Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T12:02:06.712Z Has data issue: false hasContentIssue false

2 - Culture, Mind, and Brain in Human Evolution

An Extended Evolutionary Perspective on Paleolithic Toolmaking as Embodied Practice

from Section 1 - The Co-emergence of Culture, Mind, and Brain

Published online by Cambridge University Press:  18 September 2020

Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Carol M. Worthman
Affiliation:
Emory University, Atlanta
Shinobu Kitayama
Affiliation:
University of Michigan, Ann Arbor
Robert Lemelson
Affiliation:
University of California, Los Angeles
Constance A. Cummings
Affiliation:
The Foundation for Psychocultural Research
Get access

Summary

Ancient stone tools provide a unique source of empirical evidence for reconstructing the evolutionary origins of human culture, mind, and brain. As a key component of hominid adaptations throughout the Paleolithic, stone tools not only document human evolution but likely helped to shape it. Properly interpreting this evidence requires both “middle-range” theory linking archaeologically observable material remains to the behaviors that created them and high-level theory appropriate for placing these reconstructed behaviors in a broader evolutionary framework. An extended evolutionary perspective on Paleolithic toolmaking as embodied practice integrates levels of analysis by emphasizing the interaction of evolutionary and behavioral processes unfolding on multiple spatiotemporal scales. Although much work remains to be done, initial efforts toward an integrated evolutionary neuroscience of toolmaking are beginning to trace the evolution of a uniquely human technological niche rooted in a shared primate heritage of visuomotor coordination and dexterous manipulation.

Type
Chapter
Information
Culture, Mind, and Brain
Emerging Concepts, Models, and Applications
, pp. 55 - 87
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M., & Friston, K. J. (2016). From cognitivism to autopoiesis: Towards a computational framework for the embodied mind. Synthese, 195(6), 124. https://doi.org/10.1007/s11229–016-1288-5Google ScholarPubMed
Anderson, J. R., & Gallup, G. G. Jr. (2015). Mirror self-recognition: A review and critique of attempts to promote and engineer self-recognition in primates. Primates, 56(4), 317–26. https://doi.org/10.1007/s10329–015-0488-9CrossRefGoogle ScholarPubMed
Antón, S. C., Potts, R., & Aiello, L. C. (2014). Evolution of early Homo: An integrated biological perspective. Science, 345(6192), 1236828. https://doi.org/10.1126/science.1236828Google Scholar
Apel, J., & Knutsson, K. (2006). Skilled production and social reproduction: Aspects of traditional stone-tool technologies: Proceedings of a symposium in Uppsala, Sweden, August 20–24, 2003. Societas ologica Upsaliensis.Google Scholar
Arbib, M. A. (2012). How the brain got language: The mirror system hypothesis. Oxford University Press.Google Scholar
Barkow, J. H., Cosmides, L., & Tooby, J. (1992). The adapted mind: Evolutionary psychology and the generation of culture. Oxford University Press.Google Scholar
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419–29. https://doi.org/10.1038/nrn3950Google Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577660. https://doi.org/10.1017/S0140525X99002149Google Scholar
Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1435), 1177–87. https://doi.org/10.1098/rstb.2003.1319Google Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–45. https://doi.org/10.1146/annurev.psych.59.103006.093639Google Scholar
Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E., & Saxe, R. (2011). Language processing in the occipital cortex of congenitally blind adults. Proceedings of the National Academy of Sciences of the United States of America, 108(11), 4429–34. https://doi.org/10.1073/pnas.1014818108Google Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17(2), 8998. https://doi.org/10.1016/j.tics.2012.12.002Google Scholar
