Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T15:13:27.807Z Has data issue: false hasContentIssue false

Chapter 7 - Progressivesupranuclear palsy and corticobasal degeneration in the FTD spectrum

from Section 2 - Clinical phenotypes

Published online by Cambridge University Press:  05 May 2016

Bradford C. Dickerson
Affiliation:
Department of Neurology, Massachusetts General Hospital
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pick, A. Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr 1892;17:165–7.Google Scholar
von Braunmühl, A. Krankheit, Picksche. In: Bumke, O, ed. Handbuch der Geisteskrankheiten. Vol. 11. Part VII. Berlin, Germany: Springer-Verlag. 1930;673715. [German].Google Scholar
Akelaitis, AJ. Atrophy of basal ganglia in Pick's disease. Arch Neurol Psychiatry 1944;51:2734.Google Scholar
Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brainstem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964;10:333–59.Google Scholar
Rebeiz, JJ, Kolodny, EH, Richardson, EP. Corticodentatonigral degeneration with neuronal achromasia. A progressive disorder of late adult life. Trans Am Neurol Assoc 1967;9:23–6.Google Scholar
Gibb, WR, Luthert, PJ, Marsden, CD. Corticobasal degeneration. Brain 1989;112:1171–92.Google Scholar
Rebeiz, JJ, Kolodny, EH, Richardson, EP Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol 1968;18:2033.Google Scholar
Constantinidis, J, Richard, J, Tissot, R. Pick's disease. Histological and clinical correlations. Eur Neurol 1974;11 (4):208–17.Google ScholarPubMed
Munoz-Garcia, D, Ludwin, SK. Classic and generalized variants of Pick's disease: a clinicopathological, ultrastructural, and immunocytochemical comparative study. Ann Neurol 1984;16 (4):467–80.Google Scholar
Neary, D, Snowden, JS, Gustafson, L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51 (6):1546–54.CrossRefGoogle ScholarPubMed
The Lund and Manchester Groups. Consensus statement. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 1994;57:416–18.Google Scholar
McKhann, GM, Albert, MS, Grossman, M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001;58:1803–9.Google Scholar
Kertesz, A, McMonagle, P, Blair, M, Davidson, W, Munoz, DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128:19962005.CrossRefGoogle ScholarPubMed
Spillantini, MG, Goedert, M. Tau mutations in familial frontotemporal dementia. Brain 2000;123:857–9.Google Scholar
Yamada, T, McGeer, PL, McGeer, EG. Appearance of paired nucleated, tau-positive glia on patients with progressive supranuclear palsy brain tissue. Neurosci Lett 1992;135:99102.CrossRefGoogle ScholarPubMed
Feany, MB, Dickson, DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 1995;146 (6):1388–96.Google Scholar
Komori, T, Arai, N, Oda, M, et al. Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 1998;96 (4):401–8.CrossRefGoogle Scholar
Goedert, M, Spillantini, MG, Potier, MC, Ulrich, J, Crowther, RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 1989;8 (2):393–9.Google Scholar
Goedert, M, Wischik, CM, Crowther, RA, Walker, JE, Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 1988;85 (11):4051–5.Google Scholar
Goode, BL, Chau, M, Denis, PE, Feinstein, SC. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenerative disease. J Biol Chem 2000;275 (49):38182–9.Google Scholar
Arai, T, Ikeda, K, Akiyama, H, et al. Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann Neurol 2004;55 (1):72–9.Google Scholar
Baker, M, Litvan, I, Houlden, H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999;8 (4):711–15.Google Scholar
Di Maria, E, Tabaton, M, Vigo, T, et al. Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 2000;47 (3):374–7.Google Scholar
Pittman, AM, Myers, AJ, Abou-Sleiman, P, et al. Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J Med Genet 2005;42 (11):837–46.Google Scholar
Rademakers, R, Melquist, S, Cruts, M, et al. High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum Mol Genet 2005;14 (21):3281–92.Google Scholar
Schellenberg, GD. A genome-wide association study of progressive supranuclear palsy and corticobasal degeneration: genes that modify risk. Dement Geriatr Cogn Disord 2010;30 (Suppl 1):1819.Google Scholar
Donker Kaat, L, Boon, AJ, Azmani, A, et al. Familial aggregation of parkinsonism in progressive supranuclear palsy. Neurology 2009;73 (2):98105.Google Scholar
