Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T00:28:27.114Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2016

Paul Clavin
Affiliation:
Université d'Aix-Marseille
Geoff Searby
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Marseille, France
Get access
Type
Chapter
Information
Combustion Waves and Fronts in Flows
Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars
, pp. 685 - 703
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, F.A. 1874. Contributions to the history of explosive agents. Philos. Trans. R. Soc. London, 164, 337–395.Google Scholar
Abramowitz, M., and Stegun, I. 1972. Handbook of mathematical functions. 9th edn. New York: Dover.
Abugov, D.I., and Obrezkov, O.I. 1978. Acoustic noise in turbulent flames. Combust. Expl. Shock Waves, 14, 606–612.Google Scholar
Akkerman, V., Law, C.K., Bychkov, V., and Eriksson, L.-E. 2010. Analysis of flame acceleration induced by wall friction in open tubes. Phys. Fluids, 22, 053606.Google Scholar
Albin, Y., and D'Angelo, Y. 2012. Assessment of the evolution equation modelling approach for three-dimensional expanding wrinkled premixed flames. Combust. Flame, 159, 1932–1948.Google Scholar
Aldredge, R.C., and Killingsworth, N.J. 2004. Experimental evaluation of Marksteinnumber influence on thermoacoustic instability. Combust. Flame, 137, 178–197.Google Scholar
Almarcha, C., Clavin, P., Duchemin, L., and Sanz, J. 2007. Ablative Rayleigh-Taylor instability with strong temperature dependence of the thermal conductivity. J. Fluid Mech., 579, 481–492.Google Scholar
Arnold, V.I. 1973. Ordinary differential equations. MIT Editions.
Ashurst, W.T. 1997. Darrieus–Landau instability, growing cycloids and expanding flame acceleration. Combust. Theor. Model., 1, 405–428.Google Scholar
Assier, R., and Wu, X. 2014. Linear and weakly nonlinear instability of a premixed curved flame under the influence of its spontaneous acoustic field. J. Fluid Mech., 758, 180–220.Google Scholar
Atzeni, S., and Meyer-Ter-Vehn, J. 2004. The physics of inertial fusion. 1st edn. Clarendon Press–Oxford Science Publications.
Audoly, B., Berestycki, H., and Pomeau, Y. 2000. Reaction diffusion in fast steady flows. C. R. Acad. Sci. Paris, 328(3), 255–262.Google Scholar
Bachelard, G. 1928. La psychanalise du feu. Gallimard.
Baillot, F., Durox, D., Ducruix, S., Searby, G., and Boyer, L. 1999. Parametric response of a conical flame to acoustic waves. Combust. Sci. Technol., 142, 91–109.Google Scholar
Baker, G., Meiron, D.I., and Orszag, S.A. 1980. Vortex simulation of the Rayleigh–Taylor instability. Phys. Fluids, 23, 1485–1490.Google Scholar
Balescu, R. 1975. Equilibrium and nonequilibrium statistical mechanics. John Wiley and Sons.
Barenblatt, G.I. 1996. Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press.
Bartenev, A.M., and Gelfand, B.E. 2000. Spontaneous initiation of detonations. Prog. Energy Combust. Sci., 26, 29–55.Google Scholar
Batchelor, G.K. 1967. An introduction to fluid dynamics. Cambridge University Press.
Bates, J.W. 2004. Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media. Phys. Rev. E, 69, 056313.Google Scholar
Bates, J.W. 2007. Instability of isolated planar shock waves. Phys. Fluids, 19, 094 102–1–6.Google Scholar
Bates, J.W. 2012. On the theory of shock wave driven by a corrugated piston in a non-ideal fluid. J. Fluid Mech., 691, 146–164.Google Scholar
Bechtold, J.K., and Matalon, M. 1987. Hydrodynamic and diffusion effects on the stability of spherical expanding flames. Combust. Flame, 67, 77–90.Google Scholar
Belliard, A. 1997. Etude experimental de l'émission sonore des flammes turbulentes. University thesis, Université d'Aix-Marseille-I.
Bender, M.C., and Orszag, S.A. 1984. Advanced mathematical methods for scientists and engineers. McGraw-Hill.