Bogin, B., Bragg, J., & Kuzawa, C. (2014). Humans are not cooperative breeders but practice biocultural reproduction. Annals of Human Biology, 41(4), 368–80. https://doi.org/10.3109/03014460.2014.923938Google Scholar
Bonner, J. T. (1980). The evolution of culture in animals. Princeton University Press.CrossRefGoogle Scholar
Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S. L., & Rauschecker, J. P. (2015). Neurobiological roots of language in primate audition: Common computational properties. Trends in Cognitive Sciences, 19(3), 142–50. https://doi.org/10.1016/j.tics.2014.12.008CrossRefGoogle ScholarPubMed
Bourdieu, P. (1972). Outline of a theory of practice. Cambridge University Press.Google Scholar
Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences of the United States of America, 108(Supplement 2), 10918–25. https://doi.org/10.1073/pnas.1100290108Google Scholar
Boyette, A. H., & Hewlett, B. S. (2017). Autonomy, equality, and teaching among Aka foragers and Ngandu farmers of the Congo Basin. Human Nature, 28(3), 289322. https://doi.org/10.1007/s12110–017-9294-yGoogle Scholar
Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17(12), 648–65. https://doi.org/10.1016/j.tics.2013.09.017CrossRefGoogle ScholarPubMed
Burdett, E. R. R., Dean, L. G., & Ronfard, S. (2018). A diverse and flexible teaching toolkit facilitates the human capacity for cumulative culture. Review of Philosophy and Psychology, 807–18. https://doi.org/10.1007/s13164–017-0345-4Google Scholar
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain-body-behavior networks. Trends in Cognitive Sciences, 18(8), 395403. https://doi.org/10.1016/j.tics.2014.04.010Google Scholar
Byrne, R. W. (2016). Evolving insight: How it is we can think about why things happen. Oxford University Press.CrossRefGoogle Scholar
Cartmill, M. (2002). Paleoanthropology: Science or mythological charter? Journal of Anthropological Research, 58(2), 183201. https://doi.org/10.1086/jar.58.2.3631035Google Scholar
Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton University Press.Google Scholar
Chomsky, N. (1957). Syntactic structures. Mouton.Google Scholar
Christiansen, M. H., & Chater, N. (2016). Creating language: Integrating evolution, acquisition, and processing. MIT Press.Google Scholar
Clark, A. (1997). Being there: Putting brain, body, and world together again. MIT Press.Google Scholar
Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends in Cognitive Sciences, 10(8), 370–4. https://doi.org/10.1016/j.tics.2006.06.012Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477Google Scholar
Cole, M. (1996). Cultural psychology: A once and future discipline. Belknap Press.Google Scholar
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(2), 177–92. https://doi.org/10.1017/S0140525X13000903CrossRefGoogle ScholarPubMed
Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–3. https://doi.org/10.1038/227561a0Google Scholar
Crowther-Heyck, H. (1999). George A. Miller, language, and the computer metaphor and mind. History of Psychology, 2(1), 3764. https://doi.org/10.1037/1093-4510.2.1.37Google Scholar
D’Andrade, R. G. (1982). Cultural meaning systems. In Adams, R. M., Smelser, N. J., & Treiman, D. J. (Eds.), Behavioral and social science research: A national resource. Part II (pp. 197236). National Academy Press.Google Scholar
D’Errico, F., Henshilwood, C., Lawson, G., Vanhaeren, M., Tillier, A.-M., Soressi, M., Bresson, F., Maureille, B., Nowell, A., Lakarra, J., Backwell, L., & Julien, M. (2003). Archaeological evidence for the emergence of language, symbolism, and music: An alternative multidisciplinary perspective. Journal of World Prehistory, 17(1), 170. https://doi.org/10.1023/A:1023980201043CrossRefGoogle Scholar
Danchin, É., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics, 12(7), 475–86. https://doi.org/10.1038/nrg3028Google Scholar
