Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T15:19:34.191Z Has data issue: false hasContentIssue false

Chapter 11 - Cerebrospinalfluid biomarkers of frontotemporal lobar degeneration

from Section 3 - Approach to the diagnosis of FTD

Published online by Cambridge University Press:  05 May 2016

Bradford C. Dickerson
Affiliation:
Department of Neurology, Massachusetts General Hospital
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Neary, D, Snowden, JS, Gustafson, L, Passant, U, Stuss, D, Black, S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546–54.Google Scholar
Mackenzie, IR, Foti, D, Woulfe, J, Hurwitz, TA. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 2008;131(Pt 5):1282–93.Google Scholar
McKhann, GM, Albert, MS, Grossman, M, Miller, B, Dickson, D, Trojanowski, JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001;58(11):1803–9.Google Scholar
Mackenzie, IR, Munoz, DG, Kusaka, H, Yokota, O, Ishihara, K, Roeber, S, et al. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 2011;121(2):207–18.Google Scholar
Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer's Disease.” The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. Neurobiol Aging 1998;19(2):109–16.Google Scholar
Schoonenboom, NS, Reesink, FE, Verwey, NA, Kester, MI, Teunissen, CE, van de Ven, PM, et al. Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 2012;78(1):4754.CrossRefGoogle Scholar
Riemenschneider, M, Wagenpfeil, S, Diehl, J, Lautenschlager, N, Theml, T, Heldmann, B, et al. Tau and Abeta42 protein in CSF of patients with frontotemporal degeneration. Neurology 2002;58(11):1622–8.Google Scholar
Buerger, K, Zinkowski, R, Teipel, SJ, Tapiola, T, Arai, H, Blennow, K, et al. Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 2002;59(8):1267–72.Google Scholar
Gloeckner, SF, Meyne, F, Wagner, F, Heinemann, U, Krasnianski, A, Meissner, B, et al. Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. J Alzheimers Dis 2008;14(1):1725.Google Scholar
Kapaki, E, Paraskevas, GP, Papageorgiou, SG, Bonakis, A, Kalfakis, N, Zalonis, I, et al. Diagnostic value of CSF biomarker profile in frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord 2008;22(1):4753.CrossRefGoogle ScholarPubMed
Molina, L, Touchon, J, Herpe, M, Lefranc, D, Duplan, L, Cristol, JP, et al. Tau and apo E in CSF: potential aid for discriminating Alzheimer's disease from other dementias. Neuroreport 1999;10(17):3491–5.Google Scholar
Parnetti, L, Lanari, A, Saggese, E, Spaccatini, C, Gallai, V. Cerebrospinal fluid biochemical markers in early detection and in differential diagnosis of dementia disorders in routine clinical practice. Neurol Sci 2003;24(3):199200.Google Scholar
Blasko, I, Lederer, W, Oberbauer, H, Walch, T, Kemmler, G, Hinterhuber, H, et al. Measurement of thirteen biological markers in CSF of patients with Alzheimer's disease and other dementias. Dement Geriatr Cogn Disord 2006;21(1):915.CrossRefGoogle ScholarPubMed
Green, AJ, Harvey, RJ, Thompson, EJ, Rossor, MN. Increased tau in the cerebrospinal fluid of patients with frontotemporal dementia and Alzheimer's disease. Neurosci Lett 1999;259(2):133–5.Google Scholar
Sjögren, M, Davidsson, P, Tullberg, M, Minthon, L, Wallin, A, Wikkelso, C, et al. Both total and phosphorylated tau are increased in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2001;70(5):624–30.CrossRefGoogle ScholarPubMed
Rademakers, R, Neumann, M, Mackenzie, IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 2012;8(8):423–34.Google Scholar
