Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T08:22:20.121Z Has data issue: false hasContentIssue false

9 - Gene Editing to Create Agricultural and Biomedical Swine Models

from Part II - Genome Editing in Model Organisms

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 132 - 149
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrangou, R, Fremaux, C, Deveau, H, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 17091712.CrossRefGoogle ScholarPubMed
Bevacqua, RJ, Fernandez-Martin, R, Savy, V, et al. 2016. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology 86(8): 18861896.CrossRefGoogle ScholarPubMed
Bi, Y, Hua, Z, Liu, X, et al. 2016. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 6: 31729.CrossRefGoogle ScholarPubMed
Boch, J, Scholze, H, Schornack, S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 15091512.CrossRefGoogle ScholarPubMed
Bolotin, A, Quinquis, B, Sorokin, A, Ehrlich, SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 25512561.CrossRefGoogle ScholarPubMed
Bonifati, V, Rizzu, P, van Baren, MJ, et al. 2003. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256259.CrossRefGoogle ScholarPubMed
Butler, JR, Martens, GR, Estrada, JL, et al. 2016a. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation. Transgenic Res 25(5): 751759.CrossRefGoogle ScholarPubMed
Butler, JR, Skill, NJ, Priestman, DL, et al. 2016b. Silencing the porcine iGb3s gene does not affect Galalpha3 Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection. Xenotransplantation 23: 106116.CrossRefGoogle ScholarPubMed
Byrne, GW, Du, Z, Stalboerger, P, Kogelberg, H, McGregor, CG. 2014. Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21: 543554.CrossRefGoogle ScholarPubMed
Cabot, RA, Kuhholzer, B, Chan, AW, et al. 2001. Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 12(2): 205214.CrossRefGoogle ScholarPubMed
Calvert, JG, Slade, DE, Shields, SL, et al. 2007. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol 81: 73717379.CrossRefGoogle ScholarPubMed
Carlson, DF, Lancto, CA, Zang, B, et al. 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34: 479481.CrossRefGoogle ScholarPubMed
Carlson, DF, Tan, W, Lillico, SG, et al. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109: 1738217387.CrossRefGoogle ScholarPubMed
Cathomen, T, Joung, JK. 2008. Zinc-finger nucleases: the next generation emerges. Mol Ther 16: 12001207.CrossRefGoogle ScholarPubMed
Chen, F, Wang, Y, Yuan, Y, et al. 2015. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genomics 42(8): 437444.CrossRefGoogle ScholarPubMed
Choi, YJ, Lee, K, Park, WJ, et al. 2016. Partial loss of interleukin 2 receptor gamma function in pigs provides mechanistic insights for the study of human immunodeficiency syndrome. Oncotarget 7(32): 5091450926.CrossRefGoogle Scholar
Christian, M, Cermak, T, Doyle, EL, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757761.CrossRefGoogle ScholarPubMed
Dai, Y, Vaught, TD, Boone, J, et al. 2002. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20: 251255.CrossRefGoogle ScholarPubMed
Dauer, W, Przedborski, S, 2003. Parkinson’s disease: mechanisms and models. Neuron 39: 889909.CrossRefGoogle ScholarPubMed
Estrada, JL, Martens, G, Li, P, et al. 2015. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22: 194202.CrossRefGoogle ScholarPubMed
Galili, U, Shohet, SB, Kobrin, E, Stults, CL, Macher, BA. 1988. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263: 1775517762.CrossRefGoogle ScholarPubMed
Grobet, L, Martin, LJ, Poncelet, D, et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17: 7174.CrossRefGoogle ScholarPubMed
Hai, T, Teng, F, Guo, R, Li, W, Zhou, Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24: 372375.CrossRefGoogle ScholarPubMed
Hammer, RE, Pursel, VG, Rexroad, CE Jr., et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315: 680683.CrossRefGoogle ScholarPubMed
Holm, IE, Alstrup, AK, Luo, Y. 2016. Genetically modified pig models for neurodegenerative disorders. J Pathol 238: 267287.CrossRefGoogle ScholarPubMed
Holtkamp, DJ, Kliebenstein, JB, Neumann, EJ, et al. 2013. Assessment of the economic impact of porcine reprodutive and respiratory syndrome virus on United States pork producers. J Swine Health Prod 21: 7284.Google Scholar
Hwang, WY, Fu, Y, Reyon, D, et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227229.CrossRefGoogle ScholarPubMed
Hyun, S, Lee, G, Kim, D, et al. 2003. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod 69: 10601068.CrossRefGoogle ScholarPubMed
