Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T08:13:12.715Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 January 2017

Thomas Bock
Affiliation:
Technische Universität München
Thomas Linner
Affiliation:
Technische Universität München
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Construction Robots
Elementary Technologies and Single-Task Construction Robots
, pp. 305 - 314
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nüchter, Andreas; Elseberg, Jan; Borrmann, Dorit (2013) “Irma3D – An intelligent robot for mapping applications”. In Proceedings of the 3 IFAC Symposium on Telematics Applications (TA ’13), Vol. 3, Part 1, Seoul, Korea, November 2013, doi:10.3182/20131111-3-KR-2043.00011.Google Scholar
Andres, J.; Bock, T.; Gebhardt, F.; Steck, W. (1994) First results of the development of the mansonry robot system ROCCO: A fault tolerant assembly tool”. In Proceedings of the 11th International Symposium on Automation and Robotics in Construction, pp. 8793. Amsterdam: International Association for Automation and Robotics in Construction.Google Scholar
Aoyagi, H.; Shibata, Y. (1988) “Development of the horizontal distributor for concrete placing”. In Proceedings of the 5th International Symposium on Automation and Robotics in Construction, pp. 541550. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Arai, M.; Hoshino, H.; Sugata, M.; Tazawa, S.; Hayashida, H. (2010) “Development of closed type robot for removing and recollection of sprayed asbestos materials on steel beams”. In Proceedings of the 12th Symposium on Construction Robotics in Japan, pp. 289294. Tokyo: Japan Industrial Robot Association (JIRA).Google Scholar
Architectural Institute of Japan (AIJ). (1988) Proceedings Ascending Technologies http://www.asctec.de/ (Accessed 31 December 2015).Google Scholar
Architectural Institute of Japan (AIJ) (1990) Proceedings of the 1st Symposium on Construction Robotics in Japan.Google Scholar
Architectural Institute of Japan (AIJ) (1998) Proceedings of the 7th Symposium on Construction Robotics in Japan.Google Scholar
Architectural Institute of Japan (AIJ) (2008) Proceedings of the 11th Symposium on Construction Robotics in Japan.Google Scholar
Architectural Institute of Japan, Committee of Construction Material, Subcommittee of Construction Robotics Technology (1989) Proceedings of the 3rd Construction Robot Symposium.Google Scholar
Architectural Institute of Japan, Committee of Construction Material, Subcommittee of Construction Robotics Technology (1993) Proceedings of the 7th Construction Robot Symposium.Google Scholar
Architectural Institute of Japan, Research Committee on Building Materials and Construction Procedure, Subcommittee on Robotics Technology in Building Construction (1988) Proceedings of the 2nd Construction Robot Symposium. Tokyo.Google Scholar
Architectural Institute of Japan, Research Committee on Building Materials and Construction Procedure, Subcommittee on Automation in Building Construction (1995) Proceedings of the 9th Construction Robot Symposium. Tokyo.Google Scholar
Architectural Institute of Japan, Research Committee on Building Materials and Construction Procedure, Subcommittee on Automation in Building Construction (1996) Proceedings of the 10th Construction Robot Symposium. Tokyo.Google Scholar
Atsuhiro, D.; Koji, H.; Tomoya, K.; Takashi, S. (2002) “Development and application of automated delivery system for finishing building materials”. In Proceedings of 19th International Symposium on Automation and Robotics in Construction 2002, pp. 235241. Washington, DC: International Association for Automation and Robotics in Construction.Google Scholar
Autodesk, (2015) Architecture and construction software. http://www.businesswire.com/multimedia/home/20150430006461/en/#.VVibfJPpXU8 (Accessed 17 May 2015).Google Scholar
Automated Building Construction System (1993) Riverside Sumida Bachelor Dormitory documentary video [VHS]. Tokyo: Obayashi Corporation.Google Scholar
Automation in Construction, An International Research Journal, Vol. 12 Number 2 March 2003, 12(2) 113226 (2003).Google Scholar
Automation in Construction, An International Research Journal, Vol. 12 Number 4 July 2003, 12(4) 349464 (2003).Google Scholar
