Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T19:16:36.304Z Has data issue: false hasContentIssue false

17 - Magnetic Field Evolution in Terrestrial Bodies from Planetesimals to Exoplanets

from Part V - Magnetic Fields beyond the Earth and beyond Today

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Space missions have shown that most terrestrial bodies have an internally generated magnetic field in their metallic core and/or a crustal field due to remanent magnetism. The latter indicates the presence of an old dynamo at the time of crust formation. Information on the two together helps to uncover the body’s magnetic field history, and it is generally accepted that convection flows driven by thermal or compositional buoyancy in the cores are the most likely source for maintaining global planetary magnetic fields. The convection flow in the core, in turn, is closely related to the interior dynamics of the mantles above and the thermal evolution of the body. This chapter describes the mechanisms for dynamo generation either by thermal or compositional convection in the core. It discusses the magnetic field evolution of Mercury, Moon, Mars, Ganymede, and planetesimals and will also address the possibility of dynamo generation in rocky exoplanets

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 267 - 285
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P. and Cloutier, P. (1999). Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER experiment, Science, 284, 790–93.Google Scholar
Amit, H., Christensen, U. R. and Langlais, B. (2011). The influence of degree-1 mantle heterogeneity on the past dynamo of Mars, Phys. Earth Planet. Inter., 189, 6379.Google Scholar
Anderson, J. D., Jurgens, R. F., Lau, E. L., Slade, M. A. and Schubert, G. (1996). Shape and orientation of Mercury from radar ranging data, Icarus, 124(2), 690–97.CrossRefGoogle Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J.A. and Zurbuchen, T.H. (2011). The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333(6051), 1859–62.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L. Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field, J. Geophys. Res., 117, doi: 10.1029/2012JE004159.Google Scholar
Arkani-Hamed, J. and Boutin, D. (2012). Is the primordial crust of Mars magnetized?, Icarus, 221(1), 192207.Google Scholar
Arkani-Hamed, J. and Dyment, J. (1996). Magnetic potential and magnetization contrasts of Earth’s lithosphere, J. Geophys. Res., 101(B5), 11401–26.Google Scholar
Arkani-Hamed, J. and Olson, P. (2010). Giant impact stratification of the Martian core, Geophys. Res. Lett., 370(L02), 201, doi: 10.1029/2009GL041417.Google Scholar
Aubert, J., Labrosse, S. and Poitou, C. (2009). Modelling the palaeo-evolution of the geo-dynamo, Geophys. J. Int., 179, 1414–28.Google Scholar
Bland, M. T., Showman, A. P. and Tobie, G. (2009). The orbital–thermal evolution and global expansion of Ganymede, Icarus, 200(1), 207–21.CrossRefGoogle Scholar
Bleil, U. and Petersen, N. (1983). Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts, Nature, 301, 384–8.Google Scholar
Braginsky, S. I. (1964). Magnetohydrodynamics of the Earth core, Geomag. Aeron., 4, 698712.Google Scholar
Breuer, D., Labrosse, S. and Spohn, T. (2010). Thermal evolution and magnetic field generation in terrestrial planets and satellites, Space Sci. Rev., 152(1), 449500.Google Scholar
Breuer, D. and Moore, B. (2015). Dynamics and thermal history of the terrestrial planets, the Moon, and Io, in Treatise on Geophysics, 2nd edn., vol. 10, ed. Spohn, T., pp. 255305, Elsevier, Oxford.Google Scholar
Breuer, D. and Spohn, T. (2003). Early plate tectonics versus single-plate tectonics: Evidence from the magnetic field history and crust evolution, J. Geophys. Res., 108(E7), 5072, doi: 10.1029/20002JE001999.Google Scholar
Breuer, D. and Spohn, T. (2006). Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field, Planet. Space Sci., 54, 153–69.CrossRefGoogle Scholar