Borroni, B, Goldwurm, S, Cerini, C, et al. Familial aggregation in progressive supranuclear palsy and corticobasal syndrome. Eur J Neurol 2011;18(1):195–7.Google Scholar
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross sectional study. Lancet 1999;354:1771–5.Google Scholar
Armstrong, MJ, Litvan, I, Lang, AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80 (5):496503.Google Scholar
Litvan, I, Agid, Y, Calne, D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47 (1):19.Google Scholar
Boeve, BF. Progressive supranuclear palsy. Parkinsonism Relat Disord 2012;18(Suppl 1):S192–4.CrossRefGoogle ScholarPubMed
Rohrer, JD, Lashley, T, Schott, JM, et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 2011;134:2565–81.Google Scholar
Dickson, DW, Kouri, N, Murray, ME, Josephs, KA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 2011;45 (3):384–9.Google Scholar
Wakabayashi, K, Takahashi, H. Pathological heterogeneity in progressive supranuclear palsy and corticobasal degeneration. Neuropathology 2004;24 (1):7986.Google Scholar
Williams, DR, Lees, AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009;8 (3):270–9.Google Scholar
Osaki, Y, Ben-Shlomo, Y, Lees, AJ, et al. Accuracy of clinical diagnosis of progressive supranuclear palsy. Mov Disord 2004;19 (2):181–9.Google Scholar
Hughes, AJ, Daniel, SE, Ben-Shlomo, Y, Lees, AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125:861–70.Google Scholar
Litvan, I. Recent advances in atypical parkinsonian disorders. Curr Opin Neurol 1999;12(4):441–6.Google Scholar
Wadia, PM, Lang, AE. The many faces of corticobasal degeneration. Parkinsonism Relat Disord 2007;13(Suppl 3):S336–40.Google Scholar
Boeve, BF, Lang, AE, Litvan, I. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol 2003;54(Suppl 5):S1519.Google Scholar
Riley, DE, Lang, AE, Lewis, A, et al. Cortical-basal ganglionic degeneration. Neurology 1990;40:1203–12.Google Scholar
Lang, AE, Riley, DE, Bergeron, C. Cortical-basal ganglionic degeneration. In: Calne, DB, ed. Neurodegenerative Diseases. Philadelphia: W.B. Saunders. 1994;877–94.Google Scholar
Watts, RL, Mirra, SS, Richardson, EP. Cortical-basal ganglionic degeneration. In: Marsden, CD, Fahn, S, eds. Movement Disorders, Vol 3. Oxford: Butterworth Heinemann. 1994;282–99.Google Scholar
Kumar, R, Bergeron, C, Pollanen, M, Lang, AE. Cortical-basal ganglionic degeneration. In: Jankovic, J, Tolosa, E, eds. Parkinson's Disease & Movement Disorders. Baltimore: Williams & Wilkins. 1998;297316.Google Scholar
Litvan, I, Cummings, JL, Mega, M. Neuropsychiatric features of corticobasal degeneration. J Neurol Neurosurg Psychiatry 1998;65:717–21.Google Scholar
Bak, TH, Hodges, JR. Corticobasal degeneration: clinical aspects. Handb Clin Neurol 2008;89:509–21.Google Scholar
Hodges, JR, Davies, RR, Xuereb, JH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol 2004;56 (3):399406.Google Scholar
Josephs, KA, Petersen, RC, Knopman, DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 2006;66 (1):41–8.Google Scholar
McMonagle, P, Blair, M, Kertesz, A. Corticobasal degeneration and progressive aphasia. Neurology 2006;67 (8):1444–51.Google Scholar
Massey, LA, Micallef, C, Paviour, DC, et al. Conven-tional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 2012;27 (14):1754–62.Google Scholar
Massey, LA, Jäger, HR, Paviour, DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 2013;80 (20):1856–61.Google Scholar
Quattrone, A, Nicoletti, G, Messina, D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008;246 (1):214–21.Google Scholar
Borroni, B, Malinverno, M, Gardoni, F, et al. A combination of CSF tau ratio and midsaggital midbrain-to-pons atrophy for the early diagnosis of progressive supranuclear palsy. J Alzheimers Dis 2010;22 (1):195203.Google Scholar
Cosottini, M, Ceravolo, R, Faggioni, L, et al. Assessment of midbrain atrophy in patients with progressive supranuclear palsy with routine magnetic resonance imaging. Acta Neurol Scand 2007;116 (1):3742.Google Scholar
Duchesne, S, Rolland, Y, Vérin, M. Automated computer differential classification in parkinsonian syndromes via pattern analysis on MRI. Acad Radiol 2009;16 (1):6170.Google Scholar
Shi, HC, Zhong, JG, Pan, PL, et al. Gray matter atrophy in progressive supranuclear palsy: meta-analysis of voxel-based morphometry studies. Neurol Sci 2013;34 (7):1049–55.Google Scholar