Autonomous Solutions, Inc. (ASI) http://www.asirobots.com/ (Accessed 31 December 2015).Google Scholar
Bennett, J.; Flanagan, R.; Norman, G. (1987) Capital & Countries Report: Japanese Construction Industry. Reading, UK: Centre for Strategic Studies in Construction.Google Scholar
Bock, T. (1989) Robot Oriented Design. Dr.-Ing. dissertation, Faculty of Engineering, Chair of Building Production, the University of Tokyo.Google Scholar
Bock, T. (1998) “Robotics in Architecture”. In Proceedings of La Science et la Technologie au Service de l'Architecture, Conference Europ enne sur l'Architecture UNESCO. Paris: Center Robotique Intégrée Ile de France.Google Scholar
Bock, T.; Gebhart, F. (1994) “ROCCO-Robot Assembly System for Computer Integrated Construction, An Overview”, In: First European Conference on Product and Process Modelling in the Building Industry, pp. 583591. Dresden, Germany.Google Scholar
Bock, T.; Steffani, H. F. (1994) “A Semi Autonomous Vehicle for a Mobile Robot (ROCCO)”, In: First European Conference on Product and Process Modelling in the Building Industry, pp. 591599. Dresden, Germany.Google Scholar
Bock, T.; Linner, T. (2010b) “From early trials to advanced computer integrated prefabrication of brickwork”. In Girmscheid, G.; Scheublin, F. (eds.), New Perspective in Industrialization in Construction – A State-of-the-Art Report. CIB Publication 329, pp. 161181. Zürich: ETH Zürich.Google Scholar
Bock, T.; Linner, T.; Eibisch, N.; Lauer, W. (2010) “Fusion of product and automated-replicative production in construction”. In 27th International Symposium on Automation and Robotics in Construction, pp. 1221. Bratislava: International Association for Automation and Robotics in Construction.Google Scholar
Bock, T.; Linner, T.; Georgoulas, C.; Mayr, M.; Meyer-Andreaus, J. (2012) “Innovation deployment strategies in construction”. In Proceedings of Creative Construction Conference, pp. 105118. Budapest, Hungary.Google Scholar
Borrmann, D.; Afzal, H.; Elseberg, J.; Nüchter, A. (2012) “Mutual calibration for 3D thermal mapping”. In Proceedings of the 10th Symposium on Robot Control (SYROCO), pp. 605610. Amsterdam: Elsevier.Google Scholar
Bosscher, P., Williams II, R. L.; Bryson, L. Sebastian; Castro-Lacouture, Daniel (2007) “Cable-suspended robotic contour crafting system”. Automation in Construction, 17: 4555.Google Scholar
Bräunl, T. (2008) Embedded Robotics, Mobile Robot Design and Application with Embedded Systems, 3rd ed. Berlin and Heidelberg: Springer-Verlag.Google Scholar
Bridgit, (2015) Construction software. http://gobridgit.com (Accessed 17 May 2015).Google Scholar
Brown, S. F. (1988) “Meet the Wallbots”. Popular Science, August: 5455.Google Scholar
Brunkenberg Systems AB http://www.brunkeberg.com/ (Accessed 31 December 2015).Google Scholar
Caldas, C. H.; O'Brien, W. J. (2009) “Computing in civil engineering”. In Proceedings of the 2009 international Workshop on Computing in Civil Engineering. Austin, TX: American Society of Civil Engineers.Google Scholar
Cheng, T.; Teizer, J. (2011) “Crane operator visibility of ground operations”. In Proceedings of 28th International Symposium on Automation and Robotics in Construction, pp. 699705. Seoul, Korea: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
Cho, C.-Y.; Kwon, S.-W.; Lee, J.; You, S.-J.; Chin, S.-Y.; Kim, Y.-S. (2009) “Basic study of smart robotic construction lift for increasing resource lifting efficiency in high-rise building construction”. In Proceedings of 26th International Symposium on Automation and Robotics in Construction, pp. 266277. Austin, TX: International Association for Automation and Robotics in Construction.Google Scholar
Robotics, Clearpath, Inc. http://www.clearpathrobotics.com/ (accessed 31 December 2015).Google Scholar
Construction Robotics http://www.construction-robotics.com/ (Accessed 31 December 2015).Google Scholar
Council for Construction Robot Research (1999) Construction Robot System Catalogue in Japan. [research report]. Tokyo: Japan Robot Association.Google Scholar
Cousineau, L.; Miura, N. (1998) Construction Robots: The Search for New Building Technology in Japan. Reston: American Society of Civil Engineers (ASCE).Google Scholar
Cyberdyne Inc. http://www.cyberdyne.jp/english/ (Accessed 31 December 2015).Google Scholar