Bryson, J. F., Nichols, C. I., Herrero-Albillos, J., Kronast, F., Kasama, T., Alimadadi, H. and Harrison, R. J. (2015). Long-lived magnetism from solidification-driven convection on the pallasite parent body, Nature, 517(7535), 472–5.Google Scholar
Buono, A. S. and Walker, D. (2011). The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10GPa, Geochim. Cosmochim. Acta, 75(8), 2072–87.Google Scholar
Busse, F. H. (1976). Generation of planetary magnetism by convection, Phys. Earth Planet. Inter., 12(4), 350–58.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., Şengör, A. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. (2014). Mercury’s global contraction much greater than earlier estimates, Nat. Geosci., 7(4), 301–7.Google Scholar
Cameron, A. G. W. (1997). The origin of the Moon and the single impact hypothesis V, Icarus, 126(1), 126–37.Google Scholar
Cameron, A. G. W. and Canup, R. M. (1998). The giant impact and the formation of the Moon, Origin Earth Moon, 957, 3.Google Scholar
Campbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G. and Prakapenka, V. B. (2007). Partial melting in the iron–sulfur system at high pressure: A synchrotron X-ray diffraction study, Phys. Earth Planet. Inter., 162(1), 119–28.Google Scholar
Cao, H., Aurnou, J. M., Wicht, J., Dietrich, W., Soderlund, K. M. and Russell, C. T. (2014). A dynamo explanation for Mercury’s anomalous magnetic field, Geophys. Res. Lett., 41(12), 4127–34.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., Shuster, D. L., Ebel, D. and Gattacceca, J. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body, Proc. Natl. Acad. Sci., 108(16), 6386–9.CrossRefGoogle Scholar
Chabot, N. L., Wollack, E. A., Klima, R. L. and Minitti, M. E. (2014). Experimental constraints on Mercury’s core composition, Earth Planet. Sci. Lett., 390, 199208.Google Scholar
Chen, B., Li, J. and Hauck, S. A. (2008). Non-ideal liquidus curve in the Fe-S system and Mercury’s snowing core, Geophys. Res. Lett., 35, L07201, doi: 10.1029/2008GL033311.Google Scholar
Christensen, U. R. and Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J. Int., 166(1), 97114.CrossRefGoogle Scholar
Christensen, U. R., Holzwarth, V. and Reiners, A. (2009). Energy flux determines magnetic field strength of planets and stars, Nature, 457(7226), 167–9.CrossRefGoogle ScholarPubMed
Christensen, U. R. and Wicht, J. (2007). Numerical dynamo simulations, in Core Dynamics, Treatise on Geophysics, vol. 8, ed. Schubert, G., pp. 254–82, Elsevier, Oxford.Google Scholar
Christensen, U. R. and Wicht, J. (2008). Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn, Icarus, 196(1), 1634.Google Scholar
Christensen, U. R. and Tilgner, A. (2004). Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos, Nature, 429, 169–71, doi: 10.1038/nature02508.Google Scholar
Christensen, U. R. (2010). Dynamo scaling laws and applications to the planets, Space Sci. Rev., 152, 565–90.Google Scholar
Christensen, U. R. (2015). Iron snow dynamo models for Ganymede, Icarus, 247, 248–59.Google Scholar
Chudinovskikh, L. and Boehler, R. (2007). Eutectic melting in the system Fe–S to 44 GPa, Earth Planet. Sci. Lett., 257(1), 97103.Google Scholar
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Ness, N. F., Reme, H., Mazelle, C. and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of Mars, Science, 284, 794–8.Google Scholar
Connerney, J. E. P., Acuña, M. H., Ness, N. F., Spohn, T. and Schubert, G. (2004). Mars crustal magnetism, in Mars’ Magnetism and Its Interaction with the Solar Wind, pp. 132, Springer, Netherlands.Google Scholar
Curtis, S. A. and Ness, N. F. (1986). Magnetostrophic balance in planetary dynamos: Predictions for Neptune’s magnetosphere, J. Geophys. Res., 91(A10), 11003–8.Google Scholar
Davies, C. J. and Pommier, A. (2018). Iron snow in the Martian core?, Earth Planet. Sci. Lett., 481, 189200.CrossRefGoogle Scholar
Dehant, V., Lammer, H., Kulikov, Y. N., Grießmeier, J. M., Breuer, D., Verhoeven, O., Karatekin, Ö., Van Hoolst, T., Korablev, O. and Lognonné, P. (2007). Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars, Space Sci. Rev., 129(1–3), 279300.Google Scholar
