Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T08:29:37.310Z Has data issue: false hasContentIssue false

1 - Ecological constraints on mammalian sleep architecture

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Introduction: sleep and ecology

All mammals so far studied experience some form of sleep. When mammals are sleep-deprived, they generally attempt to regain the lost sleep by exhibiting a “sleep rebound,” suggesting that sleep serves important functions that cannot be neglected (Siegel, 2008; Zepelin, 1989; Zepelin, Siegel, & Tobler, 2005). When sleep deprivation is enforced on individuals, it is accompanied by impaired physiological functions and a deterioration of cognitive performance (Kushida, 2004; Rechtschaffen, 1998; Rechtschaffen & Bergmann, 2002). In the rat, prolonged sleep deprivation ultimately results in death (Kushida, 2004; Rechtschaffen & Bergmann, 2002). Together, these observations suggest that sleep is a fundamental requirement for mammalian life, and much research has focused on identifying the physiological benefits that sleep provides (Horne, 1988; Kushida, 2004).

Are there also costs associated with sleep? If so, what are the selective pressures that constrain the amount of time that individuals can devote to sleep? Sleep is probably associated with “opportunity costs” because sleeping animals cannot pursue other fitness-enhancing activities, such as locating food, maintaining social bonds, or finding mates. Sleeping animals may also pay direct costs. For example, sleep is a state of reduced consciousness, and thus sleeping individuals are less able to detect and escape from approaching predators (Allison & Cicchetti, 1976; Lima, Rattenborg, Lesku, et al., 2005). These ecological factors are likely to be important constraints on sleep durations and may also affect how sleep is organized over the daily cycle.

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 12 - 33
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, A., McNamara, P., & Nunn, C. L. (2008). To sleep or not to sleep: The ecology of sleep in artificial organisms. BMC Ecology, 8, 10.CrossRefGoogle ScholarPubMed
Affani, J. M., Cervino, C. O., & Marcos, H. J. A. (2001). Absence of penile erections during paradoxical sleep. Peculiar penile events during wakefulness and slow-wave sleep in the armadillo. Journal of Sleep Research, 10, 219–228.CrossRefGoogle Scholar
Allison, T., & Cicchetti, D. V. (1976). Sleep in mammals: Ecological and constitutional correlates. Science, 194, 732–734.CrossRefGoogle ScholarPubMed
Ambrosini, M. V., & Giuditta, A. (2001). Learning and sleep: The sequential hypothesis. Sleep Medicine Reviews, 5, 477–490.CrossRefGoogle ScholarPubMed
Ball, N. J. (1992). The phasing of sleep in animals. In Stampi, C. (Ed.), Why we nap. Evolution, chronobiology, and functions of polyphasic and ultrashort sleep (pp. 31–49). Boston: Birkhäser.Google Scholar
Barre, V., & Petter-Rousseaux, A. (1988). Seasonal variation in sleep-wake cycle in Microcebus murinus. Primates, 29, 53–64.CrossRefGoogle Scholar
Benington, J. H., & Heller, H. C. (1994). Does the function of REM sleep concern non-REM sleep or waking?Progress in Neurobiology, 44, 433–449.CrossRefGoogle ScholarPubMed
Benington, J. H., & Heller, H. C. (1995). Restoration of brain energy metabolism as the function of sleep. Progress in Neurobiology, 45, 347–360.CrossRefGoogle ScholarPubMed
Berger, R. J. (1990). Relations between sleep duration, body weight and metabolic rate in mammals. Animal Behaviour, 40, 989–991.CrossRefGoogle Scholar
Berger, R. J., & Walker, J. M. (1972). A polygraphic study of sleep in the tree shrew (Tupaia glis). Brain Behavior and Evolution, 5, 54–69.CrossRefGoogle Scholar
Bert, J., Balzamo, E., Chase, M., & Pegram, V. (1975). Sleep of baboon, Papio papio, under natural conditions and in laboratory. Electroencephalography and Clinical Neurophysiology, 39, 657–662.CrossRefGoogle Scholar