Ghidoni, R, Paterlini, A, Benussi, L. Circulating progranulin as a biomarker for neurodegenerative diseases. Am J Neurodegener Dis 2012;1(2):180–90.Google Scholar
Van Damme, P, Van Hoecke, A, Lambrechts, D, Vanacker, P, Bogaert, E, van Switten, J, et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 2008;181(1):3741.Google Scholar
Ghidoni, R, Benussi, L, Glionna, M, Franzoni, M, Binetti, G. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 2008;71(16):1235–9.CrossRefGoogle ScholarPubMed
Philips, T, De Muynck, L, Thu, HN, Weynants, B, Vanacker, P, Dhondt, J, et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol 2010;69(12):1191–200.Google Scholar
Sleegers, K, Brouwers, N, Van Damme, P, Engelborghs, S, Gijselinck, I, van der Zee, J, et al. Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann Neurol 2009;65(5):603–9.Google Scholar
Finch, N, Baker, M, Crook, R, Swanson, K, Kuntz, K, Surtees, R, et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 2009;132(Pt 3):583–91.CrossRefGoogle ScholarPubMed
Wild, D. The Immunoassay Handbook, 2nd edn. New York, NY: Nature Publishing Group; 2001.Google Scholar
Mackenzie, IR, Rademakers, R. The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 2007;8(4):237–48.Google Scholar
Foulds, P, McAuley, E, Gibbons, L, Davidson, Y, Pickering-Brown, SM, Neary, D, et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration. Acta Neuropathol 2008;116(2):141–6.Google Scholar
Steinacker, P, Hendrich, C, Sperfeld, AD, Jesse, S, von Arnim, CA, Lehnert, S, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 2008;65(11):1481–7.Google Scholar
Kasai, T, Tokuda, T, Ishigami, N, Sasayama, H, Foulds, P, Mitchell, DJ, et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 2009;117(1):5562.Google Scholar
Sergeant, N, Delacourte, A, Buee, L. Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 2005;1739(2–3):179–97.Google Scholar
Sergeant, N, Bretteville, A, Hamdane, M, Caillet-Boudin, ML, Grognet, P, Bombois, S, et al. Biochemistry of tau in Alzheimer's disease and related neurological disorders. Expert Rev Proteomics 2008;5(2):207–24.Google Scholar
Luk, C, Compta, Y, Magdalinou, N, Marti, MJ, Hondhamuni, G, Zetterberg, H, et al. Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies. J Neurochem 2012;123(3):396405.Google Scholar
Buee, L, Bussiere, T, Buee-Scherrer, V, Delacourte, A, Hof, PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000;33(1):95130.Google Scholar
Kester, MI, van der Vlies, AE, Blankenstein, MA, Pijnenburg, YA, Van Elk, EJ, Scheltens, P, et al. CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology 2009;73(17):1353–8.Google Scholar
van Rossum, IA, Vos, SJ, Burns, L, Knol, DL, Scheltens, P, Soininen, H, et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 2012;79(17):1809–16.Google Scholar
van Rossum, IA, Visser, PJ, Knol, DL, van der Flier, WM, Teunissen, CE, Barkhof, F, et al. Injury markers but not amyloid markers are associated with rapid progression from mild cognitive impairment to dementia in Alzheimer's disease. J Alzheimers Dis 2012;29(2):319–27.Google Scholar
Bian, H, van Swieten, JC, Leight, S, Massimo, L, Wood, E, Forman, M, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008;70(19 Pt 2):1827–35.Google Scholar
Hu, WT, Trojanowski, JQ, Shaw, LM. Biomarkers in frontotemporal lobar degenerations – progress and challenges. Prog Neurobiol 2011;95(4):636–48.Google Scholar
Clark, CM, Xie, S, Chittams, J, Ewbank, D, Peskind, E, Galasko, D, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003;60(12):1696–702.Google Scholar
