D. M. and Howley, P. M., eds. Fields Virology, 4th edn. Lippincott, Williams & Wilkins, 2.
Whitley, R. J., Kern, E. R., Chatterjee, S., Chou, J., and Roizman, B. (1993). Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models. J. Clin. Invest., 91(6), 2837–2843.CrossRefGoogle ScholarPubMed
Xu, F., Schillinger, J. A., Sternberg, M. R.et al. (2002). Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988–1994. J. Infect. Dis., 185(8), 1019–1024.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×