Bethe, H.A. 1990. Supernova mechanisms. Rev. Mod. Phys., 62(4), 801–866.Google Scholar
Bhatnagar, P.L., Gross, E.P., and Krook, M. 1954. A model for collision processes in gases. Phys. Rev., 94(3), 511–525.Google Scholar
Bhayyacharjee, R.R, Lau-Chapelaine, S.S.M., Maines, G., Maley, L., and Radulescu, M.I. 2013. Detonation re-initiationmechanism following theMach reflection of a quenched detonation. Proc. Comb. Inst., 34, 1893–1901.Google Scholar
Biamino, L., Jourdan, G., and Lazhar, H. 2011. Pattern of triple points on a shock wave reflected from an undulated wall. Private communication.
Bibliothèque des succès scolaires (ed). 1868. Histoire d'une chandelle. J. Hetzel et Cie.
Bilger, R.W., Pope, S.B., Bray, K.N.C., and Driscoll, J.F. 2005. Paradigms in turbulent combustion research. Proc. Comb. Inst., 30, 21–41.Google Scholar
Binney, J., and Tremaine, S. 1994. Galactic dynamics. Princeton University Press.
Bodner, S. 1974. Rayleigh–Taylor instability and laser-pellet fusion. Phys. Rev. Lett., 33, 761–764.Google Scholar
Boivin, P., Sanchez, A.L., and Williams, F.A. 2013. Four-step and three-step systematically reduced chemistry for a wide-range H2-air combustion problems. Combust. Flame, 160, 76–82.Google Scholar
Borghi, R. 1985. On the structure and morphology of turbulent premixed flames. Pages 117–138 of: Bruno, C., and Casci, C. (eds), Recent advances in aerospace sciences. Plenum.
Borghi, R. 1988. Turbulent combustion modelling. Prog. Energy Combust. Sci., 14(4), 245–292.Google Scholar
Borghi, R., and Champion, M. 2000. Modélisation et théorie des flammes. Édition Technip.
Boris, J.P., and Oran, E.S. 1987. Numerical simulation of reactive flow. New York: Elsevier.
Bosschaart, K.J., and De Goey, L.P.H. 2004. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame, 136, 264–269.Google Scholar
Bourlioux, A., and Majda, A. J. 1992. Theoretical and numerical structure for unstable two-dimensional detonation. Combust. Flame, 90, 211–229.Google Scholar
Boury, G. 2003. Études théoriques et numériques de fronts de flammes plissées: Dynamiques non-linéaires libres ou bruités. Thesis, Université de Poitiers.
Boyer, L. 1980. Laser tomographic method for flame front movement studies. Combust. Flame, 39, 321–323.Google Scholar
Bradley, D., Chamberlain, G.A., and Drysdale, D.D. 2012. Large vapour cloud explosions, with particular reference to that at Buncefield. Philos. Trans. R. Soc. London Ser. A, 370, 544–566.Google Scholar
Bradley, D., Cresswell, M.T., and Puttock, J.S. 2001. Flame acceleration due to flameinduced instabilities in large-scale explosions. Combust. Flame, 124, 551–559.Google Scholar
Bradley, D., Gaskell, P.H., and Gu, X.J. 1996. Burning velocities, Markstein lengths, and flame quenching for spherical methane–air flames: A computational study. Combust. Flame, 104, 176–198.Google Scholar
Bradley, D., Sheppard, C.G.W., Woolley, R., Greenhalgh, D.A., and Lockett, R.D. 2000. The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions. Combust. Flame, 122(1–2), 195–209.Google Scholar
Brailovsky, I., and Sivashinsky, G.I. 2000. Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust. Flame, 122, 492–499.Google Scholar
Brailovsky, I., Kagan, L., and Sivashinsky, G. 2012. Combustion waves in hydraulically resisted systems. Philos. Trans. R. Soc. London Ser. A, 370, 625–646.Google Scholar
Braudel, F. 1987. Grammaire des civilisations. Arthaud.
Bray, K.N.C., and Moss, J.B. 1977. Unified statistical model of premixed turbulent flame. Acta Astronaut., 4(3–4), 291–319.Google Scholar
Briscoe, M.G., and Kovitz, A.A. 1968. Experimental and theoretical study of the stability of planar shock waves reflected normally from perturbed flat walls. J. Fluid Mech., 31(3), 529–546.Google Scholar
Brush, S.G. 1966. Kinetic theory. Vols. 1 and 2. Pergamon Press.