de Koker, N., Steinle-Neumann, G. and Vlček, V. (2012). Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core, Proc. Natl. Acad. Sci., 109(11), 4070–73.CrossRefGoogle Scholar
Dietrich, W. and Wicht, J. (2013). A hemispherical dynamo model: Implications for the Martian crustal magnetization, PEPI, 217, 1021.Google Scholar
Dreibus, G. and Wänke, H. (1985). Mars: A volatile rich planet, Meteoritics, 20, 367–82.Google Scholar
Driscoll, P. and Olson, P. (2011). Optimal dynamos in the cores of terrestrial exoplanets: Magnetic field generation and detectability, Icarus, 213(1), 1223.Google Scholar
Driscoll, P. E. and Barnes, R. (2015). Tidal heating of Earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions, Astrobiology, 15(9), 739–60.Google Scholar
Dumberry, M. and Rivoldini, A. (2015). Mercury’s inner core size and core-crystallization regime, Icarus, 248, 254–68.Google Scholar
Dwyer, C. A., Stevenson, D. J. and Nimmo, F. (2011). A long-lived lunar dynamo driven by continuous mechanical stirring, Nature, 479, 212–14, doi: 10.1038/nature10564.Google Scholar
Elkins-Tanton, L. T., Weiss, B. P. and Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals, Earth Planet. Sci. Lett., 305(1), 110.Google Scholar
Elkins-Tanton, L. T., Asphaug, E., Bell, J., Bercovici, D., Bills, B. G., Binzel, R. P., Bottke, W. F., Jun, I., Marchi, S., Oh, D. and Polanskey, C. A. (2014). Journey to a metal world: Concept for a discovery mission to Psyche, Lunar Planet. Sci. Conf., 45, 1253.Google Scholar
Evans, A. J., Zuber, M. T., Weiss, B. P. and Tikoo, S. M. (2014). A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution, J. Geophys. Res., 119(5), 1061–77.CrossRefGoogle Scholar
Evans, A. J., Tikoo, S. M. and Andrews-Hanna, J. C. (2017). The case against an early lunar dynamo powered by core convection, Geophys. Res. Lett., 44, doi: 10.1002/2017GL075441.Google Scholar
Fei, Y, Bertka, C. M. and Finger, L. W. (1997). High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system, Science, 275(5306), 1621–3.Google Scholar
Fei, Y., Li, J., Bertka, C. M. and Prewitt, C. T. (2000). Structure type and bulk modulus of Fe3S, a new iron-sulfur compound, Am. Min., 85(11–12), 1830–33.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., Gattacceca, J., Grove, T. L., Suavet, C., Lima, E. A., Li, L. and Kuan, A. T. (2012). An ancient core dynamo in asteroid Vesta, Science, 338, 238–41.Google Scholar
Gaidos, E., Conrad, C. P., Manga, M. and Hernlund, J. (2010). Thermodynamic limits on magnetodynamos in rocky exoplanets, Astrophys. J., 718, 596609.Google Scholar
Garcia, R., Gagnepain-Beyneix, J., Chevrot, S. and Lognonne, P. (2011). Very preliminary reference Moon model, Phys. Earth. Planet. Inter., 188, 96113, doi: 10.1016/j.pepi.2011.06.015.Google Scholar
Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J. and Hernlund, J. W. (2013). The high conductivity of iron and thermal evolution of the Earth’s core, Phys. Earth. Planet. Inter., 224, 88103.Google Scholar
Grott, M., Breuer, D. and Laneuville, M. (2011). Thermo-chemical evolution and global contraction of Mercury, Earth Planet. Sci. Lett., 307, 135–46, doi: 10.1016/j.epsl.2011.04.040.CrossRefGoogle Scholar
Hauck, S. A. and Phillips, R. J. (2002). Thermal and crustal evolution of Mars, J. Geophys. Res., 107(E7), 6–1.Google Scholar
Hauck, S. A., Aurnou, J. M. and Dombard, A. J. (2006). Sulfur’s impact on core evolution and magnetic field generation on Ganymede, J. Geophys. Res., 111(E9).Google Scholar
Hauck, S. A., Dombard, A. J., Phillips, R. J. and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury, Earth Planet. Sci. Lett., 222(3–4), 713–28.Google Scholar
Hauck, S. A., Margot, J.-L., Solomon, S. C., Lemoine, F. G., Mazarico, E., Peale, S. J., Perry, M. E., Phillips, R. J., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure, J. Geophys. Res., 118, 1303–22, doi: 10.1002/jgre.20052.Google Scholar