Bert, J., Pegram, V., Rhodes, J. M., Balzamo, E., & Naquet, R. (1970). A comparative study of two Cercopithecinae. Electroencephalography and Clinical Neurophysiology, 28, 32–40.CrossRefGoogle Scholar
Blackburn, T. M., & Hawkins, B. A. (2004). Bergmann's rule and the mammal fauna of northern North America. Ecography, 27, 715–724.CrossRefGoogle Scholar
Blomberg, S. P., & Garland, T. (2002). Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899–910.CrossRefGoogle Scholar
Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioural traits are more labile. Evolution, 57, 717–745.CrossRefGoogle ScholarPubMed
Broughton, R. J. (1973). Confusional sleep disorders: Interrelationship with memory consolidation and retrieval in sleep. In Boag, T. & Campbell, D. (Eds.), A triune concept of the brain and behaviour (pp. 115–127). Toronto: Toronto University Press.Google Scholar
Bryant, P. A., Trinder, J., & Curtis, N. (2004). Sick and tired: Does sleep have a vital role in the immune system?Nature Reviews, Immunology, 4, 457–467.CrossRefGoogle ScholarPubMed
Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews, 8, 269–300.CrossRefGoogle ScholarPubMed
Capellini, I., Barton, R. A., McNamara, P., Preston, B. T., & Nunn, C. L. (2008a). Phylogenetic analysis of ecology and evolution of mammalian sleep. Evolution, 62, 1764–1776.CrossRefGoogle ScholarPubMed
Capellini, I., Nunn, C. L., McNamara, P., Preston, B. T., & Barton, R. A. (2008b). Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Functional Ecology, 22(5), 847–853.CrossRefGoogle Scholar
Caro, T. (2005). Antipredator defenses in birds and mammals. Chicago: University of Chicago Press.Google Scholar
Elgar, M. A., Pagel, M. D., & Harvey, P. H. (1988). Sleep in mammals. Animal Behaviour, 36, 1407–1419.CrossRefGoogle Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.CrossRefGoogle Scholar
Fenn, M. G. P., & Macdonald, D. W. (1995). Use of middens by red foxes: Risk reverses rhythms of rats. Journal of Mammalogy, 76, 130–136.CrossRefGoogle Scholar
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160, 712–726.CrossRefGoogle Scholar
Fuchs, T., Haney, A., Jechura, T. J., Moore, F. R., & Bingman, V. P. (2006). Daytime naps in night-migrating birds: Behavioural adaptation to seasonal sleep deprivation in the Swainson's thrush, Catharus ustulatus. Animal Behaviour, 72, 951–958.CrossRefGoogle Scholar
Moura Filho, Galvão, G., A, Huggins, S. E., & Lines, S. G. (1983). Sleep and waking in the three-toed sloth, Bradypus tridactylus. Comparative Biochemistry and Physiology, A: Comparative Physiology, 76, 345–355.CrossRefGoogle ScholarPubMed
Garland, T., Bennett, A. F., & Rezende, E. L. (2005). Phylogenetic approaches in comparative physiology. The Journal of Experimental Biology, 208, 3015–3035.CrossRefGoogle ScholarPubMed
Gauthier-Clerc, M., Tamisier, A., & Cezilly, F. (1998). Sleep-vigilance trade-off in green-winged teals (Anas crecca crecca). Canadian Journal of Zoology, 76, 2214–2218.CrossRefGoogle Scholar
Gauthier-Clerc, M., Tamisier, A., & Cezilly, F. (2000). Sleep-vigilance trade-off in gadwall during the winter period. Condor, 102, 307–313.CrossRefGoogle Scholar
Gauthier-Clerc, M., Tamisier, A., & Cezilly, F. (2002). Vigilance while sleeping in the breeding pochard Aythya ferina according to sex and age. Bird Study, 49, 300–303.CrossRefGoogle Scholar
Harvey, P. A., & Pagel, M. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.Google Scholar
Horne, J. A. (1988). Why we sleep: The functions of sleep in humans and other animals. Oxford: Oxford University Press.Google Scholar
Jouvet-Monier, D., & Astic, L. (1966). Study of sleep in the adult and newborn guinea pig. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales (Paris), 160, 1453–1457.Google Scholar
Kushida, C. A. (2004). Sleep deprivation: Basic science, physiology, and behavior. (Lung Biology in Health and Disease). New York: Marcel Dekker.Google Scholar
Lendrem, D. W. (1983). Sleeping and vigilance in birds. I. Field observations of the mallard (Anas platyrhynchos). Animal Behaviour, 31, 532–538.CrossRefGoogle Scholar