Buckmaster, J. 1976. The quenching of deflagration waves. Combust. Flame, 26, 151–162.Google Scholar
Buckmaster, J., and Joulin, G. 1989. Radial propagation of premixed flames. Combust. Flame, 78, 275–289.Google Scholar
Buckmaster, J., and Mikolaitis, D. 1982. The premixed flame in a counterflow. Combust. Flame, 47, 191–204.Google Scholar
Buckmaster, J., and Weeratunga, S. 1984. The stability and structure of flame-bubble. Combust. Sci. Technol., 35, 287–296.Google Scholar
Buckmaster, J., Joulin, G., and Ronney, P. 1990. The structure and stability of nonadiabatic flame balls. Combust. Flame, 79, 381–392.Google Scholar
Buckmaster, J.D. 1979. The quenching of two-dimensional premixed flames. Acta Astronaut., 6, 741–769.Google Scholar
Buckmaster, J.D., and Ludford, G.S.S. 1988. The effect of structure on stability of detonations. I. Role of the induction zone. Proc. Comb. Inst., 21, 1669–1676.Google Scholar
Burke, S.P., and Schumann, T.E.W. 1928. Diffusion flames. Ind. Eng. Chem., 20(10), 998–1004.Google Scholar
Burrows, A. 2013. Perspectives on core-collapse supernova theory. Rev. Mod. Phys., 85, 245–261.Google Scholar
Bychkov, V. 1999. Analytical scalings for flame interaction with sound waves. Phys. Fluids, 11(10), 3168–3173.Google Scholar
Bychkov, V., Golberg, S., and Liberman, M. 1994. Self-consistent model of the Rayleigh– Taylor instability in ablatively accelerated laser plasma. Phys. Plasmas, 1, 2976–2986.Google Scholar
Bychkov, V., Modestov, M., and Law, C.K. 2015. Combustion phenomena in modern physics: Inertial confinement fusion. Prog. Energy Combust. Sci., 47, 32–59.Google Scholar
Bychkov, V., Petchenko, A., Akkerman, V., and L.-E., Eriksson. 2005. Theory and modelling of accelerating flames in tubes. Phys. Rev. E, 72(4), 046307.Google Scholar
Callen, H.B. 1985. Thermodynamics. 2nd edn. New York: Wiley.
Cambray, P., and Joulin, G. 1994. Length-scales of wrinkling of weakly-forced unstable premixed flames. Combust. Sci. Technol., 97, 405–428.Google Scholar
Candel, S., Durox, D., Schuller, T., Palies, P., Bourgouin, J.-F., and Moeck, J.P. 2012. Progress and challenges in swirling flame dynamics. C. R. Mécanique, 340, 758–768.Google Scholar
Carnot, S. 1824. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier.
Carslaw, H.S., and Jaeger, J.C. 1959. Conduction of heat in solids. Clarendon Press–Oxford Science Publications.
Chandrasekhar, S. 1967. An introduction to the study of stellar structure. Dover Publications.
Chapman, S., and Cowling, T.G. 1939. The mathematical theory of non-uniform gases. Cambridge University Press.
Chen, Z., and Ju, Y. 2007. Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combust. Theor. Model., 11(3), 427–453.Google Scholar
Ciccarelli, G., and Dorofeev, S. 2008. Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci., 34, 499–550.Google Scholar
Clanet, C., and Searby, G. 1996. On the ‘tulip flame’ phenomenon. Combust. Flame, 105, 225–238.Google Scholar
Clanet, C., and Searby, G. 1998. First experimental study of the Darrieus–Landau instability. Phys. Rev. Lett., 80(17), 3867–3870.Google Scholar
Clanet, C., Searby, G., and Clavin, P. 1999. Primary acoustic instability of flame propagating in tubes: Cases of spray and premixed gas combustion. J. Fluid Mech., 385, 157–197.Google Scholar
Clavin, P. 1972. Kinetic study on spatially inhomogeneous systems–Preservation of factorization of generalized kinetic-equations. C. R. Acad. Sci. A, 274(13), 1085.Google Scholar
Clavin, P. 1985. Dynamic behaviour of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci., 11, 1–59.Google Scholar
Clavin, P. 1988. Theory of flames. Pages 293–315 of: Guyon, E., Nadal, J.P., and Pomeau, Y. (eds), NATO ASI Series E. Disorder and mixing, vol. 152. Kluwer Academic.
