Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T05:12:45.527Z Has data issue: false hasContentIssue false

Chapter 16 - Cancer pain

from Section 2 - Special patient considerations

Published online by Cambridge University Press:  05 October 2015

Michael R. Anderson
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Sylvia H. Wilson
Affiliation:
Medical University of South Carolina
Meg A. Rosenblatt
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Valkenet, K., van de Port, I. G., and Dronkers, J. J.. The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil 2011; 25: 99111.CrossRefGoogle Scholar
Campbell, P. T., Patel, A. V., Newton, C. C., et al. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 2013; 31: 876885.CrossRefGoogle ScholarPubMed
Gottschalk, A., Sharma, S., Ford, J., et al. The role of the perioperative period in recurrence after cancer surgery. Anesth Analg 2010; 110: 16361643.CrossRefGoogle ScholarPubMed
Hiller, J., Brodner, G., and Gottschalk, A.. Understanding clinical strategies that may impact tumour growth and metastatic spread at the time of cancer surgery. Best Pract Res Clin Anaesthesiol 2013; 27: 427439.CrossRefGoogle ScholarPubMed
Richman, J. M., Liu, S. S., Courpas, G., et al. Does continuous peripheral nerve block provide superior pain control to opioids? A meta-analysis. Anesth Analg 2006; 102: 248257.CrossRefGoogle ScholarPubMed
Ilfeld, B. M.. Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011; 113: 904925.CrossRefGoogle ScholarPubMed
Aguirre, J., Del Moral, A., Cobo, I., et al. The role of continuous peripheral nerve blocks. Anesthesiol Res Pract 2012; 2012: 560879.Google ScholarPubMed
Webb, A. R., Leong, S., Myles, P. S., et al. The addition of a tramadol infusion to morphine patient-controlled analgesia after abdominal surgery: a double-blinded, placebo-controlled randomized trial. Anesth Analg 2002; 95: 17131718.CrossRefGoogle ScholarPubMed
Neto, J. O., Machado, M. D., de Almeida Correa, M., et al. Methadone patient-controlled analgesia for postoperative pain: a randomized, controlled, double-blind study. J Anesth 2014; 28: 505510.Google ScholarPubMed
Shaiova, L., Berger, A., Blinderman, C. D., et al. Consensus guideline on parenteral methadone use in pain and palliative care. Palliat Support Care 2008; 6: 165176.CrossRefGoogle ScholarPubMed
McDaid, C., Maund, E., Rice, S., et al. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the reduction of morphine-related side effects after major surgery: a systematic review. Health Technol Assess 2010; 14: 1153, iii-iv.CrossRefGoogle ScholarPubMed
Ong, C. K., Seymour, R. A., Lirk, P., et al. Combining paracetamol (acetaminophen) with nonsteroidal antiinflammatory drugs: a qualitative systematic review of analgesic efficacy for acute postoperative pain. Anesth Analg 2010; 110: 11701179.CrossRefGoogle ScholarPubMed
Schmidt, P. C., Ruchelli, G., Mackey, S. C., et al. Perioperative gabapentinoids: choice of agent, dose, timing, and effects on chronic postsurgical pain. Anesthesiology 2013; 119: 12151221.CrossRefGoogle ScholarPubMed
Clarke, H., Bonin, R. P., Orser, B. A., et al. The prevention of chronic postsurgical pain using gabapentin and pregabalin: a combined systematic review and meta-analysis. Anesth Analg 2012; 115: 428442.CrossRefGoogle ScholarPubMed
Leung, J. M., Sands, L. P., Rico, M., et al. Pilot clinical trial of gabapentin to decrease postoperative delirium in older patients. Neurology 2006; 67: 12511253.CrossRefGoogle ScholarPubMed
Zhang, J., Ho, K. Y., and Wang, Y.. Efficacy of pregabalin in acute postoperative pain: a meta-analysis. Br J Anaesth 2011; 106: 454462.CrossRefGoogle ScholarPubMed
Subramaniam, K., Subramaniam, B., and Steinbrook, R. A.. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 2004; 99: 482495.CrossRefGoogle ScholarPubMed
Bell, R. F., Dahl, J. B., Moore, R. A., et al. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 2006; ((1): CD004603. (Updated 2009)).CrossRefGoogle ScholarPubMed
Neal, J. M., Gerancher, J. C., Hebl, J. R., et al. Upper extremity regional anesthesia: essentials of our current understanding, 2008. Reg Anesth Pain Med 2009; 34: 134170.CrossRefGoogle ScholarPubMed