Darwin, C. (1871). The descent of man, and selection in relation to sex. John Murray.Google Scholar
David, N., & Kramer, C. (2001). Ethnoarchaeology in action. Cambridge University Press.CrossRefGoogle Scholar
Dawkins, R. (1976). The selfish gene. Oxford University Press.Google Scholar
Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. W.W. Norton.Google Scholar
Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford University Press.Google Scholar
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–98. https://doi.org/10.1016/j.neuron.2007.10.004Google Scholar
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234–44. https://doi.org/10.1038/nrn3924Google Scholar
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–9. https://doi.org/10.1016/j.tics.2010.01.004Google Scholar
Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. Basic Books.Google Scholar
Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13763–8. https://doi.org/10.1073/pnas.231499798Google ScholarPubMed
Eren, M. I., Lycett, S. J., Patten, R. J., Buchanan, B., Pargeter, J., & O’Brien, M. J. (2016). Test, model, and method validation: The role of experimental stone artifact replication in hypothesis-driven archaeology. Ethnoarchaeology, 8(2), 103–36. https://doi.org/10.1080/19442890.2016.1213972Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363406. https://doi.org/10.1037/0033-295X.100.3.363Google Scholar
Faisal, A., Stout, D., Apel, J., & Bradley, B. (2010). The manipulative complexity of Lower Paleolithic stone toolmaking. PLoS ONE, 5(11), e13718. https://doi.org/10.1371/journal.pone.0013718Google Scholar
Feldman, R. (2016). The neurobiology of human attachments. Trends in Cognitive Sciences, 21(2), 8099. https://doi.org/10.1016/j.tics.2016.11.007Google Scholar
Flynn, E. G., Laland, K. N., Kendal, R. L., & Kendal, J. R. (2013). Target article with commentaries: Developmental niche construction. Developmental Science, 16(2), 296313. https://doi.org/10.1111/desc.12030Google Scholar
Fodor, J. A. (1975). The language of thought. Thomas Y. Crowell.Google Scholar
Fragaszy, D. M., Biro, D., Eshchar, Y., Humle, T., Izar, P., Resende, B., & Visalberghi, E. (2013). The fourth dimension of tool use: Temporally enduring artefacts aid primates learning to use tools. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1630), 20120410. https://doi.org/10.1098/rstb.2012.0410Google Scholar
Fragaszy, D. M., Eshchar, Y., Visalberghi, E., Resende, B., Laity, K., & Izar, P. (2017). Synchronized practice helps bearded capuchin monkeys learn to extend attention while learning a tradition. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 77987805. https://doi.org/10.1073/pnas.1621071114Google Scholar
Gärdenfors, P., & Högberg, A. (2017). The archaeology of teaching and the evolution of Homo docens. Current Anthropology, 58(2), 188208. https://doi.org/10.1086/691178Google Scholar
Geertz, C. (1973). The interpretation of cultures. Basic Books.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.Google Scholar
Giddens, A. (1976). New rules of sociological method: A positive critique of interpretative sociologies. Basic Books.Google Scholar
Gómez-Robles, A., Hopkins, W. D., Schapiro, S. J., & Sherwood, C. C. (2015). Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 112(48), 14799–804. https://doi.org/10.1073/pnas.1512646112Google Scholar
Goodenough, W. H. (1957). Cultural anthropology and linguistics. In Garvin, P. L. (Ed.), Report on the seventh annual round table meeting on linguistics and language study (pp. 167–73). Georgetown University Press.Google Scholar
Hasson, U., & Frith, C. D. (2016). Mirroring and beyond: Coupled dynamics as a generalized framework for modelling social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150366. https://doi.org/10.1098/rstb.2015.0366Google Scholar
Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D. (2015). Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. NeuroImage, 108, 124–37. https://doi.org/10.1016/j.neuroimage.2014.12.039Google Scholar
Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., Bradley, B. A., Chaminade, T., & Stout, D. (2014). Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Structure and Function, 220(4), 2315–31. https://doi.org/10.1007/s00429–014-0789-6Google Scholar
Hecht, E. E., Gutman, D. A., Preuss, T. M., Sanchez, M. M., Parr, L. A., & Rilling, J. K. (2013). Process versus product in social learning: Comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. Cerebral Cortex, 23(5), 1014–24. https://doi.org/10.1093/cercor/bhs097Google Scholar
Hecht, E. E., Mahovetz, L. M., Preuss, T. M., & Hopkins, W. D. (2017). A neuroanatomical predictor of mirror self-recognition in chimpanzees. Social Cognitive and Affective Neuroscience, 12(1), 3748. https://doi.org/10.1093/scan/nsw159CrossRefGoogle ScholarPubMed
Hecht, E. E., Murphy, L. E., Gutman, D. A., Votaw, J. R., Schuster, D. M., Preuss, T. M., Orban, G. A., Stout, D., & Parr, L. A. (2013). Differences in neural activation for object-directed grasping in chimpanzees and humans. Journal of Neuroscience, 33(35), 14117–34. https://doi.org/10.1523%2FJNEUROSCI.2172-13.2013CrossRefGoogle ScholarPubMed
Heidegger, M. (1977). The question concerning technology, and other essays (Levitt, W., Trans.). Harper & Row. (Original work published 1954)Google Scholar
Henrich, J. P. (2016). The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.Google Scholar
Henrich, J., Boyd, R., & Richerson, P. J. (2008). Five misunderstandings about cultural evolution. Human Nature, 19(2), 119–37. https://doi.org/10.1007/s12110–008-9037-1Google Scholar
Henrich, J., & McElreath, R. (2003). The evolution of cultural evolution. Evolutionary Anthropology: Issues, News, and Reviews, 12(3), 123–35. https://doi.org/10.1002/evan.10110Google Scholar
Henshilwood, C. S., & d’Errico, F. (Eds.). (2011). Homo symbolicus: The dawn of language, imagination and spirituality. John Benjamins Publishing Company.Google Scholar
Hewlett, B. S., & Roulette, C. J. (2016). Teaching in hunter-gatherer infancy. Royal Society Open Science, 3(1), 150403. https://doi.org/10.1098/rsos.150403Google Scholar
Heyes, C. (2003). Four routes of cognitive evolution. Psychological Review, 110(4), 713–27. https://doi.org/10.1037/0033-295X.110.4.713Google Scholar
Heyes, C. (2016). Blackboxing: Social learning strategies and cultural evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150369. https://doi.org/10.1098/rstb.2015.0369Google Scholar
Heyes, C. (2018). Cognitive gadgets: The cultural evolution of thinking. Harvard University.Google Scholar
Heyes, C. M., & Frith, C. D. (2014). The cultural evolution of mind reading. Science, 344(6190), 1243091. https://doi.org/10.1126/science.1243091Google Scholar
Hihara, S., Notoya, T., Tanaka, M., Ichinose, S., Ojima, H., Obayashi, S., Fujii, N., & Iriki, A. (2006). Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia, 44(13), 2636–46. https://doi.org/10.1016/j.neuropsychologia.2005.11.020Google Scholar
Hill, J., Inder, T., Neil, J., Dierker, D., Harwell, J., & Van Essen, D. (2010). Similar patterns of cortical expansion during human development and evolution. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 13135–40. https://doi.org/10.1073/pnas.1001229107Google ScholarPubMed
Hill, K., Barton, M., & Hurtado, A. M. (2009). The emergence of human uniqueness: Characters underlying behavioral modernity. Evolutionary Anthropology: Issues, News, and Reviews, 18(5), 187200. https://doi.org/10.1002/evan.20224Google Scholar
Hodder, I. (2012). Entangled: An archaeology of the relationships between humans and things. Wiley-Blackwell.Google Scholar
Holloway, R. L. (1974). The casts of fossil hominid brains. Scientific American, 231(1), 106–15. http://www.jstor.org/stable/24950124Google Scholar