Dalacker, M. (1997) Entwurf und Erprobung eines mobilen Robotters zur automatisierten Erstellung von Mauerwerk auf der Baustelle. Schriftenreihe Planung, Technologie Management und Automatisierung im Bauwesen. Munich: Fraunhofer IRB Verlag.Google Scholar
Daewoo Shipbuilding and Marine Engineering (DSME) (2015) http://www.dsme.co.kr (Accessed 17 May 2015).Google Scholar
Daftry, S.; Hoppe, C.; Bischof, H. (2015) “Building with drones: Accurate 3D façade reconstruction using MAVs”. In IEEE International Conference on Robotics and Automation (ICRA ’15), Seattle, WA.Google Scholar
Doggett, W. (2002) “Robotic assembly of truss structures for space systems and future research plans”. In Aerospace Conference Proceedings, 2002, Vol. 7, pp. 35893598. Big Sky, MT: IEEE.Google Scholar
Doka, GmbH https://www.doka.com (Accessed 31 December 2015).Google Scholar
Dong, X.; Yurong, M.; Haile, E. (2005) “Work-related fatal and non-fatal injuries among construction workers: 1992–2003”. Silver Spring, MD: The Center to Protect Workers’ Rights (CPWR).Google Scholar
Ebihara, M. (1988) “The development of an apparatus for diagnosing the interior condition of walls”. In Proceedings of 5th International Symposium on Automation and Robotics in Construction, 867876. Tokyo: International Association for Automation and Robotics in ConstructionGoogle Scholar
Elkmann, Norbert; Felsch, Torsten; Forster, Tilo (2010) “Robot for rotor blade inspection”. In 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI), Vol. 1, pp. 15, 57 October 2010, doi: 10.1109/CARPI.2010.5624444.Google Scholar
Elkmann, Norbert; Felsch, Torsten; Sack, M.; Saenz, José; Hortig, Justus (2002) “Innovative service robot systems for facade cleaning of difficult-to-access areas”. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2002. Proceedings, Vol. 1, 30.9.–4.10.2002, EPFL Lausanne, Switzerland. Piscataway, NJ: IEEE Operations Center.Google Scholar
Renda, EZ http://www.ezrenda.com/ (Accessed 31 December 2015).Google Scholar
Robotics, Fastbrick http://www.fbr.com.au/ (Accessed 31 December 2015).Google Scholar
Feldmann, K.; Koch, M. (1998) “A mobile robot system for assembly operations at interior finishing”. In Proceedings of 15th International Symposium on Automation and Robotics in Construction, pp. 93102. Munich, Germany: International Association for Automation and Robotics in Construction.Google Scholar
Ferguson, E. S. (1962) “Kinematics of mechanisms from the time of watt”. In Contributions from the Museum of History and Technology Washington, Paper 27, pp. 185230.Google Scholar
Flight Assembled Architecture – Joint Project by Raffaello D'Andrea and Grammazio and Kohler [http://raffaello.name/dynamic-works/flight-assembled-architecture/ (Accessed 21 January 2014).Google Scholar
Future Cities Laboratory, Design of Robotic Fabricated High Rises, Prof. Fabio Gramazio, Prof. Matthias Kohler, Future Cities Laboratory of the Singapore-ETH Centre for Global Environmental Sustainability, http://www.fcl.ethz.ch/module/digital-fabrication/ (Accessed 31 December 2015).Google Scholar
Gambao, E.; Hernando, M. (2006) “Control system for a semi-automatic facade cleaning robot”. In Proceedings of 23rd International Symposium on Automation and Robotics in Construction, pp. 406411. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Gambao, Ernesto; Hernando, Miguel; Surdilovic, Dragoljub (2008) “Development of a semi-automated cost-effective facade cleaning system”. In Carlos Balaguer; Mohamed Abderrahim (eds.), Robotics and Automation in Construction. http://www.intechopen.com/books/robotics_and_automation_in_construction/development_of_a_semi-automated_cost-_effective_facade_cleaning_system.Google Scholar
General Robotics, Automation, Sensing and Perception (GRASP) Laboratory, Penn Engineering, https://www.grasp.upenn.edu/research-groups/kumar-lab (Accessed 31 December 2015).Google Scholar
General Robotics, Automation, Sensing and Perception (GRASP) Laboratory, Penn Engineering, www.grasp.upenn.edu (Accessed 21 January 2014).Google Scholar
GGR Group http://www.ggrgroup.com/ (Accessed 31 December 2015).Google Scholar
Gogget, W. (2002) “Robotic assembly of truss structures for space systems and future research plans”. Hampton, VA: NASA Langley Research Center.Google Scholar