Padovani, A, Borroni, B, Brambati, SM, et al. Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2006;77 (4):457–63.Google Scholar
Price, S, Paviour, D, Scahill, R, et al. Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson's disease. Neuroimage 2004;23 (2):663–9.Google Scholar
Agosta, F, Kostić, VS, Galantucci, S, et al. The in vivo distribution of brain tissue loss in Richardson's syndrome and PSP-parkinsonism: a VBM-DARTEL study. Eur J Neurosci 2010;32 (4):640–7.Google Scholar
Agosta, F, Pievani, M, Svetel, M, et al. Diffusion tensor MRI contributes to differentiate Richardson's syndrome from PSP-parkinsonism. Neurobiol Aging 2012;33 (12):2817–26.Google Scholar
Focke, NK, Helms, G, Scheewe, S, et al. Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum Brain Mapp 2011;32 (11):1905–15.Google Scholar
Sajjadi, SA, Acosta-Cabronero, J, Patterson, K, et al. Diffusion tensor magnetic resonance imaging for single subject diagnosis in neurodegenerative diseases. Brain 2013;136:2253–61.Google Scholar
Ling, H, O'Sullivan, SS, Holton, JL, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010;133:2045–57.Google Scholar
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011;70 (2):327–40.Google Scholar
Seeley, WW, Crawford, RK, Zhou, J, Miller, BL, Greicius, MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009;62 (1):4252.Google Scholar
Borroni, B, Garibotto, V, Agosti, C, et al. White matter changes in corticobasal degeneration syndrome and correlation with limb apraxia. Arch Neurol 2008;65 (6):796801.Google Scholar
Erbetta, A, Mandelli, ML, Savoiardo, M, et al. Diffusion tensor imaging shows different topographic involve-ment of the thalamus in progressive supranuclear palsy and corticobasal degeneration. Am J Neuroradiol 2009;30 (8):1482–7.Google Scholar
Whitwell, JL, Jack, CR, Boeve, BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010;75 (21):1879–87.Google Scholar
Borroni, B, Premi, E, Agosti, C, et al. CSF Alzheimer's disease-like pattern in corticobasal syndrome: evidence for a distinct disorder. J Neurol Neurosurg Psychiatry 2011;82 (8):834–8.Google Scholar
Oh, M, Kim, JS, Kim, JY, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med 2012;53 (3):399406.CrossRefGoogle ScholarPubMed
Srulijes, K, Reimold, M, Liscic, RM, et al. Fluorodeoxyglucose positron emission tomography in Richardson's syndrome and progressive supranuclear palsy-parkinsonism. Mov Disord 2012;27 (1):151–5.Google Scholar
Ceravolo, R, Rossi, C, Cilia, R, et al. Evidence of delayed nigrostriatal dysfunction in corticobasal syndrome: a SPECT follow-up study. Parkinsonism Relat Disord 2013;19 (5):557–9.Google Scholar
Urakami, K, Wada, K, Arai, H, et al. Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. J Neurol Sci 2001;183 (1):95–8.Google Scholar
Borroni, B, Malinverno, M, Gardoni, F, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 2008;71 (22):1796–803.Google Scholar
Bugiani, O, Murrell, JR, Giaccone, G, et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 1999;58(6):667–77.Google Scholar
Poorkaj, P, Muma, NA, Zhukareva, V, et al. An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol 2002;52(4):511–16.Google Scholar
Pastor, P, Pastor, E, Carnero, C, et al. Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene. Ann Neurol 2001;49(2):263–7.Google Scholar
Ferrer, I, Pastor, P, Rey, MJ, et al. Tau phosphorylation and kinase activation in familial tauopathy linked to deln296 mutation. Neuropathol Appl Neurobiol 2003;29(1):2334.CrossRefGoogle ScholarPubMed
Oliva, R, Pastor, P. Tau gene delN296 mutation, Parkinson's disease, and atypical supranuclear palsy. Ann Neurol 2004;55(3):448–9.Google Scholar
Rossi, G, Gasparoli, E, Pasquali, C, et al. Progressive supranuclear palsy and Parkinson's disease in a family with a new mutation in the tau gene. Ann Neurol 2004;55(3):448.CrossRefGoogle Scholar
Rojo, A, Pernaute, RS, Fontán, A, et al. Clinical genetics of familial progressive supranuclear palsy. Brain 1999;122:1233–45.CrossRefGoogle ScholarPubMed
Ros, R, Thobois, S, Streichenberger, N, et al. A new mutation of the tau gene, G303V, in early-onset familial progressive supranuclear palsy. Arch Neurol 2005;62(9):1444–50.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×