Horner, V., Proctor, D., Bonnie, K. E., Whiten, A., & de Waal, F. B. M. (2010). Prestige affects cultural learning in chimpanzees. PLoS ONE, 5(5), e10625. https://doi.org/10.1371/journal.pone.0010625Google Scholar
Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Harvard University Press.Google Scholar
Ingold, T. (1997). Eight themes in the anthropology of technology. Social Analysis, 41(1), 106–38. http://www.jstor.org/stable/23171736Google Scholar
Ingold, T. (1998). From complementarity to obviation: On dissolving the boundaries between social and biological anthropology, archaeology and psychology. Zeitschrift für Ethnologie, 123(1), 2152. http://www.jstor.org/stable/25842543Google Scholar
Ingold, T. (2001). Beyond art and technology: The anthropology of skill. In Schiffer, M. B. (Ed.), Anthropological perspectives on technology (pp. 1731). University of New Mexico Press.Google Scholar
Iriki, A., & Sakura, O. (2008). The neuroscience of primate intellectual evolution: Natural selection and passive and intentional niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1500), 2229–41. https://doi.org/10.1098/rstb.2008.2274Google Scholar
Isler, K., & van Schaik, C. P. (2012). How our ancestors broke through the gray ceiling: Comparative evidence for cooperative breeding in early Homo. Current Anthropology, 53(S6), S453S465. https://doi.org/10.1086/667623Google Scholar
Isler, K., & van Schaik, C. P. (2014). How humans evolved large brains: Comparative evidence. Evolutionary Anthropology: Issues, News, and Reviews, 23(2), 6575. https://doi.org/10.1002/evan.21403Google Scholar
Kaplan, H., Gurven, M., Winking, J., Hooper, P. L., & Stieglitz, J. (2010). Learning, menopause, and the human adaptive complex. Annals of the New York Academy of Sciences, 1204(1), 3042. https://doi.org/10.1111/j.1749-6632.2010.05528.xGoogle Scholar
Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology: Issues, News, and Reviews, 9(4), 156–85. https://doi.org/10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7Google Scholar
Kivell, T. L. (2015). Evidence in hand: Recent discoveries and the early evolution of human manual manipulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1682), 20150105. https://doi.org/10.1098/rstb.2015.0105Google Scholar
Kline, M. A. (2015). How to learn about teaching: An evolutionary framework for the study of teaching behavior in humans and other animals. Behavioral and Brain Sciences, 38, e31. https://doi.org/10.1017/S0140525X14000090Google Scholar
Kolodny, O., Creanza, N., & Feldman, M. W. (2016). Game-changing innovations: How culture can change the parameters of its own evolution and induce abrupt cultural shifts. PLoS Computational Biology, 12(12), e1005302. https://doi.org/10.1371/journal.pcbi.1005302Google Scholar
Kramer, K. L. (2010). Cooperative breeding and its significance to the demographic success of humans. Annual Review of Anthropology, 39, 417–36. https://doi.org/10.1146/annurev.anthro.012809.105054Google Scholar
Kuhn, S. L. (2014). Signaling theory and technologies of communication in the Paleolithic. Biological Theory, 9(1), 4250. https://doi.org/10.1007/s13752–013-0156-5Google Scholar
Laland, K. N., Odling-Smee, J., Hoppitt, W., & Uller, T. (2013). More on how and why: Cause and effect in biology revisited. Biology & Philosophy, 28(5), 719–45. https://doi.org/10.1007/s10539–012-9335-1Google Scholar
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences, 282(1813), 20151019. https://doi.org/10.1098/rspb.2015.1019Google Scholar
Lashley, K. (1951). The problem of serial order in behavior. In Jeffress, L. A. (Ed.), Cerebral mechanisms in behavior (pp. 112–36). John Wiley.Google Scholar
Lewontin, R. C. (1998). The evolution of cognition: Questions we will never answer. In Scarborough, D. & Sternberg, S. (Eds.), An invitation to cognitive science: Methods models, and conceptual issues (2nd ed., Vol. 4, pp. 107–32). MIT Press.Google Scholar