Hasegawa, Y. (1985) “Robotization of reinforced concrete building construction in Japan”. In Proceedings of 3rd International Symposium on Automation and Robotics in Construction, pp. 423433. Marseille, France: International Association for Automation and Robotics in Construction.Google Scholar
Hasegawa, Y. (1999) Robotization in Construction. Tokyo: Kogyo Chosakai.CrossRefGoogle Scholar
Hasegawa, Y.; Onoda, T.; Tamaki, K. (1992) “Modular robotic application for flexible building construction”. In Proceedings of 13th International Symposium on Automation and Robotics in Construction, pp. 113122. Tokyo: Japan International Association for Automation and Robotics in Construction.Google Scholar
Hjelle, David Alan; Lipson, Hod (2009) “A robotically reconfigurable truss”. In Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2009), pp. 7378. London: King's College London.Google Scholar
Honda Motor/Honda Robotics Division http://world.honda.com/HondaRobotics/index.html (Accessed 31 December 2015).Google Scholar
Hortig, J.; Elkmann, N.; Felsch, T.; Sack, M.; Böhme, T. (2001) “The Sirius robot platform for tool handling on large vertical surfaces”. In Proceedings of International Symposium on Automation and Robotics in Construction 2001, pp. 14. Krakow, Poland: International Association for Automation and Robotics in Construction.Google Scholar
IEEE Spectrum (2015) “Korean shipbuilder testing industrial exoskeletons for future cybernetic workforce. http://spectrum.ieee.org/automaton/robotics/industrial-robots/korean-shipbuilder-testing-industrial-exoskeletons-for-future-cybernetic-workforce (Accessed 17 May 2015).Google Scholar
Institute for Advanced Architecture of Catalonia (IAAC) robots.iaac.net (Accessed 31 December 2015).Google Scholar
Inoue, F.; Doi, S.; Okada, T.; Ohta, Y. (2009) “Development of automated inspection robot and diagnosis method for tile wall separation by wavelet analysis”. In Proceedings of International Symposium on Automation and Robotics in Construction 2009, pp. 379388. Austin, TX: International Association for Automation and Robotics in Construction.Google Scholar
International Association for Automation and Robotics in Construction (IAARC) (1998) Robots and Automated Machines in Construction. Watford, UK: IAARC.Google Scholar
Itou, M.; Nishita, K.; Houkyou, M. (1994) “Application of all-weather automatic building construction systems”. In Construction Robot Symposium. Tokyo.Google Scholar
Iturralde, K.; Linner, T.; Bock, T. (2015–1) “Comparison of automated and robotic support bodies for building facade upgrading”. In Proceedings of the 32nd International Symposium on Automation and Robotics in Construction and Mining (ISARC2015), Oulu, Finland, 15–18 June, 2015, pp. 18.Google Scholar
Iturralde, K.; Linner, T.; Bock, T. (2015-2) “Development and preliminary evaluation of a concept for a modular end-effector for automated/robotic facade panel installation in building renovation”. In 10th Conference on Advanced Building Skins, 4–5 October 2015, Bern, Switzerland, pp. 46624671.Google Scholar
Jackson, J. R. (1990) Robotics in the Construction Industry. Master's thesis, University of Florida.Google Scholar
Japan Federation of Construction Contractors (2012) Construction Industry Handbook 2012 [research report]. Tokyo: Japan Federation of Construction Contractors.Google Scholar
Japan Industrial Robot Association (JIRA) (1988) Handbook of the Industrial Robot Introduction – Non-manufacturing Industry 1988. Tokyo: JIRA.Google Scholar
Japan Industrial Robot Association (JIRA) (1990) The Specifications and Applications of Industrial Robots in Japan – No-manufacturing Fields. Tokyo: JIRA.Google Scholar
Japan Industrial Robot Association (JIRA) (1991) Proceedings of the 2nd Symposium on Construction Robotics. Tokyo: JIRA.Google Scholar
Japan Industrial Robot Association (JIRA) (1993) Proceedings of the 3rd Symposium on Construction Robotics. Tokyo: JIRA.Google Scholar
Kajima (2000) AMURAD Documentary Video [VHS]. Tokyo: Kajima.Google Scholar
Kajima (2011) Interview with Kajima R&D staff at ISARC, Seoul, Korea, June.Google Scholar
Kajima Company Brochure “Automation technology for maintenance and reform”. Tokyo: Kajima.Google Scholar
Kajima Company Brochure. “Automation technology for the construction of nuclear power plant”. Tokyo: Kajima.Google Scholar