Head, J. W., Greeley, R., Golombek, M. P., Hartmann, W. K., Hauber, E., Jaumann, R. and Carr, M. H. (2001). Geological processes and evolution, Space Sci. Rev., 96(1/4): 263–92.Google Scholar
Heimpel, M. H., Aurnou, J. M., Al-Shamali, F. M. and Gomez Perez, N. (2005). A numerical study of dynamo action as function of spherical shell geometry, Earth Planet. Sci. Lett., 236, 542–57.Google Scholar
Hevey, P. J. and Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies, Meteoritics Planet. Sci., 41(1), 95106.CrossRefGoogle Scholar
Hide, R. (1972). Comments on the Moon’s magnetism, Moon, 4, 39.Google Scholar
Hood, L. L., Mitchell, D. L., Lin, R. P., Acuna, M. H. and Binder, A. B. (1999). Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett., 26, 2327–30.Google Scholar
Hood, L. L., Zakharian, A., Halekas, J., Mitchell, D. L., Lin, R. P., Acuña, M. H. and Binder, A. B. (2001). Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data, J. Geophys. Res., 106, 27825–39.Google Scholar
Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. and Solomon, S. C. (2012). MESSENGER observations of Mercury’s magnetic field structure, J. Geophys. Res., 117(E12).Google Scholar
Johnson, C. L., Phillips, R. J., Purucker, M. E., Anderson, B. J., Byrne, P. K., Denevi, B. W. and Solomon, S. C. (2015). Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field, Science, 348, 892–5.Google Scholar
Karato, S. I. (2011). Rheological structure of the mantle of a super-Earth: Some insights from mineral physics, Icarus, 212(1), 1423.Google Scholar
Kimura, J., Nakagawa, T. and Kurita, K. (2009). Size and compositional constraints of Ganymede’s metallic core for driving an active dynamo, Icarus, 202(1), 216–24.Google Scholar
Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., Polanskey, C., Southwood, D. J. and Schubert, G. (1996). Discovery of Ganymede’s magnetic field by the Galileo spacecraft, Nature, 384, 537–41.Google Scholar
Kivelson, M. G., Khurana, K. K. and Volwerk, M. (2002). The permanent and inductive magnetic moments of Ganymede, Icarus, 157, 507–22.Google Scholar
Knibbe, J. and van Westrenen, W. (2018). The thermal evolution of Mercury’s Fe-Si core, Earth Planet. Sci. Lett., 482, 147–59. doi: 10.1016/j.epsl.2017.11.006Google Scholar
Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. and Goncharov, A. F. (2016). Direct measurement of thermal conductivity in solid iron at planetary core conditions, Nature, 534(7605), 99101.Google Scholar
Konopliv, A. S., Binder, A. B., Hood, L. L., Kucinskas, A. B., Sjogren, W. L. and Williams, J. G. (1998). Improved gravity field of the Moon from Lunar Prospector, Science, 281(5382), 1476–80.Google Scholar
Konrad, W. and Spohn, T. (1997). Thermal history of the Moon: Implications for an early core dynamo and post-accretional magmatism, Adv. Space Res., 19(10), 1511–21.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y.N. and Tian, F. (2008). Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139(1–4), 399436.CrossRefGoogle Scholar
Laneuville, M., Wieczorek, M. A., Breuer, D., Aubert, J., Morard, G. and Rückriemen, T. (2014). A long-lived lunar dynamo powered by core crystallization, Earth Planet. Sci. Lett., 401, 251260.Google Scholar
Langlais, B., Purucker, M. E. and Mandea, M. (2004). Crustal magnetic field of Mars, J. Geophys. Res., 109(E2).Google Scholar
Le Bars, M., Wieczorek, M. A., Karatekin, O., Cebron, D. and Laneuville, M. (2011). An impact-driven dynamo for the early Moon, Nature, 479, 215218, doi: 10.1038/nature10565.Google Scholar
Li, J., Fei, Y., Mao, H. K., Hirose, K. and Shieh, S. R. (2001). Sulfur in the Earth’s inner core, Earth Planet. Sci. Lett., 193, 509–14.Google Scholar
Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. and Frey, H. V. (2013). Time history of the Martian dynamo from crater magnetic field analysis, J. Geophys. Res., 118(7), 14881511, doi: 10.1002/jgre.20105.Google Scholar
Lin, Y., Marti, P., Noir, J. and Jackson, A. (2016). Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices, Phys. Fluids, 28, 066601, doi: 10.1063/1.4954295.Google Scholar
