Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T10:17:49.948Z Has data issue: false hasContentIssue false

34 - A Genomic Perspective on Wild Boar Demography and Evolution

from Part III - Conservation and Management

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, H., Fang, X., Yang, B., et al. (2015). Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics 47: 217225.CrossRefGoogle ScholarPubMed
Amaral, A. J., Megens, H. J., Crooijmans, R. P. M. A., Heuven, H. C. M. & Groenen, M. A. M. (2008). Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179: 569579.CrossRefGoogle ScholarPubMed
Artois, M., Depner, K. R., Guberti, V., et al. (2002). Classical swine fever (hog cholera) in wild boar in Europe. Scientific and Technical Reviews 21: 287303.Google Scholar
Balick, D. J., Do, R., Cassa, C. A., Reich, D. & Sunyaev, S. R. (2015). Dominance of deleterious alleles controls the response to a population bottleneck. PLoS Genetics 11: e1005436.CrossRefGoogle ScholarPubMed
Booth, W. D. (1995). Wild boar farming in the United Kingdom. IBEX Journal of Mountain Ecology 3: 245248.Google Scholar
Bosse, M. (2015). The hybrid nature of pig genomes: unraveling the mosaic haplotype structure in wild and commercial Sus scrofa populations. Doctoral thesis. Wageningen University. Retrieved from http://edepot.wur.nl/338856.Google Scholar
Bosse, M., Megens, H. J., Madsen, O., et al. (2012). Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics 8: e1003100.Google Scholar
Bosse, M., Madsen, O., Megens, H. J., et al. (2014a). Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1. Frontiers in Genetics 5: 442.Google Scholar
Bosse, M., Megens, H. J., Frantz, L. A. F., et al. (2014b). Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications 5: 4392.CrossRefGoogle ScholarPubMed
Bosse, M., Megens, H. J., Madsen, O., et al. (2014c). Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Molecular Ecology 23: 40894102.CrossRefGoogle ScholarPubMed
Bosse, M., Megens, H. J., Madsen, O., (2015). Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Research 25: 970981.Google Scholar
Cahill, S., Llimona, F. & Gràcia, J. (2003). Spacing and nocturnal activity of wild boar Sus scrofa in a Mediterranean metropolitan park. Wildlife Biology 9(Suppl. 1): 313.Google Scholar
Conedera, G., Ustulin, M., Barco, L., et al. (2014). Outbreak of atypical Salmonella choleraesuis in wild boars in North Eastern Italy. In Paulsen, P., Bauer, A. & Smulders, F. J. M. (eds.), Trends in game meat hygiene: from forest to fork. Wageningen: Wageningen Academic Publishers, pp. 151160.Google Scholar
Delibes-Mateos, M. & Delibes, A. (2013). Pets becoming established in the wild: free-living Vietnamese potbellied pigs in Spain. Animal Biodiversity and Conservation 36: 209215.Google Scholar
Fang, M. & Andersson, L. (2006). Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proceedings of the Royal Society B 273: 18031810.CrossRefGoogle ScholarPubMed
Fernández, A. I., Muñoz, M., Alves, E., et al. (2014). Recombination of the porcine X chromosome: a high density linkage map. BMC Genetics 15: 148.Google Scholar
Ferreira, E., Souto, L., Soares, A. M. V. M. & Fonseca, C. (2009). Genetic structure of the wild boar population in Portugal: evidence of a recent bottleneck. Mammalian Biology 74: 274285.Google Scholar
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press.Google Scholar
Fonseca, C. (2004). Population dynamics and management of wild boar (Sus scrofa L.) in Central Portugal and Southeastern Poland. Doctoral thesis. University of Aveiro, Portugal.Google Scholar
Frantz, A. C., Zachos, F. E., Kirschning, J., et al. (2012). Genetic evidence for introgression between domestic pigs and wild boars (Sus scrofa) in Belgium and Luxembourg: a comparative approach with multiple marker systems. Biological Journal of the Linnean Society 110: 104115.CrossRefGoogle Scholar
Frantz, L. A. F. (2015). Speciation and domestication in Suiformes: a genomic perspective. Doctoral thesis. Wageningen University.Google Scholar
Frantz, L. A. F., Schraiber, J. G., Madsen, O., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology 14: R107.CrossRefGoogle ScholarPubMed