Kambadur, R, Sharma, M, Smith, TP, Bass, JJ. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7: 910916.CrossRefGoogle ScholarPubMed
Keffaber, KK. 1989. Reproductive failure of unknown etiology. Am Assoc Swine Practit Newsletter 1: 19.Google Scholar
Kim, YG, Cha, J, Chandrasegaran, S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93: 11561160.CrossRefGoogle ScholarPubMed
Kim, YG, Chandrasegaran, S. 1994. Chimeric restriction endonuclease. Proc Natl Acad Sci USA 91: 883887.CrossRefGoogle ScholarPubMed
Kreutz, LC, Ackermann, MR. 1996. Porcine reproductive and respiratory syndrome virus enters cells through a low pH-dependent endocytic pathway. Virus Res 42(1–2): 137147.CrossRefGoogle ScholarPubMed
Kurome, M, Ueda, H, Tomii, R, Naruse, K, Nagashima, H. 2006. Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgenic Res 15: 229240.CrossRefGoogle ScholarPubMed
Kuwaki, K, Tseng, YL, Dor, FJ, et al. 2005. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11: 2931.CrossRefGoogle ScholarPubMed
Kwon, DN, Lee, K, Kang, MJ, et al. 2013. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep 3: 1981.CrossRefGoogle ScholarPubMed
Lai, L, Kang, JX, Li, R, et al. 2006. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24: 435436.CrossRefGoogle Scholar
Lai, L, Kolber-Simonds, D, Park, KW, et al. 2002a. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295: 10891092.CrossRefGoogle ScholarPubMed
Lai, L, Park, KW, Cheong, HT, et al. 2002b. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62: 300306.CrossRefGoogle ScholarPubMed
Lai, L, Prather, RS. 2002. Progress in producing knockout models for xenotransplantation by nuclear transfer. Ann Med 34: 501506.CrossRefGoogle ScholarPubMed
Li, P, Estrada, JL, Burlak, C, et al. 2015. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22: 2031.CrossRefGoogle Scholar
Lillico, SG, Proudfoot, C, Carlson, DF, et al. 2013. Live pigs produced from genome edited zygotes. Sci Rep 3: 2847.CrossRefGoogle ScholarPubMed
Lillico, SG, Proudfoot, C, King, TJ, et al. 2016. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 6: 21645.CrossRefGoogle ScholarPubMed
Lutz, AJ, Li, P, Estrada, JL, et al. 2013. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20: 2735.CrossRefGoogle ScholarPubMed
Marraffini, LA, Sontheimer, EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 18431845.CrossRefGoogle ScholarPubMed
McPherron, AC, Lee, SJ, 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94: 1245712461.CrossRefGoogle ScholarPubMed
Menoret, S, Plat, M, Blancho, G, et al. 2004. Characterization of human CD55 and CD59 transgenic pigs and kidney xenotransplantation in the pig-to-baboon combination. Transplantation 77: 14681471.CrossRefGoogle ScholarPubMed
Mercer, J, Schelhaas, M, Helenius, A. 2010. Virus entry by endocytosis. Ann Rev Biochem 79: 803833.CrossRefGoogle ScholarPubMed
Mojica, FJ, Diez-Villasenor, C, Garcia-Martinez, J, Soria, E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174182.CrossRefGoogle ScholarPubMed
Moscou, MJ, Bogdanove, AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.CrossRefGoogle ScholarPubMed
Palgrave, CJ, Gilmour, L, Lowden, CS, et al. 2011. Species-specific variation in RELA underlies differences in NF-kappaB activity: a potential role in African swine fever pathogenesis. J Virol 85: 60086014.CrossRefGoogle ScholarPubMed
Park, KW, Lai, L, Cheong, HT, et al. 2001. Developmental potential of porcine nuclear transfer embryos derived from transgenic fetal fibroblasts infected with the gene for the green fluorescent protein: comparison of different fusion/activation conditions. Biol Reprod 65: 16811685.CrossRefGoogle ScholarPubMed
Peng, J, Wang, Y, Jiang, J, et al. 2015. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5: 16705.CrossRefGoogle ScholarPubMed
Pickrell, AM, Youle, RJ. 2015. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85: 257273.CrossRefGoogle ScholarPubMed
Popescu, LN, Gaudreault, N, Whitworth, KM, et al. 2016. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever (ASF) Georgia 07 virus. Virology 501: 102106.CrossRefGoogle Scholar
Porteus, M. 2008. Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol 435: 4761.CrossRefGoogle ScholarPubMed
Pourcel, C, Salvignol, G, Vergnaud, G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653663.CrossRefGoogle ScholarPubMed
Prather, RS, Rowland, RR, Ewen, C, et al. 2013. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol 87: 95389546.CrossRefGoogle Scholar