Kajima Company Brochure. “Construction robot/automation technology”. Tokyo: Kajima.Google Scholar
Kameda, M.; Suzuki, A.; Watanabe, J., Nishigami, M. (1996) “Study on development and utilization of construction robots”. In Proceedings of the 13th International Symposium on Automation and Robotics in Construction, pp. 141150. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Kangari, R.; Yoshida, T. (1989) “Prototype robotics in the construction industry”. Journal of Construction Engineering and Management, 115(2): 284301.Google Scholar
Kawada Robotics Corporation http://www.kawadarobot.co.jp (Accessed 31 December 2015).Google Scholar
Khoshnevis, B. (2003) “Automated construction by contour crafting — related robotics and information technologies”. Automation in Construction, 13(2004): 519.Google Scholar
Kodaki, K.; Nakano, M.; Nanasawa, T.; Maeda, S.; Miyazawa, M. (1996) “Development of the automatic system for pneumatic cassion”. In Proceedings of International Symposium on Automation and Robotics in Construction 1996, pp. 333341. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Komatsu, http://www.komatsu.com/ (Accessed 31 December 2015).Google Scholar
Kumita, Y.; Takimoto, T.; Nozue, A.; Murakoshi, K. (1992) “Development of a desk/chair arrangement robot”. In Proceedings of the 9th International Symposium on Automation and Robotics in Construction, pp. 525534. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Lauer, W.; Bock, T. (2010) “Location orientation manipulator by Konrad Wachsmann, John Bollinger and Xavier Mendoza”. In 27th International Symposium on Automation and Robotics in Construction, pp. 704712. Bratislava: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
Lee, S.-Y. (2008) Human-Robot Cooperation for Installing Bulk Building Materials at Construction Sites. Dr.-Ing. dissertation, Department of Mechanical Engineering, Hanyang University, Seoul.Google Scholar
Lee, S. Y.; Gil, M.; Lee, K.; Lee, S.; Han, C. (2007) “Design of a ceiling glass installation robot”. In Proceedings of the 24th International Symposium on Automation and Robotics in Construction, pp. 247252. Madras: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
Lichtenberg, J.; Segers, S. (2000) “Mechanisation of ceramic tiling”. [Research Report], End Report EC Contract No. BRST-CT98-5238, Project No. BES2-2676.Google Scholar
Lichtenberg, J. J. N. (2003) “The development of a robot for paving floors with ceramic tiles”. In Proceedings of the 20th International Symposium on Automation and Robotics in Construction, pp. 85–88. Eindhoven, the Netherlands: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
LiDAR Equipped Robot, Department of Geological Engineering. Missouri University of Science and Technology. Principal investigators: Prof. Dr. Maerz, Prof. Dr. Ye Duan (2010).Google Scholar
Lindsey, Q; Mellinger, D; Kumar, V. “Construction with quadrotor teams”. Autonomous Robots, 33(3): 323336.Google Scholar
Linner, T. (2013) Automated and Robotic Construction: Integrated Automated Construction Sites. Dr.-Ing. dissertation, Technische Universität München. In particular chapters 1, 3 and 4 in this volume (Volume 3) are based on chapter 4 of the thesis; furthermore the classification system for the STCRs has been adopted from the thesis and expanded and detailed in this volume (Volume 3).Google Scholar
Bonilla, Llorens, Asada, Baldin, Harry, H.. (2014) “A robot on the shoulder: Coordinated human-wearable robot control using coloured petri nets and partial Least Squares predictions”. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 119125. Hong Kong.Google Scholar
Lobo, Daniel; Hjelle, David Alan; Lipson, Hod (2009) “Reconfiguration algorithms for robotically manipulatable structures”. In Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2009), pp. 1322. London: King's College London.Google Scholar
Martin, Lockheed (2015) “FORTIS exoskeleton”. www.lockheedmartin.com/us/products/exoskeleton/FORTIS.html (Accessed 17 May 2015).Google Scholar
LOMAR s.r.l. http://www.infolomar.com/ (Accessed 31 December 2015).Google Scholar
Maeda, J. (1994) “Development and application of the SMART system”. Automation and Robotics in Construction, 6: 457464.CrossRefGoogle Scholar