Clavin, P. 1994. Premixed combustion and gasdynamics. Ann. Rev. Fluid Mech., 26, 321–352.Google Scholar
Clavin, P. 2002a. Instabilities and nonlinear patterns of overdriven detonation in gases. Pages 49–97 of: Berestycki, H., and Pomeau, Y. (eds), Nonlinear PDEs in condensed matter and reactive flows. Kluwer Academic.
Clavin, P. 2002b. Self-sustained mean streaming motion in diamond patterns of a gaseous detonation. Int. J. Bifurcation & Chaos, 12(11), 2535–2546.Google Scholar
Clavin, P. 2013. Nonlinear analysis of shock-vortex interaction: Mach stem formation. J. Fluid Mech., 721, 324–339.Google Scholar
Clavin, P., and Almarcha, C. 2005. Ablative Rayleigh–Taylor instability in the limit of an infinitely large density ratio. C. R. Mécanique, 333, 379–388.Google Scholar
Clavin, P, and Denet, B. 2002. Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett., 88(4), 044502–1–4.Google Scholar
Clavin, P., and Garcia, P. 1983. The influence of the temperature dependence of diffusivities on the dynamics of flame fronts. J. Méc. Théor. Appl., 2(2), 245–263.Google Scholar
Clavin, P., and Graña-Otero, J.C. 2011. Curved and stretched flames: The two Markstein numbers. J. Fluid Mech., 686, 187–217.Google Scholar
Clavin, P., and He, L. 1996a. Acoustic effects in the nonlinear oscillations of planar detonations. Phys. Rev. E, 53(5), 4778–4784.Google Scholar
Clavin, P., and He, L. 1996b. Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases. J. Fluid Mech., 306, 353–378.Google Scholar
Clavin, P., and He, L. 2001. Theory of cellular detonations in gases. Part I: Stability limits at strong overdrive. C. R. Acad. Sci. Paris, 329(IIb), 463–471.Google Scholar
Clavin, P., and Joulin, G. 1983. Premixed flames in large scales and high intensity turbulent flow. J. Phys. Lett., 44, L-1–L-12.Google Scholar
Clavin, P., and Joulin, G. 1989. Flamelet library for turbulent wrinkled flames. Pages 213–240 of: Borghi, R., and Murthy, S.N.B. (eds), Turbulent reactive flows. Lecture Notes in Engineering. New York: Springer.
Clavin, P., and Joulin, G. 1997. High-frequency response of premixed flames to weak stretch and curvature: A variable-density analysis. Combust. Theor. Model., 1, 429–446.Google Scholar
Clavin, P., and Lazimi, D. 1992. Theoretical analysis of oscillatory of homogeneous solid propellant including non-steady gas phase effects. Combust. Sci. Technol., 83, 1–32.Google Scholar
Clavin, P., and Liñan, A. 1984. Theory of gaseous combustion. Pages 291–338 of: Velarde, M.G. (ed), Nonequilibrium cooperative phenomena in physics and related fields. NATO ASI Series B. Physics, vol. 116. Plenum Press.
Clavin, P., and Masse, L. 2004. Instabilities of ablation fronts in inertial fusion: A comparison with flames. Phys. Plasmas, 11, 690–705.Google Scholar
Clavin, P., and Searby, G. 2008. Unsteady response of chain-branching premixed-flames to pressure waves. Combust. Theor. Model., 12(3), 545–567.Google Scholar
Clavin, P., and Siggia, E.D. 1991. Turbulent premixed flames and sound generation. Combust. Sci. Technol., 78, 147–155.Google Scholar
Clavin, P., and Sun, J. 1991. Theory of acoustic instabilities of planar flames propagating in spray or particle-laden gases. Combust. Sci. Technol., 78, 265–288.Google Scholar
Clavin, P., and Williams, F.A. 1979. Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech., 90 part 3, 589–604.Google Scholar
Clavin, P., and Williams, F.A. 1982. Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech., 116, 251–282.Google Scholar
Clavin, P., and Williams, F.A. 2002. Dynamics of planar gaseous detonations near Chapman–Jouguet conditions for small heat release. Combust. Theor. Model., 6, 127–129.Google Scholar