Grossman, M, Farmer, J, Leight, S, Work, M, Moore, P, Van Deerlin, V, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer's disease. Ann Neurol 2005;57(5):721–9.Google Scholar
Toledo, JB, Arnold, SE, Raible, K, Brettschneider, J, Xie, SX, Grossman, M, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain 2013;136(Pt 9):2697–706.CrossRefGoogle ScholarPubMed
Koopman, K, Le Bastard, N, Martin, JJ, Nagels, G, De Deyn, PP, Engelborghs, S. Improved discrimination of autopsy-confirmed Alzheimer's disease (AD) from non-AD dementias using CSF P-tau (181P). Neurochem Int 2009;55(4):214–18.Google Scholar
Brunnstrom, H, Rawshani, N, Zetterberg, H, Blennow, K, Minthon, L, Passant, U, et al. Cerebrospinal fluid biomarker results in relation to neuropathological dementia diagnoses. Alzheimers Dement 2010;6(2):104–9.Google Scholar
Engelborghs, S, De Vreese, K, Van de Casteele, T, Vanderstichele, H, Van Everbroeck, B, Cras, P, et al. Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol Aging 2008;29(8):1143–59.Google Scholar
Tapiola, T, Alafuzoff, I, Herukka, SK, Parkkinen, L, Hartikainen, P, Soininen, H, et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 2009;66(3):382–9.Google Scholar
Toledo, JB, Brettschneider, J, Grossman, M, Arnold, SE, Hu, WT, Xie, SX, et al. CSF biomarkers cutoffs: the importance of coincident neuropathological diseases. Acta Neuropathol 2012;124(1):2335.CrossRefGoogle ScholarPubMed
Carecchio, M, Fenoglio, C, Cortini, F, Comi, C, Benussi, L, Ghidoni, R, et al. Cerebrospinal fluid biomarkers in progranulin mutations carriers. J Alzheimers Dis 2011;27(4):781–90.Google Scholar
Hu, WT, Watts, K, Grossman, M, Glass, J, Lah, JJ, Hales, C, et al. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology 2013;81(22):1945–52.Google Scholar
Irwin, DJ, McMillan, CT, Toledo, JB, Arnold, SE, Shaw, LM, Wang, LS, et al. Comparison of cerebrospinal fluid levels of tau and Abeta 1–42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. Arch Neurol 2012;69(8):1018–25.Google Scholar
van Harten, AC, Kester, MI, Visser, PJ, Blankenstein, MA, Pijnenburg, YA, van der Flier, WM, et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 2011;49(3):353–66.CrossRefGoogle ScholarPubMed
Hartmann, T, Bieger, SC, Bruhl, B, Tienari, PJ, Ida, N, Allsop, D, et al. Distinct sites of intracellular production for Alzheimer's disease Abeta40/42 amyloid peptides. Nat Med 1997;3(9):1016–20.Google Scholar
Blennow, K, Hampel, H. CSF markers for incipient Alzheimer's disease. Lancet Neurol 2003;2(10):605–13.Google Scholar
Mattsson, N, Zetterberg, H, Hansson, O, Andreasen, N, Parnetti, L, Jonsson, M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009;302(4):385–93.Google Scholar
Perry, DC, Lehmann, M, Yokoyama, JS, Karydas, A, Lee, JJ, Coppola, G, et al. Progranulin mutations as risk factors for Alzheimer disease. JAMA Neurol 2013;70(6):774–8.Google Scholar
Rademakers, R, Baker, M, Gass, J, Adamson, J, Huey, ED, Momeni, P, et al. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurol 2007;6(10):857–68.Google Scholar
Josephs, KA, Ahmed, Z, Katsuse, O, Parisi, JF, Boeve, BF, Knopman, DS, et al. Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol 2007;66(2):142–51.Google Scholar
Brouwers, N, Sleegers, K, Engelborghs, S, Maurer-Stroh, S, Gijselinck, I, van der Zee, J, et al. Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease. Neurology 2008;71(9):656–64.Google Scholar
Bibl, M, Mollenhauer, B, Wolf, S, Esselmann, H, Lewczuk, P, Kornhuber, J, et al. Reduced CSF carboxyterminally truncated Abeta peptides in frontotemporal lobe degenerations. J Neural Transm 2007;114(5):621–8.Google Scholar