Frantz, L. A. F., Madsen, O., Megens, H. J., Groenen, M. A. M. & Lohse, K. (2014). Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio–Pleistocene climatic fluctuations. Molecular Ecology 23: 55665574.CrossRefGoogle ScholarPubMed
Frantz, L. A., Schraiber, J. G., Madsen, O., et al. (2015a). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics 47: 11411148.Google Scholar
Frantz, L. A., Madsen, O., Megens, H. J., et al. (2015b). Evolution of Tibetan wild boars. Nature Genetics 47: 188189.Google Scholar
Frantz, L., Meijaard, E., Gongora, J., et al. (2016). The revolution of Suidae. Annual Review of Animal Biosciences 4: 6185.Google Scholar
Fu, Y. X. & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics 133: 693709.CrossRefGoogle ScholarPubMed
Funk, S. M., Verma, S. K., Larson, G., et al. (2007). The pygmy hog is a unique genus: 19th century taxonomists got it right first time round. Molecular Phylogenetics and Evolution 45: 427436.CrossRefGoogle ScholarPubMed
Garza, J. C. & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10: 305318.Google Scholar
Gattepaille, L. M., Jakobsson, M. & Blum, M. G. (2013). Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110: 409419.CrossRefGoogle ScholarPubMed
Ghigi, A. (1911). Ricerche faunistiche e sistematiche sui mammiferi d'Italia che formano oggetto di caccia. Natura 2: 289337.Google Scholar
Giuffra, E., Kijas, J.M., Amarger, V., et al. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154: 17851791.Google Scholar
Goedbloed, D. J., Megens, H. J., Van Hooft, P., et al. (2013a). Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Molecular Ecology 22: 856866.Google Scholar
Goedbloed, D. J., van Hooft, P., Megens, H. J., et al. (2013b). Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genetics 14: 43.Google Scholar
Goedbloed, D. J., van Hooft, P., Lutz, W., et al. (2015). Increased Mycoplasma hyopneumoniae disease prevalence in domestic hybrids among free-living wild boar. Ecohealth 12: 571579.Google Scholar
Gortázar, C., Vicente, J., Fierro, Y., et al. (2002). Natural Aujeszky's disease in a Spanish wild boar population. Annals of the New York Academy of Science 969: 210212.Google Scholar
Goulding, M. (2011). Native or alien? The case of the wild boar in Britain. In Rotherham, I. D. & Lambert, R. A. (eds.), Invasive and introduced plants and animals. Human perceptions, attitudes and approaches to management. Abingdon: Earthscan from Routledge, pp. 289300.Google Scholar
Groenen, M. A. M., Archibald, A. L., Uenishi, H., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491: 393398.CrossRefGoogle ScholarPubMed
Groves, C. P. & Grubb, P. (2011). Ungulate taxonomy. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Hajji, G. E. M. & Zachos, F. E. (2011). Mitochondrial and nuclear DNA analyses reveal pronounced genetic structuring in Tunisian wild boar Sus scrofa. European Journal of Wildlife Research 57: 449456.CrossRefGoogle Scholar
Harris, S. & Yalden, D. W. (2008). Mammals of the British Isles: handbook. London: Mammal Society.Google Scholar
Herrero-Medrano, J. M., Megens, H. J., Groenen, M. A., et al. (2013). Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics 14: 106.Google Scholar
Hoelzel, R. A. (1999). Impact of population bottlenecks on genetic variation and the importance of life-history; a case study of the northern elephant seal. Biological Journal of the Linnean Society 68: 2339.Google Scholar
Iacolina, L., Scandura, M., Goedbloed, D. J., et al. (2016). Genomic diversity and differentiation of a managed island wild boar population. Heredity 116: 6067.CrossRefGoogle ScholarPubMed
Knight, J. (2003). Wild boar. In Waiting for wolves in Japan: an anthropological study of people–wildlife relations. New York, NY: Oxford University Press.Google Scholar
Jordt, A. M., Lange, M., Kramer-Schadt, S., et al. (2015). Spatio-temporal modeling of the invasive potential of wild boar – a conflict-prone species-using multi-source citizen science data. Preventive Veterinary Medicine 124: 3444.Google Scholar
Larson, G., Dobney, K., Albarella, U., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307: 16181621.Google Scholar