Malavergne, V., Toplis, M. J., Berthet, S. and Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field, Icarus, 206(1), 199209.Google Scholar
Manglik, A., Wicht, J. and Christensen, U. R. (2010). A dynamo model with double diffusive convection for Mercury’s core, Earth Planet. Sci. Lett., 289(3), 619–28.Google Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core, Science, 316(5825), 710–14, doi: 10.1126/science.1140514.Google Scholar
Margot, J. L., Peale, S. J., Solomon, S. C., Hauck, S. A., Ghigo, F. D., Jurgens, R. F. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data, J. Geophys. Res., 117(E12).Google Scholar
McCammon, C. A., Ringwood, A. E. and Jackson, I. (1983). Thermodynamic of the system Fe-FeO-MgO at high pressure and temperature and a model for the formation of the Earth’s core, Geophys. J. R. Astron. Soc., 72, 577–95.Google Scholar
McSween, H. Y. Jr (1985). SNC meteorites: Clues to Martian petrologic evolution?, Rev. Geophys., 23, 391416.Google Scholar
Mohit, P. S. and Arkani-Hamed, J. (2004). Impact demagnetization of the Martian crust, Icarus, 168(2), 305–17.Google Scholar
Monteux, J., Jellinek, A. M. and Johnson, C. L. (2013). Dynamics of core merging after a mega-impact with applications to Mars’ early dynamo, Icarus, 226(1), 2032.Google Scholar
Morard, G., Andrault, D., Guignot, N., Sanloup, C., Mezouar, M., Petitgirard, S. and Fiquet, G. (2008). In situ determination of Fe-Fe3S phase diagram and liquid structural properties up to 65 GPa, Earth Planet. Sci. Lett., 272, 620–26.CrossRefGoogle Scholar
Morard, G. and Katsura, T. (2010). Pressure–temperature cartography of Fe–S–Si immiscible system, Geochim. Cosmochim. Acta, 74(12), 3659–67.Google Scholar
Morschhauser, A., Lesur, V. and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars, J. Geophys. Res., 119(6), 1162–88.Google Scholar
Moskovitz, N. and Gaidos, E. (2011). Differentiation of planetesimals and the thermal consequences of melt migration, Meteorit. Planet. Sci., 46(6), 903–18.Google Scholar
Ness, N. F., Acuna, M. H., Connerney, J., Wasilewski, P. and Bauer, S. J. (1999). MGS magnetic fields and electron reflectometer investigation: Discovery of paleomagnetic fields due to crustal remanence, Adv. Space Res., 23(11), 1879–86.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P., Schatten, K. H. and Whang, Y. C. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10, Science, 185, 151–60.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1975). Magnetic field of Mercury, J. Geophys. Res., 80, 2708–16.Google Scholar
Neumann, W., Breuer, D. and Spohn, T. (2012). Differentiation and core formation in accreting planetesimals, Astron. Astrophys., 543, A141.Google Scholar
Neumann, W., Breuer, D. and Spohn, T. (2014). Differentiation of Vesta: Implications for a shallow magma ocean, Earth Planet. Sci. Lett., 395, 267–80.Google Scholar
Nimmo, F. (2000). Dike intrusion as a possible cause of linear Martian magnetic anomalies, Geology, 28, 391–4.Google Scholar
Nimmo, F. (2009). Energetics of asteroid dynamos and the role of compositional convection, Geophys. Res. Lett., 36(10).Google Scholar
Nimmo, F. (2015). Thermal and compositional evolution of the core, in Treatise on Geophysics, 2nd edn., ed. Stevenson, D. and Schubert, G., pp. 201–19, Elsevier, Amsterdam.Google Scholar
Nimmo, F. and Stevenson, D. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars, J. Geophys. Res., 105, 11969–79.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Schlemm, C. E., Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry, Science, 333, 18471950, doi: 10.1126/science.1211567.Google Scholar
Olson, P., Landeau, M. and Hirsh, B. H. (2017). Laboratory experiments on rain-driven convection: Implications for planetary dynamos, Earth Planet. Sci. Lett., 457, 403–11.Google Scholar
Olson, P. and Christensen, U. R. (2006). Dipole moment scaling for convection-driven planetary dynamos, Earth Planet. Sci. Lett., 250(3), 561–71.Google Scholar
Peale, S. J. (1976). Inferences from the dynamical history of Mercury’s rotation, Icarus, 28(4), 459–67.Google Scholar