Lendrem, D. W. (1984). Sleeping and vigilance in birds. II. An experimental study of the barbary dove (Streptopelia risoria). Animal Behaviour, 32, 243–248.CrossRefGoogle Scholar
Lesku, J. A., Bark, R. J., Martinez-Gonzalez, D., Rattenborg, N. C., Amlaner, C. J., & Lima, S. L. (2008). Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus). Behavioural Brain Research, 189, 298–305.CrossRefGoogle Scholar
Lesku, J. A., Roth, T. C., Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. The American Naturalist, 168, 441–453.CrossRefGoogle ScholarPubMed
Lima, S. L., Rattenborg, N. C., Lesku, J. A., & Amlaner, C. J. (2005). Sleeping under the risk of predation. Animal Behaviour, 70, 723–736.CrossRefGoogle Scholar
Lindstedt, S. L., & Boyce, M. S. (1984). Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125, 873–878.CrossRefGoogle Scholar
Macdonald, D. (2006). The encyclopedia of mammals. Oxford: Oxford University Press.Google Scholar
Majde, J. A. (2005). Links between the innate immune system and sleep. The Journal of Allergy and Clinical Immunology, 116, 1188–1198.CrossRefGoogle ScholarPubMed
Makeig, S., Jung, T. P., & Sejnowski, T. J. (2000). Awareness during drowsiness: Dynamics and electrophysiological correlates. Canadian Journal of Experimental Psychology, 54, 266–273.CrossRefGoogle ScholarPubMed
Martins, E., & Garland, T. (1991). Phylogenetic analyses of the correlated evolution of continuous characters: A simulation study. Evolution, 45, 534–557.CrossRefGoogle ScholarPubMed
McNamara, P., Capellini, I., Harris, E., Nunn, C. L., Barton, R. A., & Preston, B. T. (2008). The Phylogeny of Sleep Database: A new resource for sleep scientists. The Open Sleep Journal, 1, 11–14.CrossRefGoogle ScholarPubMed
Meddis, R. (1975). On the function of sleep. Animal Behaviour, 23, 676–691.CrossRefGoogle ScholarPubMed
Mukhametov, L. M. (1984). Sleep in marine mammals. Experimental Brain Research, 8, 227–238.CrossRefGoogle Scholar
Mukhametov, L. M. (1995). Paradoxical sleep peculiarities in aquatic mammals. Sleep Research, 24A, 202.Google Scholar
Noser, R., Gygax, L., & Tobler, I. (2003). Sleep and social status in captive gelada baboons (Theropithecus gelada). Behavioral Brain Research, 147, 9–15.CrossRefGoogle Scholar
Nunn, C. L., & Barton, R. A. (2001). Comparative methods for studying primate adaptation and allometry. Evolutionary Anthropology, 10, 81–98.CrossRefGoogle Scholar
Oates, J. F. (1987). Food distribution and foraging behavior. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., and Struhsaker, T. T. (Eds.), Primate societies (pp. 197–209). Chicago: University of Chicago Press.Google Scholar
Palchykova, S., Deboer, T., & Tobler, I. (2003). Seasonal aspects of sleep in the Djungarian hamster. BMC Neuroscience, 4, 9–17.CrossRefGoogle ScholarPubMed
Pillay, P., & Manger, P. R. (2004). Testing thermogenesis as the basis for the evolution of sleep phenomenology. Journal of Sleep Research, 13, 353–358.CrossRefGoogle ScholarPubMed
Preston, B. T., Capellini, I., McNamara, P., Barton, R. A., & Nunn, C. L. (2009). Parasite resistance and the adaptive significance of sleep. BMC Evolutionary Biology, 9, 7.CrossRefGoogle Scholar
Rattenborg, N. C., & Amlaner, C. J. (2002). Phylogeny of sleep. In Lee-Chiong, T. L., Sateia, M. J., & Carskadon, M. A. (Eds.), Sleep medicine (pp. 7–22). Philadelphia: Hanley & Belfus, Inc.Google Scholar
Rattenborg, N. C., Amlaner, C. J., & Lima, S. L. (2000). Behavioral, neurophysiological, and evolutionary perspectives on unihemispheric sleep. Neuroscience and Biobehavioral Reviews, 24, 817–842.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Lima, E. M., & Amlaner, C. J. (1999a). Half-awake to the risk of predation. Nature, 397, 397–398.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Lima, S. L., & Amlaner, C. J. (1999b). Facultative control of avian unihemispheric sleep under the risk of predation. Behavioural Brain Research, 105, 163–172.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Mandt, B. H., Obermeyer, W. H., Winsauer, P. J., Huber, R., Wikelski, M., et al. (2004). Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biology, 2, 0924–0936.CrossRefGoogle Scholar