Clavin, P., and Williams, F.A. 2005. Asymptotic spike evolution in Rayleigh–Taylor instability. J. Fluid Mech., 525, 105–113.Google Scholar
Clavin, P., and Williams, F.A. 2009. Multidimensional stability analysis of gaseous detonations near Chapman–Jouguet conditions for small heat release. J. Fluid Mech., 624, 125–150.Google Scholar
Clavin, P., and Williams, F.A. 2012. Analytical studies of the dynamics of gaseous detonations. Philos. Trans. R. Soc. London Ser. A, 370, 597–624.Google Scholar
Clavin, P., He, L., and Williams, F.A. 1997. Multidimensional stability analysis of overdriven gaseous detonations. Phys. Fluids, 9(12), 3764–3785.Google Scholar
Clavin, P., Kim, J.S., and Williams, F.A. 1994. Turbulence-induced noise effects on highfrequency combustion instabilities. Combust. Sci. Technol., 96, 61–84.Google Scholar
Clavin, P., Masse, L., and Roquejoffre, J.-M. 2011. Relaxation to equilibrium in diffusivethermal models with strongly varying diffusion length-scale. Comm. Math. Sci., 9(1), 127–141.Google Scholar
Clavin, P., Masse, L., and Williams, F.A. 2005. Comparison of flame front instabilities with instabilities of ablation fronts in inertial fusion confinement. Combust. Sci. Technol., 177, 979–989.Google Scholar
Clavin, P., Pelcé, P., and He, L. 1990. One-dimensional vibratory instability of planar flames propagating in tubes. J. Fluid Mech., 216, 299–322.Google Scholar
Colgate, S.A., and Johnson, M.H. 1960. Hydrodynamic origin of cosmic rays. Phys. Rev. Lett., 5, 235–238.Google Scholar
Contamine, P. 1999. La guerre au Moyen Âge. 5ème edn. PUF.
Cooperstein, J., and Baron, E.A. 1990. Supernovae: The direct mechanism and the equation of state. Chap. 9, pages 213–266 of: Petschek, A.G. (ed), Supernovae. Springer- Verlag.
Corrsin, S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469–473.Google Scholar
Courant, R., and Friedrichs, K.O. 1967. Supersonic flow and shock waves. John Wiley.
Cox, J.P. 1980. Theory of stellar pulsation. Princeton University Press.
Cox, P.A. 1989. The elements, their origin, abundance and distribution. Oxford University Press.
Crank, J. 1986. The mathematics of diffusion. 2nd edn. Clarendon Press–Oxford Science Publications.
Creta, F., Fogla, N., and Matalon, M. 2011. Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability. Combust. Theor. Model., 15(2), 267–298.Google Scholar
Culick, F.E. 1975. Stability of three-dimensional motions in a combustion chamber. Combust. Sci. Technol., 10, 109–124.Google Scholar
Damköhler, G. 1940. Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in gasgemischen. F. Elecktrochem., 601–652.Google Scholar
D'Angelo, Y., Joulin, G., and Boury, G. 2000. On model evolution equations for the whole surface of three-dimensional expanding wrinkled premixed flames. Combust. Theor. Model., 4, 317–338.Google Scholar
Daou, J., Al-Malki, F., and Ronney, P. 2009. Generalized flame balls. Combust. Theor. Model., 13(2), 1–26.Google Scholar
Daou, R., and Clavin, P. 2003. Instability threshold of gaseous detonations. J. Fluid Mech., 482, 181–206.Google Scholar
Darrieus, G. 1938. Propagation d'un front de flamme. Communication presented at La Technique Moderne (1938) and at Congrès de Mécanique Appliquée, Paris (1945).
Dautray, R. 2004. Quelle énergie pour demain. Odile Jacob.
Davis, S.G., Quinard, J., and Searby, G. 2002a. Determination of Markstein numbers in counterflow premixed flames. Combust. Flame, 130, 112–122.Google Scholar
Davis, S.G., Quinard, J., and Searby, G. 2002b. Determination of Markstein numbers in counterflows, methane– and propane–air flames: A computational study. Combust. Flame, 130, 123–136.Google Scholar
de Groot, S.R., and Mazur, P. 1984. Non-equilibrium thermodynamics. Dover.