Plesa, A.-C., Grott, M., Tosi, N., Breuer, D., Spohn, T. and Wieczoreck, M. (2016). How large are present-day heat flux variations across the surface of Mars?, J. Geophys. Res., 121(12), 23862403, doi: 10.1002/2016JE005126.Google Scholar
Pozzo, M., Davies, C., Gubbins, D. and Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions, Nature, 485, 355359.Google Scholar
Rai, N. and Westrenen, W. (2013). Core‐mantle differentiation in Mars, J. Geophys. Res., 118(6), 11951203.Google Scholar
Reese, C. C. and Solomatov, V. S. (2010). Early Martian dynamo generation due to giant impacts, Icarus, 207(1), 8297.Google Scholar
Ringwood, A. E. (1977). Composition of the core and implications for the origin of the earth, Geochem. J., 11, 111–35.Google Scholar
Rivoldini, A. and Van Hoolst, T. (2013). The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury, Earth Planet. Sci. Lett., 377, 6272.Google Scholar
Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A. and Dehant, V. (2011). Geodesy constraints on the interior structure and composition of Mars, Icarus, 213(2), 451–72.Google Scholar
Roberts, J. H., Lillis, R. J. and Manga, M. (2009). Giant impacts on early Mars and the cessation of the Martian dynamo, J. Geophys. Res., 114(E4).Google Scholar
Rochette, P., Lorand, J.-P., Fillion, G. and Sautter, V. (2001). Pyrrhotite and the remanent magnetization of SNC meteorites: A changing perspective on Martian magnetism, Earth Planet. Sci. Lett., 190(1–2), 112.Google Scholar
Rückriemen, T., Breuer, D. and Spohn, T. (2015). The Fe snow regime in Ganymede’s core: A deep‐seated dynamo below a stable snow zone, J. Geophys. Res., 120(6), 10951118.Google Scholar
Rückriemen, T., Breuer, D. and Spohn, T. (2018). Top-down freezing in a Fe–FeS core and Ganymede’s present-day magnetic field, Icarus, 307, 172–96.Google Scholar
Sahijpal, S., Soni, P. and Gupta, G. (2007). Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources, Meteoritics Planet. Sci., 42(9), 1529–48.Google Scholar
Sanloup, C. and Fei, Y. (2004). Closure of the Fe-S-Si liquid miscibility gap at high pressure, Phys. Earth Planet. Inter., 147, 5765, doi: 10.1016/j.pepi.2004.06.008.Google Scholar
Scheinberg, A., Soderlund, K. M. and Schubert, G. (2015). Magnetic field generation in the lunar core: The role of inner core growth, Icarus, 254, 6271.Google Scholar
Scheinberg, A., Elkins‐Tanton, L. T., Schubert, G. and Bercovici, D. (2016). Core solidification and dynamo evolution in a mantle‐stripped planetesimal, J. Geophys. Res., 121(1), 220.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field, in Mercury, ed. Viulas, F., Chapman, C. R. and Matthews, M. S., pp. 514–61, University Press of Arizona, Tucson.Google Scholar
Schubert, G., Zhang, K., Kivelson, M. G. and Anderson, J. D. (1996). The magnetic field and internal structure of Ganymede, Nature, 384(6609), 544–5.Google Scholar
Schubert, G., Anderson, J. D., Spohn, T. and McKinnon, W. B. (2004). Interior composition, structure and dynamics of the Galilean satellites, in Jupiter: The Planet, Satellites and Magnetosphere, pp. 281306. Cambridge University Press, Cambridge.Google Scholar
Scott, H. P., Williams, Q. and Ryerson, F. J. (2002). Experimental constraints on the chemical evolution of large icy satellites, Earth Planet. Sci. Lett., 203, 399412.Google Scholar
Shimizu, H., Matsushima, M., Takahashi, F., Shibuya, H. and Tsunakawa, H. (2013). Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus, 222(1), 3243.Google Scholar
Snyder, G. A., Taylor, L. A. and Neal, C. R. (1992). A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere, Geochim. Cosmochim. Acta, 56(10), 3809–23.CrossRefGoogle Scholar
Smith, D., Zuber, M., Phillips, R., Hauck, S. A., Lemoine, F., Mazarico, E., Neumann, G., Peale, S., Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER, Science, 336(6078), 214–17, doi: 10.1126/science.1218809.Google Scholar
Sohl, F., Spohn, T., Breuer, D. and Nagel, K. (2002). Implications from Galileo observations of the interior structure and chemistry of the Galilean satellites, Icarus, 157, 104–19.Google Scholar