Larson, G., Albarella, U., Dobney, K., et al. (2007). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the USA 104: 1527615281.Google Scholar
Li, M., Tian, S., Jin, L., et al. (2013). Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics 45: 14311438.Google Scholar
Manunza, A., Zidi, A., Yeghoyan, S., et al. (2013). A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS ONE 8: e55891.CrossRefGoogle ScholarPubMed
Manunza, A., Amills, M., Noce, A., et al. (2016). Romanian wild boars and Mangalitza pigs have a European ancestry and their genomes harbour genetic signatures compatible with past population bottlenecks. Scientific Reports 6: 29913.Google Scholar
Massei, G. & Genov, P. (2004). The environmental impact of wild boar. Galemys 16: 135145.Google Scholar
Matiuti, M., Bogdan, A.T., Crainiceanu, E. & Matiuti, C. (2010). Research regarding the hybrids resulted from the domestic pig and the wild boar. Scientific Papers in Animal Science and Biotechnologies 43: 188191.Google Scholar
McDevitt, A. D., Carden, R. F., Coscia, I. & Frantz, A. C. (2013). Are wild boars roaming Ireland once more? European Journal of Wildlife Research 59(5): 761764.Google Scholar
Megens, H. J., Crooijmans, R. P. M. A., San Cristobal, M., et al. (2008). Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics, Selection, Evolution 40: 103128.Google Scholar
Murakami, K., Yoshikawa, S., Konishi, S., et al. (2014). Evaluation of genetic introgression from domesticated pigs into the Ryukyu wild boar population on Iriomote Island in Japan. Animal Genetics 45: 517523.CrossRefGoogle ScholarPubMed
Oliver, W. & Leus, K. (2008). Sus scrofa. The IUCN Red List of Threatened Species 2008: e.T41775A10559847. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41775A 10559847.en.CrossRefGoogle Scholar
Ottoni, C., Flink, L. G., Evin, A., et al. (2013). Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Molecular Biology and Evolution 30: 824832.Google Scholar
Porter, V. (1993). Pigs: a handbook to the breeds of the world. New York, NY: Cornell University Press.Google Scholar
Ramírez, O., Ojeda, A., Tomàs, A., et al. (2009). Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Molecular Biology and Evolution 26: 20612072.Google Scholar
Ramos, A. M., Crooijmans, R. P., Affara, N. A., et al. (2009). Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4: e6524.Google Scholar
Risco, D., Fernández-Llario, P., Cuesta, J. M., et al. (2013). Fatal outbreak of systemic pasteurellosis in a wild boar (Sus scrofa) population from southwest Spain. Journal of Veterinary Diagnostic Investigation 25: 791794.Google Scholar
Rosvold, J. & Andersen, R. (2008). Wild boar in Norway – is climate a limiting factor? NTNU Vitenskapsmuseet Rapport Zoologiske Serie 1: 123.Google Scholar
Rubin, C. J., Megens, H. J., Martinez Barrio, A., et al. (2012). Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the USA 109: 1952919536.Google Scholar
Scandura, M., Iacolina, L., Crestanello, B., et al. (2008). Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Molecular Ecology 17: 174517462.CrossRefGoogle ScholarPubMed
Scandura, M., Iacolina, L. & Apollonio, M. (2011). Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild × domestic hybridization. Mammalian Reviews 41: 125137.Google Scholar
Slatkin, M. (2008). Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nature Reviews in Genetics 9: 477485.CrossRefGoogle ScholarPubMed
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595.Google Scholar
Vernesi, C., Crestanello, B., Pecchioli, E., et al. (2003). The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Molecular Ecology 12: 585595.Google Scholar
Vitti, J. J., Grossman, S. R. & Sabeti, P. C. (2013). Detecting natural selection in genomic data. Annual Reviews in Genetics 47: 97120.Google Scholar
White, S. (2011). From globalized pig breeds to capitalist pigs: a study in animal cultures and evolutionary history. Environmental History 16: 94120.Google Scholar
Wilkinson, S., Lu, Z. H., Megens, H. J., et al. (2013). Signatures of diversifying selection in European pig breeds. PLoS Genetics 9: e1003453.Google Scholar
Yalden, D. (1999). The history of British mammals. London: Poyser Natural History.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×