Magnani, M., Rezek, Z., Lin, S. C., Chan, A., & Dibble, H. L. (2014). Flake variation in relation to the application of force. Journal of Archaeological Science, 46, 3749. https://doi.org/10.1016/j.jas.2014.02.029Google Scholar
Malafouris, L. (2013). How things shape the mind: A theory of material engagement. MIT Press.Google Scholar
Mantini, D., Corbetta, M., Romani, G. L., Orban, G. A., & Vanduffel, W. (2013). Evolutionarily novel functional networks in the human brain? Journal of Neuroscience, 33(8), 3259–75. https://doi.org/10.1523/jneurosci.4392-12.2013Google Scholar
Marx, L. (1997). “Technology”: The emergence of a hazardous concept. Social Research, 64(3), 965–88. http://www.jstor.org/stable/40971194Google Scholar
Marzke, M. W. (2013). Tool making, hand morphology and fossil hominins. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1630), 20120414. https://doi.org/10.1098/rstb.2012.0414Google Scholar
Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 1501–6. https://doi.org/10.1126/science.134.3489.1501Google Scholar
Mayr, E. (1994). Recapitulation reinterpreted: The somatic program. The Quarterly Review of Biology, 69(2), 223–32. https://doi.org/10.1086/418541Google Scholar
Mayr, E. (1997). The objects of selection. Proceedings of the National Academy of Sciences of the United States of America, 94(6), 2091–4. https://doi.org/10.2307/41593Google Scholar
Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 7(3), 141–4. https://doi.org/10.1016/S1364–6613(03)00029-9Google Scholar
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. Henry Holt. https://doi.org/10.1037/10039-000Google Scholar
Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford University Press.Google Scholar
Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., Sabuncu, M. R., Shafee, R., Liu, J., & Liu, H. (2013). Individual variability in functional connectivity architecture of the human brain. Neuron, 77(3), 586–95. https://doi.org/10.1016/j.neuron.2012.12.028Google Scholar
Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C. A., Heskel, M. A., Kingsolver, J. G., Maclean, H. J., Masel, J., Maughan, H., Pfennig, D. W., Relyea, R. A., Seiter, S., Snell-Rood, E., Steiner, U. K., & Schlichting, C. D. (2015). Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity, 115(4), 293301. https://doi.org/10.1038/hdy.2015.8Google Scholar
Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports, 6, 34783. https://doi.org/10.1038/srep34783Google Scholar
Nonaka, T., Bril, B., & Rein, R. (2010). How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. Journal of Human Evolution, 59(2), 155–67. https://doi.org/10.1016/j.jhevol.2010.04.006Google Scholar
Obayashi, S., Suhara, T., Kawabe, K., Okauchi, T., Maeda, J., Akine, Y., Onoe, H., & Iriki, A. (2001). Functional brain mapping of monkey tool use. NeuroImage 14(4), 853–61. https://doi.org/10.1006/nimg.2001.0878Google Scholar
Orban, G. A., & Caruana, F. (2014). The neural basis of human tool use. Frontiers in Psychology, 5, 310. https://doi.org/10.3389/fpsyg.2014.00310Google Scholar
Oswalt, W. H. (1976). An anthropological analysis of food-getting technology. John Wiley and Sons.Google Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–87. https://doi.org/10.1038/nrn2277Google Scholar
Perreault, C., Brantingham, P. J., Kuhn, S. L., Wurz, S., & Gao, X. (2013). Measuring the complexity of lithic technology. Current Anthropology, 54(S8), S397S406. https://doi.org/10.1086/673264Google Scholar
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329–47. https://doi.org/10.1017/S0140525X12001495Google Scholar
Pigliucci, M. (2009). An extended synthesis for evolutionary biology. Annals of the New York Academy of Sciences, 1168, 218–28. https://doi.org/10.1111/j.1749-6632.2009.04578.xGoogle Scholar
Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13(4), 707–27. https://doi.org/10.1017/S0140525X00081061Google Scholar