Denet, B. 2006. Stationary solutions and Neumann boundary conditions in the Sivashinsky equation. Phys. Rev. E, 74, 036303–1–9.Google Scholar
Denet, B., Biamino, L., Lodato, G., Vervisch, L., and Clavin, P. 2015. Model equation for the dynamics of wrinkled shock waves. Comparison with DNS and experiments. Combust. Sci. Technol., 187(1–2), 296–323.Google Scholar
Deshaies, B., and Joulin, G. 1984. On the initiation of a spherical flame kernel. Combust. Sci. Technol., 37, 99–116.Google Scholar
Deshaies, B., and Joulin, G. 1989. Flame-speed sensitivity to temperature changes and the deflagration-to-detonation transition. Combust. Flame, 77, 201–212.Google Scholar
Dimont, G., et al. 2004. A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration. Phys. Fluids, 16(5), 1668–1693.Google Scholar
Dominguez, I., and Khokhlov, A. 2011. Incomplete carbon-oxygen detonation in type Ia supernovae. Astrophys. J., 730, 87–102.Google Scholar
Drazin, P.G., and Reid, W.H. 1982. Hydrodynamic instability. Cambridge University Press.
Duchemin, L., Josserand, C., and Clavin, P. 2005. Asymptotic behavior of the Rayleigh– Taylor instability. Phys. Rev. Lett., 94, 224501.Google Scholar
Durox, D., Baillot, F., Searby, G., and Boyer, L. 1997. On the shape of flames under strong acoustic acceleration: A mean flow controlled by the unsteady flow. J. Fluid Mech., 350, 295–310.Google Scholar
D'yakov, S.P. 1954. The stability of shockwaves: Investigation of the problem of stability of shock waves in arbitrary media. Zh. Eksp. Teor. Fiz., 27, 288.Google Scholar
Dzieminska, E., Fukuda, M., Hayashi, A.K., and Yamada, E. 2012. Fast flame propagation in hydrogen/oxygen mixture. Combust. Sci. Technol., 184, 1608–1615.Google Scholar
Eddington, A. 1926. The internal constitution of stars. Cambridge University Press.
Editorial. 1873. The rapidity of detonation. Nature, 8(208), 534.
Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (Leipzig), 17, 549–560.Google Scholar
El-Rabii, H., Joulin, G., and Kazakov, K.A. 2010. Stability analysis of confined V-shaped flames in high velocity streams. Phys. Rev. E, 81, 066312.Google Scholar
Ellis, O.C. deC., 1928. Flame movement in gaseous explosive mixtures. J. Fuel Sci., 7(11), 502–508.Google Scholar
Ellzey, J.L., Henneke, M.R., Picone, J.M., and Oran, E.S. 1995. The interaction of a shock with a vortex: Shock distortion and the production of acoustic waves. Phys. Fluids, 7(1), 172–184.Google Scholar
Erpenbeck, J.J. 1962a. Stability of steady-state equilibrium detonations. Phys. Fluids, 5, 604–614.Google Scholar
Erpenbeck, J.J. 1962b. Stability of step shocks. Phys. Fluids, 5(10), 1181–1187.Google Scholar
Erpenbeck, J.J. 1966. Detonation stability for disturbances of small transverse wavelength. Phys. Fluids, 9, 1293–1306.Google Scholar
Euler, L. 1944. Cinq mémoires sur la nature et la propagation du feu. Association pour la sauvegarde du patrimoine métallurgique du Haut-Marnais.
Faraday, M. 1831. On a peculiar class of acoustical figures and on certain forms assumed by a group of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. London, 121, 299–338.Google Scholar
Farquhar, I.E. 1964. Ergodic theory in statistical mechanics. Monographs in statistical physics, vol. 7. Interscience.
Fermi, E. 1956. Thermodynamics. New York: Dover.
Fernandez-Galisteo, D., Sanchez, A.L., Liñan, A., and Williams, F.A. 2009a. The hydrogen–air burning rate near the lean flammability limit. Combust. Theor. Model., 13(4), 741–761.
Fernandez-Galisteo, D., Sanchez, A.L., Liñan, A., and Williams, F.A. 2009b. One-step reduced kinetics for lean hydrogen–air deflagration. Combust. Flame, 156, 985–996.Google Scholar
Fernández-Tarrazo, E., Vera, M., and Liñán, A. 2006. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air. Combust. Flame, 144(1–2), 261–276.Google Scholar
Ferro, M. 2001. Histoire de France. Odile Jacob.
Ferzigzer, J.H., and Kaper, H.G. 1972. Mathematical theory of transport processes in gases. North-Holland.
Fickett, W., and Davis, W.C. 1979. Detonation. University of California Press.