MAI International GmbH http://www.mai.at/ (Accessed 31 December 2015).Google Scholar
Matsuike, T.; Sawa, Y.; Ohashi, A.; Sotozono, Shinji, Fukagawa, R.; Muro, T. (1996) “Development of automatic system for diaphragm-wall excavator”. In Proceedings of 13th International Symposium on Automation and Robotics in Construction 1996, pp. 285294. Tokyo: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
Miyazaki, Y., et al. “Development of ‘multiple purpose construction hand’ – multiple-purpose construction robot to mount exterior wall panels”. Tokyo: Kajima Corporation & Komatsu Ltd.Google Scholar
dMorita, M.; Muro, E.; Kanaiwa, T.; Nishimura, H. (1993) “Study on simulation of roof pushup construction method”. Automation and Robotics in Construction, 5: 18.Google Scholar
Nerdinger, W. (2010) “Die Zukunft aus der Fabrik – Konrad Wachsmanns ‘Wendepunkt’ im Kontext”. In Wendepunkte im Bauen: von der seriellen zur digitalen Architektur, pp. 1017. Munich: Nerdinger/Edition.Google Scholar
Nigl, Franz; Li, Shuguang; Blum, Jeremy E.; Lipson, Hod (2013) “Structure-reconfiguring robots”. IEEE Robotics & Automation Magazine, September.CrossRefGoogle Scholar
Nihon Biosh Corporation http://www.bisoh.co.jp/ en/product/mainten-ance/index.html (Accessed 21 January 2014).Google Scholar
Nishiyama, K.; Kobayashi, K. (2006) “Development of automatic chimney cleaning and brick dismantling equipment”. In Proceedings of the 23rd International Symposium on Automation and Robotics in Construction, pp. 816821. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
nLink http://www.nlink.no/ (Accessed 31 December 2015).Google Scholar
Obayashi Company Brochure “Autoclaw and autoclamp for steel beam and column erection”. Tokyo.Google Scholar
Obayashi Company Brochure “Automatic laser beam-guided floor robot”. Tokyo.Google Scholar
Obayashi Company Brochure “Clean room inspection and monitoring robot – CRIMRO”. Tokyo.Google Scholar
Obayashi Company Brochure “Wall inspection robot – KABEDOHA”.Google Scholar
Parietti, Federico; Asada, H. Harry (2014) “Supernumerary robotic limbs for aircraft fuselage assembly: Body stabilization and guidance by bracing”. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 11761183. Hong Kong.Google Scholar
PERI, GmbH http://www.peri.de/ (Accessed 31 December 2015).Google Scholar
Phoenix Aerial Systems, Inc. http://www.phoenix-aerial.com/ (Accessed 31 December 2015).Google Scholar
Pritschow, G.; Dalacker, M; Kurz, J.; Gaenssle, M. (1995) “Technological aspects in the development of a mobile bricklaying robot”. In Proceedings of the 12th International Conference on Automation and Robotics in Construction, pp. 281290. Warsaw, Poland: International Association for Automation and Robotics in Construction.Google Scholar
Pritschow, G.; Kurz, J.; Fessele, T.; Scheurer, F. (1998) “Robotic on-site construction of mansonry”. In Proceedings of the 15th International Symposium on Automation and Robotics in Construction, pp. 5564. Munich, Germany: International Association for Automation and Robotics in Construction.Google Scholar
RIEGL http://www.riegl.com/ (Accessed 31 December 2015).Google Scholar
Robosoft, S. A. (2013) “Glass roof cleaning”. http://www.robosoft.com/robotic-solutions/cleanliness/glass-roof.html (Accessed 1 January 2016).CrossRefGoogle Scholar
Robotics & Intelligent Construction Automation Lab (RICAL), Georgia Institute of Technology http://rical.ce.gatech.edu/ (Accessed 31 December 2015).Google Scholar
ROBOTSYSTEM http://www.robotsystem.cz/ (Accessed 31 December 2015).Google Scholar
Roca, D.; Lagüela, S.; Díaz-Vilariño, L.; Armesto, J; Arias, P. (2013) Low-cost aerial unit for outdoor inspection of building façades. Automation in Construction, 36: 128135.Google Scholar
Saidi, K. S.; Bunch, R.; Lytle, A. M.; Proctor, F. (2006) “Development of a real-time control system architecture for automated steel construction”. In Proceedings of the 23rd International Symposium on Automation and Robotics in Construction, pp. 412417. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Sandvik Mining and Construction http://www.miningandconstruction.sandvik.com/de (Accessed 31 December 2015).Google Scholar