Ramsoondar, JJ, Machaty, Z, Costa, C, et al. 2003. Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod 69: 437445.CrossRefGoogle Scholar
Redman, M, King, A, Watson, C, King, D. 2016. What is CRISPR/Cas9? Arch Disease Child Edu Pract Edn 101: 213215.CrossRefGoogle ScholarPubMed
Reyes, LM, Estrada, JL, Wang, ZY, et al. 2014. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193: 57515757.CrossRefGoogle Scholar
Robinson, TP, Wint, GR, Conchedda, G, et al. 2014. Mapping the global distribution of livestock. PLoS One 9(5): e96084.CrossRefGoogle ScholarPubMed
Rogers, CS, Hao, Y, Rokhlina, T, et al. 2008. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118: 15711577.CrossRefGoogle ScholarPubMed
Ross, JW, Whyte, JJ, Zhao, J, et al. 2010. Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res 19(4): 611620.CrossRefGoogle ScholarPubMed
Rowlands, RJ, Michaud, V, Heath, L, et al. 2008. African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis 14: 18701874.CrossRefGoogle ScholarPubMed
Saeki, K, Matsumoto, K, Kinoshita, M, et al. 2004. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA 101: 63616366.CrossRefGoogle ScholarPubMed
Sanchez-Torres, C, Gomez-Puertas, P, Gomez-del-Moral, M, et al. 2003. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol 148: 23072323.CrossRefGoogle ScholarPubMed
Sanchez-Vizcaino, JM, Mur, L, Martinez-Lopez, B. 2013. African swine fever (ASF): five years around Europe. Vet Microbiol 165: 4550.CrossRefGoogle ScholarPubMed
Schornack, S, Meyer, A, Romer, P, Jordan, T, Lahaye, T. 2006. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol 163: 256272.CrossRefGoogle ScholarPubMed
Tan, W, Carlson, DF, Lancto, CA, et al. 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA 110: 1652616531.CrossRefGoogle ScholarPubMed
Terns, MP, Terns, RM. 2011. CRISPR-based adaptive immune systems. Curr Opin Microbiol 14: 321327.CrossRefGoogle ScholarPubMed
Urnov, FD, Miller, JC, Lee, YL, et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435: 646651.CrossRefGoogle ScholarPubMed
Valente, EM, Abou-Sleiman, PM, Caputo, V, et al. 2004. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 11581160.CrossRefGoogle ScholarPubMed
Van Breedam, W, Delputte, PL, Van Gorp, H, et al. 2010. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol 91: 16591667.CrossRefGoogle ScholarPubMed
Van Gorp, H, Delputte, PL, Nauwynck, HJ. 2010. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol 47: 16501660.CrossRefGoogle ScholarPubMed
Velander, WH, Johnson, JL, Page, RL, et al. 1992. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc Natl Acad Sci USA 89: 1200312007.CrossRefGoogle ScholarPubMed
Wang, K, Ouyang, H, Xie, Z, et al. 2015. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5: 16623.CrossRefGoogle ScholarPubMed
Wang, R, Preamplume, G, Terns, MP, Terns, RM, Li, H. 2011. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19: 257264.CrossRefGoogle ScholarPubMed
Wang, X, Cao, C, Huang, J, et al. 2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6: 20620.CrossRefGoogle ScholarPubMed
Watanabe, S, Iwamoto, M, Suzuki, S, et al. 2005. A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin. Biol Reprod 72: 309315.CrossRefGoogle ScholarPubMed
Wells, KD, Bardot, R, Whitworth, KM, et al. 2017. Substitution of porcine CD163 SRCR domain 5 with human CD163-like homolog SRCR domain 8 confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome (PRRS) viruses. J Virol 91(2): pii: e01521–16.CrossRefGoogle ScholarPubMed
Whitworth, KM, Lee, K, Benne, JA, et al. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91: 78.CrossRefGoogle ScholarPubMed
Whitworth, KM, Rowland, RR, Ewen, CL, et al. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34: 2022.CrossRefGoogle ScholarPubMed
Whyte, JJ, Zhao, J, Wells, KD, et al. 2011. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78: 2.CrossRefGoogle ScholarPubMed
Wiedenheft, B, Sternberg, SH, Doudna, JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482: 331338.CrossRefGoogle ScholarPubMed
Xin, J, Yang, H, Fan, N, et al. 2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8: e84250.CrossRefGoogle ScholarPubMed
Yamada, K, Yazawa, K, Shimizu, A, et al. 2005. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11: 3234.CrossRefGoogle ScholarPubMed
Yang, L, Guell, M, Niu, D, et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350: 11011104.CrossRefGoogle ScholarPubMed
Zhou, X, Xin, J, Fan, N, et al. 2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72: 11751184.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×