Powell, A., Shennan, S., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behavior. Science, 324(5932), 12981301. https://doi.org/10.1126/science.1170165Google Scholar
Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67(5), 735–48. https://doi.org/10.1016/j.neuron.2010.08.017Google Scholar
Preuss, T. M. (2012). Human brain evolution: From gene discovery to phenotype discovery. Proceedings of the National Academy of Sciences of the United States of America, 109(Supplement 1), 10709–16. https://doi.org/10.1073/pnas.1201894109Google Scholar
Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11(5), 351–60. https://doi.org/10.1038/nrn2811Google Scholar
Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10(10), 724–35. https://doi.org/10.1038/nrn2719Google Scholar
Roepstorff, A., Niewöhner, J., & Beck, S. (2010). Enculturing brains through patterned practices. Neural Networks, 23(8–9), 1051–9. https://doi.org/10.1016/j.neunet.2010.08.002Google Scholar
Roux, V., Bril, B., & Dietrich, G. (1995). Skills and learning difficulties involved in stone knapping: The case of stone-bead knapping in Khambhat, India. World Archaeology, 27(1), 6387. http://www.jstor.org/stable/124778Google Scholar
Saussure, F. (1966). Course in general linguistics (Baskin, W., Trans.; Bally, C. & Sechehaye, A., Eds.). McGraw-Hill. (Original work published 1916)Google Scholar
Schiffer, M. B. (1999). The material life of human beings: Artifacts, behavior and communication. Routledge.Google Scholar
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press.Google Scholar
Shennan, S. J., & Steele, J. (1999). Cultural learning in hominids: A behavioral ecological approach. In Box, H. O. & Gibson, K. R. (Eds.), Mammalian social learning: Comparative and ecological perspectives (pp. 367–88). Cambridge University Press.Google Scholar
Smith, J. M. (2000). The concept of information in biology. Philosophy of Science, 67(2), 177–94. http://www.jstor.org/stable/188717Google Scholar
Somel, M., Liu, X., & Khaitovich, P. (2013). Human brain evolution: Transcripts, metabolites and their regulators. Nature Reviews Neuroscience, 14(2), 112–27. https://doi.org/10.1038/nrn3372Google Scholar
Stiner, M. C., Barkai, R., & Gopher, A. (2009). Cooperative hunting and meat sharing 400–200 kya at Qesem Cave, Israel. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13207–12. https://doi.org/10.1073/pnas.0900564106Google Scholar
Stout, D. (2002). Skill and cognition in stone tool production: An ethnographic case study from Irian Jaya. Current Anthropology, 45(3), 693722. https://doi.org/10.1086/342638Google Scholar
Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 1050–9. https://doi.org/10.1098%2Frstb.2010.0369Google Scholar
Stout, D. (2013). Neuroscience of technology. In Richerson, P. J. & Christiansen, M. H. (Eds.), Cultural evolution: Society, technology, language, and religion (pp. 157–73). MIT Press.Google Scholar
Stout, D. (2018). Human brain evolution: History or science? In Schwartz, J. H. (Ed.), Rethinking human evolution (pp. 297318). MIT Press.Google Scholar
Stout, D., & Chaminade, T. (2007). The evolutionary neuroscience of tool making. Neuropsychologia, 45(5), 10911100. https://doi.org/10.1016/j.neuropsychologia.2006.09.014Google Scholar
Stout, D., & Chaminade, T. (2012). Stone tools, language and the brain in human evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1585), 7587. https://doi.org/10.1098/rstb.2011.0099Google Scholar
Stout, D., & Hecht, E. E. (2017). Evolutionary neuroscience of cumulative culture. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7861–68. https://doi.org/10.1073/pnas.1620738114Google ScholarPubMed
Stout, D., Hecht, E., Khreisheh, N., Bradley, B., & Chaminade, T. (2015). Cognitive demands of lower Paleolithic toolmaking. PLoS ONE, 10(4), e0121804. https://doi.org/10.1371/journal.pone.0121804CrossRefGoogle ScholarPubMed