Arnold, R. M. and Childers, J. W.. Management of acute pain in the patient chronically using opioids. In: UpToDate, Post TW (ed.), UpToDate, Waltham, MA. [Accessed October 29, 2014].Google Scholar
Moryl, N., Coyle, N., and Foley, K. M.. Managing an acute pain crisis in a patient with advanced cancer: “this is as much of a crisis as a code.” JAMA 2008; 299: 14571467.CrossRefGoogle Scholar
Tvedskov, T. F., Jensen, M. B., Kroman, N., et al. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer. Breast Cancer Res Treat 2012; 131: 223229.CrossRefGoogle Scholar
Eschwege, P., Dumas, F., Blanchet, P., et al. Haematogenous dissemination of prostatic epithelial cells during radical prostatectomy. Lancet 1995; 346: 15281530.CrossRefGoogle ScholarPubMed
Schreiber, R. D., Old, L., and Smyth, M. J.. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 15651570.CrossRefGoogle ScholarPubMed
Kuroda, E. and Yamashita, U.. Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. J Immunol 2003; 170: 757764.CrossRefGoogle ScholarPubMed
Amato, A. and Pescatori, M.. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst Rev 2006; (1): CD005033.Google ScholarPubMed
Waters, J. H., Yazer, M., Chen, Y-F, et al. Blood salvage and cancer surgery: a meta-analysis of available studies. Transfusion 2012; 52: 21672173.CrossRefGoogle ScholarPubMed
Kongsgaard, U. E., Wang, M. Y., and Kvalheim, G.. Leucocyte depletion filter removes cancer cells in human blood. Acta Anaesthesiol Scand 1996; 40: 118120.CrossRefGoogle ScholarPubMed
Tavare, A. N, Perry, N. J., Benzonana, L. L., et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer 2012; 130: 12371250.CrossRefGoogle ScholarPubMed
Tanaka, T., Takabuchi, S., Nishi, K., et al. The intravenous anesthetic propofol inhibits lipopolysaccharide-induced hypoxia-inducible factor 1 activation and suppresses the glucose metabolism in macrophages. J Anesth 2010; 24: 5460.CrossRefGoogle ScholarPubMed
Liang, H., Gu, M.., Yang, C., et al. Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathways. J Anesth 2012; 26: 381392.CrossRefGoogle Scholar
Melamed, R., Bar-Yosef, S., Shakhar, G., et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg 2003; 97: 13311339.CrossRefGoogle Scholar
Kushida, A., Inada, T., and Shingu, K.. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol 2007; 29: 477486.CrossRefGoogle ScholarPubMed
Mathew, B., Lennon, F. E., Siegler, J., et al. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg 2011; 112: 558567.CrossRefGoogle ScholarPubMed
Ecimovic, P., Murray, D., Doran, P., et al. Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene. Br J Anaesth 2011; 107: 916923.CrossRefGoogle ScholarPubMed
Hamra, J. G. and Yaksh, T. L.. Equianalgesic doses of subcutaneous but not intrathecal morphine alter phenotypic expression of cell surface markers and mitogen-induced proliferation in rat lymphocytes. Anesthesiology 1996; 85: 355365.CrossRefGoogle Scholar
Brackenbury, W. J.. Voltage-gated sodium channels and metastatic disease. Channels 2012; 6: 352361.CrossRefGoogle ScholarPubMed
Yoon, J. R., Whipple, R. A., Balzer, E. M., et al. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells. Breast Cancer Res Treat 2011; 129: 697701.CrossRefGoogle ScholarPubMed
Piegeler, T., Votta-Velis, E. G., Liu, G., et al. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 2012; 117: 548559.CrossRefGoogle ScholarPubMed
Ahlers, O., Nachtigall, I., Lenze, J., et al. Intraoperative thoracic epidural anaesthesia attenuates stress-induced immunosuppression in patients undergoing major abdominal surgery. Br J Anaesth 2008; 101: 781787.CrossRefGoogle ScholarPubMed
Biki, B., Mascha, E., Moriarty, D. C., et al. Anesthetic technique for radial prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 2008; 109: 180187.CrossRefGoogle Scholar
Wada, H., Seki, S., Takahashi, T., et al. Combined spinal and general anesthesia attenuates liver metastasis by preserving TH1/ TH2 cytokine balance. Anesthesiology 2007; 106: 499506.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×