Yun, Seungkook; Hjelle, David Alan; Schweikardt, Eric; Lipson, Hod; Rus, Daniela (2009) “Planning the reconfiguration of grounded truss structures with truss climbing robots that carry truss elements”. In Proceedings of IEEE International Conference on Robotics and Automation, 2009 (ICRA09), pp. 13271333. Kobe, Japan: IEEE.Google Scholar
Sherman, P. (1988) “Japanese construction R&D: Entree into US market”. Journal of Construction Engineering and Management, 114.1: 133143.Google Scholar
Shimizu Company Brochure “Ceiling panel positioning robot”. Tokyo: Shimizu.Google Scholar
Shimizu Company Brochure “Civil works robots”. Tokyo: Shimizu.CrossRefGoogle Scholar
Shimizu Company Brochure “Radio control auto-release clamp Mighty Shackle ACE”. Tokyo: Shimizu.Google Scholar
Shimizu Company Brochure. “Remote assembly manipulator for steel beams – Mighty Jack”. Tokyo: Shimizu.Google Scholar
Shimizu Company Brochure “Steel beam/column assembly robot”. Tokyo: Shimizu.Google Scholar
Shimizu Technology Division Brochure “Automatic spray System OSR1”. Tokyo: Shimizu Corporation. Tokyo: Shimizu.CrossRefGoogle Scholar
Silver, M. (2014) “Off-road fabrication: Architecture, peripatetic mobility and machine vision”. In Gramazio, F.; Kohler, M.; Langenberg, S. (eds.), Fabricate 2104. Zürich: GTA Verlag.Google Scholar
Skaff, S.; Staritz, P.; Whittaker, W. (2001) “Skyworker: Robotics for space assembly, inspection and maintenance”. In Proceedings of Space Studies Institute Conference. Mojave, CA.Google Scholar
Slocum, A. H.; Demsetz, L.; Levy, D.; Schena, B.; Ziegler, A. (1987) “Construction automation research at the Massachusetts Institute of Technology”. In Proceedings of the 4th Internationlal Symposium on Automation and Robotics in Construction (ISARC), pp. 222244. Haifa, Israel: International Association for Automation and Robotics in Construction.Google Scholar
Takenaka Company Brochure “Robots-automation of construction”. Tokyo: Takenaka.Google Scholar
Takeno, M.; Matsumura, A.; Sakai, Y. (1989) “Practical uses of painting robot for exterior walls of high rise buildings”. In Proceedings of the 6th International Symposium on Automation and Robotics in Construction, pp. 285292. San Francisco: International Association for Automation and Robotics in Construction.Google Scholar
Tanaka, K.; Sakamoto, S.; Abe, Y (2006) “Development of an air volume measuring instrument: WINSPEC”. In Proceedings of the 23rd International Symposium on Automation and Robotics in Construction, pp. 210214. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Tani, Y.; Nakano, M.; Okoshi, M.; Maeda, S.; Isa, H. (1996) “Research and development of automatic system for open caisson method”. In Proceedings of the 13th International Symposium on Automation and Robotics in Construction, pp. 323332. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Taylor, M.; Wamuziri, S.; Smith, I. (2003) “Automated construction in Japan”. In Proceedings of ICE 2003, pp. 3441. JapanGoogle Scholar
Teizer, J.; Siebert, S. (2014) “Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system”. Automation in Construction, 41: 114.Google Scholar
Terada, Y.; Murata, S. (2005) “Automatic modular assembly system”. The International Journal of Robotics Research, 27(3–4): 445462.Google Scholar
Terada, Y.; Murata, S. (2008) “Automatic modular assembly system and its distributed control”. The International Journal of Robotics Research, 27(3–4): 445462. SAGE Publishing: March/April 2008, doi: 10.1177/0278364907085562Google Scholar
Terauchi, S.; Miyajima, T.; Miyamoto, T.; Arai, K.; Takizawa, S. (1993) “Development of an exterior wall painting robot capable of painting walls with indentations and protrusions”. In Proceedings of the 10th International Symposium on Automation and Robotics in Construction, pp. 285292. Houston, TX: International Association for Automation and Robotics in Construction.Google Scholar
Ueno, T. (1998) “Automation and robotics in construction in Japan – State of the art”. In Proceedings of the 15th International Symposium on Automation and Robotics in Construction, pp. 3336. Munich: International Association for Automation and Robotics in Construction.Google Scholar
Ueno, T.; Kajioka, Y.; Sato, H.; Maeda, J.; Okuyama, N. (1988) “Research and development of robotic systems for assembly and finishing work”. In Proceedings of the 5th International Symposium on Automation and Robotics in Construction, pp. 279288. Tokyo: International Association for Automation and Robotics in Construction.Google Scholar