Rattenborg, N. C., Voirin, B., Vyssotski, A. L., Kays, R. W., Spoelstra, K., Kuemmeth, F., et al. (2008). Sleeping outside the box: Electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biology Letters, 4(4), 402–405.CrossRefGoogle ScholarPubMed
Rechtschaffen, A. (1998). Current perspectives on the function of sleep. Perspectives in Biology and Medicine, 41, 359–391.CrossRefGoogle ScholarPubMed
Rechtschaffen, A., & Bergmann, B. M. (2002). Sleep deprivation in the rat: An update of the 1989 paper. Sleep, 25, 18–24.CrossRefGoogle ScholarPubMed
Ruckebush, Y. (1963). Etude EEG et comportamentale des alternantes veille-sommeil chez lane [EEG and behavioral study of alternating waking and sleeping in the donkey]. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales, 157, 840–844.Google Scholar
Saarikko, J. (1992). Risk of predation and foraging activity in shrews. Annales Zoologici Fennici, 29, 291–299.Google Scholar
Saarikko, J., & Hanski, I. (1990). Timing of rest and sleep in foraging shrews. Animal Behaviour, 26, 861–869.CrossRefGoogle Scholar
Siegel, J. M. (2004). Sleep phylogeny: Clues to the evolution and function of sleep. In Luppi, P. H. (Ed.), Sleep: Circuits and functions (pp. 163–176). Boca Raton, FL: CRC Press.Google Scholar
Siegel, J. M. (2005). Clues to the function of mammalian sleep. Nature, 437, 1264–1271.CrossRefGoogle ScholarPubMed
Siegel, J. M. (2008). Do all animals sleep?Trends in Neurosciences, 31, 208–213.CrossRefGoogle ScholarPubMed
Stampi, C. (1992). Evolution, chronobiology, and functions of polyphasic and ultrashort sleep: Main issues. In Stampi, C. (Ed.), Why we nap. Evolution, chronobiology, and functions of polyphasic and ultrashort sleep (pp. 1–20). Boston: Birkhäser.Google Scholar
Steiger, A. (2003). Sleep and endocrinology. Journal of Internal Medicine, 254, 13–22.CrossRefGoogle ScholarPubMed
Tobler, I. (1989). Napping and polyphasic sleep in mammals. In Dinges, D. F. & Broughton, R. J. (Eds.), Sleep and alertness: Chronobiological, behavioral, and medical aspects of napping (pp. 9–30). New York: Raven Press.Google Scholar
Tobler, I. (1995). Is sleep fundamentally different between mammalian species?Behavioural Brain Research, 69, 35–41.CrossRefGoogle ScholarPubMed
Tobler, I. (2005). Phylogeny and sleep regulation. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practices of sleep medicine (pp. 72–81). Philadelphia: W. B. Saunders.Google Scholar
Ursin, R. (1968). The two stages of slow-wave sleep in the cat and their relation to REM sleep. Brain Research, 11, 347–356.CrossRefGoogle ScholarPubMed
Cauter, E., Plat, L., & Copinschi, G. (1998). Interrelations between sleep and the somatotropic axis. Sleep, 21, 553–566.Google ScholarPubMed
Twyver, H. (1969). Sleep patterns in five rodent species. Physiology & Behavior, 4, 901–905.CrossRefGoogle Scholar
Twyver, H., & Garrett, W. (1972). Arousal threshold in the rat determined by “meaningful” stimuli. Behavioral Biology, 7, 205–215.CrossRefGoogle ScholarPubMed
Voss, U. (2004). Functions of sleep architecture and the concept of protective fields. Reviews in the Neurosciences, 15, 33–46.CrossRefGoogle ScholarPubMed
Wauquier, A., Verheyen, J. L., Broeck, W. A. E., & Janssen, P. A. J. (1979). Electroencephalography and Clinical Neurophysiology, 46, 33–48.CrossRef
Withers, P. C. (1992). Comparative animal physiology. Orlando, FL: W. B. Saunders College Publishing.Google Scholar
Zepelin, H. (1989). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practices of sleep medicine (pp. 30–49). Philadelphia: W. B. Saunders.Google Scholar
Zepelin, H., Siegel, J. M., & Tobler, I. (2005). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practices of sleep medicine (pp. 91–100). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×