Bibl, M, Gallus, M, Welge, V, Esselmann, H, Wolf, S, Ruther, E, et al. Cerebrospinal fluid amyloid-beta 2–42 is decreased in Alzheimer's, but not in frontotemporal dementia. J Neural Transm 2012;119(7):805–13.Google Scholar
Bibl, M, Mollenhauer, B, Lewczuk, P, Esselmann, H, Wolf, S, Otto, M, et al. Cerebrospinal fluid tau, p-tau 181 and amyloid-beta38/40/42 in frontotemporal dementias and primary progressive aphasias. Dement Geriatr Cogn Disord 2011;31(1):3744.Google Scholar
Engelborghs, S, Maertens, K, Vloeberghs, E, Aerts, T, Somers, N, Marien, P, et al. Neuropsychological and behavioural correlates of CSF biomarkers in dementia. Neurochem Int 2006;48(4):286–95.Google Scholar
Gabelle, A, Roche, S, Geny, C, Bennys, K, Labauge, P, Tholance, Y, et al. Decreased sAβPPβ, Aβ38, and Aβ40 cerebrospinal fluid levels in frontotemporal dementia. J Alzheimers Dis 2011;26(3):553–63.Google Scholar
Sjögren, M, Minthon, L, Davidsson, P, Granerus, A-K, Clarberg, A, Vanderstichele, H, et al. CSF levels of tau, beta-amyloid(1–42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm 2000;107(5):563–79.Google Scholar
Pijnenburg, YA, Schoonenboom, SN, Mehta, PD, Mehta, SP, Mulder, C, Veerhuis, R, et al. Decreased cerebrospinal fluid amyloid beta (1–40) levels in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 2007;78(7):735–7.Google Scholar
Pijnenburg, YA, Janssen, JC, Schoonenboom, NS, Petzold, A, Mulder, C, Stigbrand, T, et al. CSF neurofilaments in frontotemporal dementia compared with early onset Alzheimer's disease and controls. Dement Geriatr Cogn Disord 2007;23(4):225–30.Google Scholar
Pijnenburg, YA, Schoonenboom, NS, Rosso, SM, Mulder, C, Van Kamp, GJ, van Swieten, JC, et al. CSF tau and Abeta42 are not useful in the diagnosis of frontotemporal lobar degeneration. Neurology 2004;62(9):1649.Google Scholar
Rosso, SM, van Herpen, E, Pijnenburg, YA, Schoonenboom, NS, Scheltens, P, Heutink, P, et al. Total tau and phosphorylated tau 181 levels in the cerebrospinal fluid of patients with frontotemporal dementia due to P301L and G272V tau mutations. Arch Neurol 2003;60(9):1209–13.Google Scholar
Schoonenboom, NS, Pijnenburg, YA, Mulder, C, Rosso, SM, Van Elk, EJ, Van Kamp, GJ, et al. Amyloid beta(1–42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology 2004;62(9):1580–4.Google Scholar
Verwey, NA, Kester, MI, van der Flier, WM, Veerhuis, R, Berkhof, H, Twaalfhoven, H, et al. Additional value of CSF amyloid-beta 40 levels in the differentiation between FTLD and control subjects. J Alzheimers Dis 2010;20(2):445–52.Google Scholar
Gabelle, A, Roche, S, Geny, C, Bennys, K, Labauge, P, Tholance, Y, et al. Correlations between soluble alpha/beta forms of amyloid precursor protein and Abeta38, 40, and 42 in human cerebrospinal fluid. Brain Res 2010;1357:175–83.Google Scholar
Bibl, M, Lewczuk, P, Esselmann, H, Mollenhauer, B, Klafki, HW, Welge, V, et al. CSF amyloid-beta 1–38 and 1–42 in FTD and AD: biomarker performance critically depends on the detergent accessible fraction. Proteomics Clin Appl 2008;2(10–11):1548–56.Google Scholar
Small, SA, Duff, K. Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 2008;60(4):534–42.Google Scholar
Phiel, CJ, Wilson, CA, Lee, VM, Klein, PS. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003;423(6938):435–9.Google Scholar
Schaffer, BA, Bertram, L, Miller, BL, Mullin, K, Weintraub, S, Johnson, N, et al. Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch Neurol 2008;65(10):1368–74.Google Scholar