Stout, D., & Khreisheh, N. (2015). Skill learning and human brain evolution: An experimental approach. Cambridge Archaeological Journal, 25(4), 867–75. https://doi.org/10.1017/S0959774315000359Google Scholar
Stout, D., Passingham, R., Frith, C., Apel, J., & Chaminade, T. (2011). Technology, expertise and social cognition in human evolution. European Journal of Neuroscience, 33(7), 1328–38. https://doi.org/10.1111/j.1460-9568.2011.07619.xGoogle Scholar
Stout, D., Rogers, M. J., Jaeggi, A. V., & Semaw, S. (2019). Archaeology and the origins of human cumulative culture: A case study from the earliest Oldowan at Gona, Ethiopia. Current Anthropology, 60(3), 309430. https://doi.org/10.1086/703173Google Scholar
Stout, D., Toth, N., Schick, K. D., & Chaminade, T. (2008). Neural correlates of Early Stone Age tool-making: Technology, language and cognition in human evolution. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1499), 1939–49. https://doi.org/10.1098/rstb.2008.0001Google Scholar
Szathmáry, E., & Smith, J. M. (1995). The major evolutionary transitions. Nature, 374(6519), 227–32. https://doi.org/10.1038/374227a0Google Scholar
Tomasello, M. (1999). The cultural origins of human cognition. Harvard University Press.Google Scholar
Toth, N., & Schick, K. (2009). The Oldowan: The tool making of early hominins and chimpanzees compared. Annual Review of Anthropology, 38, 289305. https://doi.org/10.1146/annurev-anthro-091908-164521Google Scholar
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–60. https://doi.org/10.1093/mind/LIX.236.433Google Scholar
Turner, V. (1975). Symbolic studies. Annual Review of Anthropology, 4, 145–61. https://doi.org/10.1146/annurev.an.04.100175.001045Google Scholar
Twomey, T. (2013). The cognitive implications of controlled fire use by early humans. Cambridge Archaeological Journal, 23(1), 113–28. https://doi.org/10.1017/S0959774313000085CrossRefGoogle Scholar
Tylor, E. B. (1871). Primitive culture: Researches into the development of mythology, philosophy, religion, art, and custom (Vol. 2). John Murray.Google Scholar
van Schaik, C. P., & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 1008–16. https://doi.org/10.1098%2Frstb.2010.0304Google Scholar
van Schaik, C. P., Isler, K., & Burkart, J. M. (2012). Explaining brain size variation: From social to cultural brain. Trends in Cognitive Sciences, 16(5), 277–84. https://doi.org/10.1016/j.tics.2012.04.004Google Scholar
Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5(4), 187–96. https://doi.org/10.1016/0303-2647(74)90031-8Google Scholar
Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain: A review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience & Biobehavioral Reviews, 35(3), 407–26. https://doi.org/10.1016/j.neubiorev.2010.04.007Google Scholar
Wadley, L., Hodgskiss, T., & Grant, M. (2009). Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9590–4. https://doi.org/10.1073/pnas.0900957106Google Scholar
West‐Eberhard, M. J. (2005). Phenotypic accommodation: Adaptive innovation due to developmental plasticity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304(6), 610–18. https://doi.org/10.1002/jez.b.21071Google Scholar
Whiten, A. (2015). Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1682), 20140359. https://doi.org/10.1098/rstb.2014.0359Google Scholar
Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 593602. https://doi.org/10.1098%2Frstb.2002.1238Google Scholar
Wylie, A. (1985). The reaction against analogy. In Schiffer, M. B. (Ed.), Advances in archaeological method and theory (Vol. 8, pp. 63111). Academic Press. https://doi.org/10.1016/B978–0-12-003108-5.50008-7Google Scholar
Yopak, K. E., Lisney, T. J., Darlington, R. B., Collin, S. P., Montgomery, J. C., & Finlay, B. L. (2010). A conserved pattern of brain scaling from sharks to primates. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 12946–51. https://doi.org/10.1073/pnas.1002195107Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×