Sohl, F. and Schubert, G. (2015). Interior structure, composition, and mineralogy of the terrestrial planets, in Physics of Terrestrial Planets and Moons, Treatise on Geophysics, 2nd edn., vol. 10, pp. 2364, Elsevier, New York.Google Scholar
Solomon, C. S., Aharonson, O., Aurnou, J. M., Banerdt, W. B., Carr, M. H., Dombard, A. J., Frey, H. V., Golombek, M. P., Hauck, S. A., Head, J. W., Jakosky, B. M., Johnson, C. L., McGovern, P. J., Neumann, G. A., Phillips, R. J., Smith, D. E. and Zuber, M. T. (2005). New perspectives on ancient Mars, Science, 307, 1214–20.Google Scholar
Spohn, T., Acuña, M. A., Breuer, D., Golombek, M., Greeley, R., Halliday, A., Hauber, E., Jaumann, R. and Sohl, F. (2001). Geophysical constraints on the evolution of Mars, Space Sci. Rev., 96, 231–62.Google Scholar
Spohn, T., Sohl, F. and Breuer, D. (1998). Mars, Astron. Astrophys. Rev., 8, 181235.Google Scholar
Stacey, F. D. and Anderson, O. L. (2001). Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions, Phys. Earth Planet. Inter., 124(3), 153–62.Google Scholar
Stamenković, V., Breuer, D. and Spohn, T. (2011). Thermal and transport properties of mantle rock at high pressure: Applications to super-Earths, Icarus, 216(2), 572–96.Google Scholar
Stanley, S., Bloxham, J., Hutchinson, W. E. and Zuber, M. T. (2005). Thin shell dynamo models consistent with Mercury’s weak observed magnetic field, Earth Planet. Sci. Lett., 234, 2738.Google Scholar
Stanley, S., Elkins-Tanton, L., Zuber, M. T. and Parmentier, E. M. (2008). Mars’ paleomagnetic field as the result of a single-hemisphere dynamo, Science, 321(5897), 1822–5.Google Scholar
Stegman, D. R., Jellinek, A. M., Zatman, S. A., Baumgardner, J. R. and Richards, M. A. (2003). An early lunar core dynamo driven by thermochemical mantle convection, Nature, 421(6919), 143–6.Google Scholar
Sterenborg, M. G. and Crowley, J. W. (2013). Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos, Phys. Earth Planet. Inter., 214, 5373.Google Scholar
Stevenson, D. J. (2001). Mars core and magnetism, Nature, 412, 214–19.Google Scholar
Stevenson, D. J., Spohn, T. and Schubert, G. (1983). Magnetism and thermal evolution of the terrestrial planets, Icarus, 54, 466–89.Google Scholar
Stewart, A. J., Schmidt, M. W., van Westrenen, W. and Liebske, C. (2007). Mars: A new core-crystallization regime, Science, 316(5829), 1323–5.Google Scholar
Tachinami, C., Senshu, H. and Ida, S. (2011). Thermal evolution and lifetime of intrinsic magnetic fields of super-Earths in habitable zones, Astrophys. J., 726(2), 70.Google Scholar
Tackley, P. J., Ammann, M., Brodholt, J. P., Dobson, D.P. and Valencia, D. (2013). Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity, Icarus, 225(1), 5061.Google Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., Hopkins, J., Voronov, J., Erickson, A., Blackman, E., Scott, E. R. and McKinley, D. R. (2012). Evidence for a dynamo in the main group pallasite parent body, Science, 338, 939–42.Google Scholar
Tian, Z., Zuber, M. T. and Stanley, S. (2015). Magnetic field modeling for Mercury using dynamo models with a stable layer and laterally variable heat flux, Icarus, 260, 263–8.Google Scholar
Tikoo, S. M., Weiss, B. P., Cassata, W., Shuster, D. L., Gattacceca, J., Lima, E. A., Suavet, C., Nimmo, F. and Fuller, M. (2014). Decline of the lunar core dynamo, Earth Planet. Sci. Lett., 404, 8997.Google Scholar
Tikoo, S. M., Weiss, B. P., Shuster, D. L., Suavet, C., Wang, H. and Grove, T. L. (2017). A two-billion-year history for the lunar dynamo, Sci. Adv., 3, e1700207, doi: 10.1126/sciadv.1700207s.Google Scholar
Tosi, N., Grott, M., Plesa, A.-C. and Breuer, D. (2013). Thermo-chemical evolution of Mercury’s interior, J. Geophys. Res., doi: 10.1002/jgre.20168.Google Scholar
Usselman, T. M. (1975). Experimental approach to the state of the core; Part I, The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kb, Am. J. Sci., 275(3), 278–90.Google Scholar