Sjögren, M, Rosengren, L, Minthon, L, Davidsson, P, Blennow, K, Wallin, A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 2000;54(10):1960–4.Google Scholar
de Jong, D, Jansen, RW, Pijnenburg, YA, van Geel, WJ, Borm, GF, Kremer, HP, et al. CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol Neurosurg Psychiatry 2007;78(9):936–8.Google Scholar
Landqvist Waldӧ, M, Frizell, SA, Passant, U, Zetterberg, H, Rosengren, L, Nilsson, C, et al. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol 2013;13:54.Google Scholar
Petzold, A, Keir, G, Warren, J, Fox, N, Rossor, MN. A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener Dis 2007;4(2–3):185–94.Google Scholar
Hu, WT, Chen-Plotkin, A, Grossman, M, Arnold, SE, Clark, CM, Shaw, LM, et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 2010;75(23):2079–86.CrossRefGoogle ScholarPubMed
Mattsson, N, Ruetschi, U, Pijnenburg, YA, Blankenstein, MA, Podust, VN, Li, S, et al. Novel cerebrospinal fluid biomarkers of axonal degeneration in frontotemporal dementia. Mol Med Rep 2008 Sep;1(5):757–61.Google ScholarPubMed
Gozal, YM, Seyfried, NT, Gearing, M, Glass, JD, Heilman, CJ, Wuu, J, et al. Aberrant septin 11 is associated with sporadic frontotemporal lobar degeneration. Mol Neurodegener 2011;6:82.Google Scholar
Martins-de-Souza, D, Guest, PC, Mann, DM, Roeber, S, Rahmoune, H, Bauder, C, et al. Proteomic analysis identifies dysfunction in cellular transport, energy, and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration. J Proteome Res 2012;11(4):2533–43.Google Scholar
Schweitzer, K, Decker, E, Zhu, L, Miller, RE, Mirra, SS, Spina, S, et al. Aberrantly regulated proteins in frontotemporal dementia. Biochem Biophys Res Commun 2006;348(2):465–72.Google Scholar
Arai, H, Morikawa, Y, Higuchi, M, Matsui, T, Clark, CM, Miura, M, et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun 1997;236(2):262–4.Google Scholar
Borroni, B, Gardoni, F, Parnetti, L, Magno, L, Malinverno, M, Saggese, E, et al. Pattern of tau forms in CSF is altered in progressive supranuclear palsy. Neurobiol Aging 2009;30(1):3440.Google Scholar
Borroni, B, Malinverno, M, Gardoni, F, Alberici, A, Parnetti, L, Premi, E, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 2008;71(22):1796–803.Google Scholar
Fabre, SF, Forsell, C, Viitanen, M, Sjögren, M, Wallin, A, Blennow, K, et al. Clinic-based cases with frontotemporal dementia show increased cerebrospinal fluid tau and high apolipoprotein E epsilon4 frequency, but no tau gene mutations. Exp Neurol 2001;168(2):413–18.Google Scholar
Matsuda, K, Tashiro, K, Hayashi, Y, Monji, A, Yoshida, I, Mitsuyama, Y. Measurement of laminins in the cerebrospinal fluid obtained from patients with Alzheimer's disease and vascular dementia using a modified enzyme-linked immunosorbent assay. Dement Geriatr Cogn Disord 2002;14(3):113–22.Google Scholar
Mecocci, P, Cherubini, A, Bregnocchi, M, Chionne, F, Cecchetti, R, Lowenthal, DT, et al. Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease? Alzheimer Dis Assoc Disord 1998;12(3):211–14.Google Scholar
Paraskevas, GP, Kapaki, E, Liappas, I, Theotoka, I, Mamali, I, Zournas, C, et al. The diagnostic value of cerebrospinal fluid tau protein in dementing and nondementing neuropsychiatric disorders. J Geriatr Psychiatry Neurol 2005;18(3):163–73.Google Scholar
Petzold, A, Chapman, MD, Schraen, S, Verwey, NA, Pasquier, F, Bombois, S, et al. An unbiased, staged, multicentre, validation strategy for Alzheimer's disease CSF tau levels. Exp Neurol 2010;223(2):432–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×