Vanku B. V./ Tiger-Stone http://tiger-stone.nl/ (Accessed 31 December 2015).Google Scholar
Volvo CE – Volvo Construction Equipment http://www.volvoce.com/ (Accessed 31 December 2015).CrossRefGoogle Scholar
Vuzix, (2015) Eyewear technology. http://www.vuzix.com/consumer/products_m2000ar/ (Accessed 17 May 2015).Google Scholar
Wachsmann, K. (1969) Turning Point of Building. New York: Van Nostrand Reinhold.Google Scholar
Wang, C.; Cho, Y. K.; Kim, C. (2015) Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Automation in Construction, 56: 113.Google Scholar
Werfel, J. (2012) “Collective construction with robot swarms”. Boston: Wyss Institute for Biologically Inspired Engineering, Harvard University.Google Scholar
Werfel, Justin; Petersen, Kirstin; Nagpal, Radhika (2014) “Designing collective behavior in a termite-inspired robot construction team”. Science, 343(6172): 754758.Google Scholar
Wickström, G.; Niskanen, T.; Riihimäki, H. (1985) “Strain on the back in concrete reinforcement work”. British Journal of Industrial Medicine, 42(4): 233239.Google Scholar
Xiong, X.; Adan, A.; Akinci, B.; Huber, D. (2013) “Automatic creation of semantically rich 3D building models from laser scanner data”. Automation in Construction, 31: 325337.Google Scholar
Yang, B; Chen, C. (2015) “Automatic registration of UAV-borne sequent images and LiDAR data”. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 262274.Google Scholar
Yi, K. Y.; Lee, J. E.; Chung, S. Y.; Han, S. S. (2004) “Development of a revolutionary advanced auto-shackle”. In Proceedings of International Symposium on Automation and Robotics in Construction 2004. Jeju, South Korea: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
Yim, M., Roufas, K.; Duff, D., Zhang, Y., Eldershaw, C., Homans, S. (2003) “Modular reconfigurable robots in space applications”. Autonomous Robots, 14: 225237.CrossRefGoogle Scholar
Yoshida, N.; Kanagawa, T.; Tani, Y.; Oda, Y. (1997) “Development of an automatic-oriented sheltered building construction system”. In Proceedings of the 14th International Symposium on Automation and Robotics in Construction, pp. 129138. Pittsburgh, PA: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
Yoshida, T.; Ueno, H. (1990) “Development of self-mobile space manipulator system”. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Kobe, Japan.Google Scholar
Yoshida, T.; Ueno, T.; Nonaka, M.; Yamazaki, S. (1984) “Development of spray robot for fireproof cover work”. In Proceedings of the 1st International Symposium on Automation and Robotics in Construction. Pittsburgh, PA: International Association for Automation and Robotics in Construction.CrossRefGoogle Scholar
Zhang, J.; Khoshnevis, B. (2012) “Optimal machine operation planning for construction by contour crafting”. Automation in Construction, 29: 5067.CrossRefGoogle Scholar
Zykov, V.; Mytilinaios, E.; Adams, B.; Lipson, H. (2005) “Self-reproducing machines”, Nature, 435(7038): 163164.Google Scholar
Zykov, V.; Mytilinaios, E.; Desnoyer, M.; Lipson, H. (2007) “Evolved and designed self-reproducing modular robotics”. IEEE Transactions on Robotics, 23(2): 308319.CrossRefGoogle Scholar
Zykov, V.; Phelps, W.; Lassabe, N.; Lipson, H. (2008) “Molecubes extended: Diversifying capabilities of open-source modular robotics”. In IROS-2008 Self-Reconfigurable Robotics Workshop. Nice.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Thomas Bock, Technische Universität München, Thomas Linner, Technische Universität München
  • Book: Construction Robots
  • Online publication: 27 January 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139872041.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Thomas Bock, Technische Universität München, Thomas Linner, Technische Universität München
  • Book: Construction Robots
  • Online publication: 27 January 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139872041.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Thomas Bock, Technische Universität München, Thomas Linner, Technische Universität München
  • Book: Construction Robots
  • Online publication: 27 January 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139872041.006
Available formats
×