Van Summeren, J., Gaidos, E. and Conrad, C. P. (2013). Magnetodynamo lifetimes for rocky, Earth‐mass exoplanets with contrasting mantle convection regimes, J. Geophys. Res., 118(5), 938–51.Google Scholar
Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. and Lillis, R. J. (2017). Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures, J. Geophys. Res., doi: 10.1002/2017JE005410.Google Scholar
Vilim, R., Stanley, S. and Hauck, S. A. (2010). Iron snow zones as a mechanism for generating Mercury’s weak observed magnetic field, J. Geophys. Res., 115(E11).Google Scholar
Wang, H., Weiss, B. P., Bai, X. N., Downey, B. G., Wang, J., Wang, J., Suavet, C., Fu, R. R. and Zucolotto, M. E. (2017). Lifetime of the solar nebula constrained by meteorite paleomagnetism, Science, 355, 623–7.Google Scholar
Wang, Z. and Becker, H. (2017). Chalcophile elements in Martian meteorites indicate low sulfur content in the Martian interior and a volatile element-depleted late veneer, Earth Planet. Sci. Lett., 463, 5668.Google Scholar
Weber, R. C., Lin, P. Y., Garnero, E. J., Williams, Q. and Lognonne, P. (2011). Seismic detection of the lunar core, Science, 331, 309–12, doi: 10.1126/science.1199375.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill‐Cahill, K. R., Byrne, P. K. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X‐Ray Spectrometer, J. Geophys. Res., 117(E12).Google Scholar
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L., Stanley, S., Lima, E. A. and Carporzen, L. (2008). Magnetism on the angrite parent body and the early differentiation of planetesimals, Science, 322(5902), 713–16.Google Scholar
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P. and Christensen, U. R. (2010). Paleomagnetic records of meteorites and early planetesimal differentiation, Space Sci. Rev., 152(1–4), 341–90.Google Scholar
Weiss, B. P., Shuster, D. L. and Stewart, S. T. (2002). Temperatures on Mars from 40Ar/39Ar thermochronology of ALH84001, Earth Planet. Sci. Lett., 201(3–4), 465–72.Google Scholar
Weiss, B. P. and Tikoo, S. M. (2014). The lunar dynamo, Science, 346, 11981209, doi: 10.1126/science.1246753.Google Scholar
Wicht, J., Mandea, M., Takahashi, F., Christensen, U. R., Matsushima, M. and Langlais, B. (2007). The origin of Mercury’s internal magnetic field, Space Sci. Rev., 132, 261–90, doi: 10.1007/s11214-007-9280-5.Google Scholar
Wicht, J. and Heyner, D. (2014). Mercury’s magnetic field in the MESSENGER era, Planet. Geod. Remote Sens., 223.Google Scholar
Wieczorek, M. A., Jolliff, B. L., Khan, A., Pritchard, M. E., Weiss, B. P., Williams, J. G., Hood, L. L., Righter, K., Neal, C. R., Shearer, C. K., McCallum, I. S., Tompkins, S., Hawke, B. R., Peterson, C., Gillis, J. J. and Bussey, B. (2006). The constitution and structure of the lunar interior, Rev. Mineral. Geochem., 60, 221364.Google Scholar
Williams, Q. (2009). Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores, Earth Planet. Sci. Lett., 284(3), 564–9.Google Scholar
Williams, J. G. and Nimmo, F. (2004). Thermal evolution of the Martian core: Implications for an early dynamo, Geology, 32(2), 97100.Google Scholar
Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. and Dickey, J. O. (2001). Lunar rotational dissipation in solid body and molten core, J. Geophys. Res., 106(E11), 27933–68.Google Scholar
Zhan, X. and Schubert, G. (2012). Powering Ganymede’s dynamo, J. Geophys. Res., 117(E8).Google Scholar
Zhang, N., Parmentier, E. M. and Liang, Y. (2013). Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon, Geophys. Res. Lett., 40(19), 5019–23.Google Scholar
Zhang, N., Dygert, N., Liang, Y. and Parmentier, E. M. (2017). The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle, Geophys. Res. Lett., 44, 6543–52, doi: 10.1002/2017GL073702.Google Scholar
Zuluaga, J. I., Bustamante, S., Cuartas, P. A. and Hoyos, J. H. (2013). The influence of thermal evolution in the magnetic protection of terrestrial planets, Astrophys. J., 770, doi: 10.1088/0004-637X/770/1/23.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×