Fickett, W., and Wood, W.W. 1966. Flow calculations for pulsating one-dimensional detonations. Phys. Fluids, 9, 903–916.Google Scholar
Filyand, L., Sivashinsky, G.I., and Frankel, M.L. 1994. On self-acceleration of outward propagating wrinkled flames. Physica D, 72, 110–118.Google Scholar
Fisher, R.A. 1937. The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–369.Google Scholar
Forster, D. 1975. Hydrodynamic fluctuations, broken symmetry, and correlation functions. Benjamin Cummings.
Fowles, G.R. 1981. Stimulated and spontaneous emission of acoustic waves from shock fronts. Phys. Fluids, 24(2), 220–227.Google Scholar
Frankel, M.L. 1990. An equation of surface dynamics modeling flame fronts as density discontinuities in potential flows. Phys. Fluids, A 2(10), 1897–1883.Google Scholar
Frankel, M.L., and Sivashinsky, G.I. 1983. On the effects due to thermal expansion and Lewis number in spherical flame propagation. Combust. Sci. Technol., 31, 131–138.Google Scholar
Frankel, M.L., and Sivashinsky, G.I. 1984. On quenching of curved fronts. Combust. Sci. Technol., 40, 257.Google Scholar
Frisch, U. 1995. Turbulence. Cambridge University Press.
Frisch, U., and Morf, R. 1981. Intermittency in nonlinear dynamics and singularities at complex times. Phys. Rev. A, 23(5), 2673–2705.Google Scholar
Gamezo, V.N., Poludnenko, A.Y., and Oran, E.S. 2011. One-dimensional evolution of fast flames. Pages 24–29 of: Proceedings of 23rd ICDERS.Google Scholar
Garcia, P., Nicoli, C., and Clavin, P. 1984. Soret and dilution effects on premixed flames. Combust. Sci. Technol., 42, 87–109.Google Scholar
Garcia-Schäfer, J.E., and Liñan, A. 2001. Longitudinal acoustic instabilities in slender solid propellant rockets: Linear analysis. J. Fluid Mech., 437, 229–254.Google Scholar
Goldreich, P., and Weber, S.V. 1980. Homologously collapsing stellar cores. Astrophys. J., 238, 991–997.Google Scholar
Goncharov, V., Betti, R., McCrory, R., Sorotokin, P., and Verdon, C. 1996. Self-consistent stability analysis of ablation fronts with large Froude number. Phys. Plasmas, 3, 1402–14.Google Scholar
Gostintsev, Yu.A., Istratov, A.G., and Shulenin, Yu.V. 1988. Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Expl. Shock Waves, 24(5), 563–569.Google Scholar
Graña-Otero, J.C. 2009. Nonlinear dynamics of unsteady premixed planar flames. Ph.D. thesis, Universidad Politécnica de Madrid, ETSIA.
Groff, E.G. 1982. The cellular nature of confined spherical propane–air flames. Combust. Flame, 48, 51–62.Google Scholar
Guichard, L., Vervisch, L., and Domingo, P. 1995. Two-dimensional weak shock-vortex interaction in a mixing zone. AIAA J., 33(10), 1797–1802.Google Scholar
Guilly, V., Khasainov, B., Presles, H.-N., and Desbordes, D. 2006. Numerical simulation of detonation with double cellular structure. C. R. Acad. Sci. Paris, 334(11), 679–685.Google Scholar
Gurbatov, S.N., Saichev, A.I., and Shandarin, S.F. 2012. Large scale structure of the universe. The Zeldovich approximation and the adhesion model. Sov. Phys.–Uspeki, 55(3), 223–249.Google Scholar
He, L. 2000. Critical conditions for spherical flame initiation in mixtures with high Lewis numbers. Combust. Theor. Model., 4, 159–172.Google Scholar
He, L., and Clavin, P. 1992. Critical conditions for detonation initiation in cold gaseous mixtures by nonuniform hot pockets of reactive gases. Proc. Comb. Inst., 24, 1861–1867.Google Scholar
He, L., and Clavin, P. 1993a. Premixed hydrogen–oxygen flames. Part 1. Combust. Flame, 93, 391–407.Google Scholar
He, L., and Clavin, P. 1993b. Premixed hydrogen–oxygen flames. Part 2: Quasi-isobaric ignition and flammability limits. Combust. Flame, 93, 408–420.Google Scholar
He, L., and Clavin, P. 1994a. On the direct initiation of gaseous detonations by an energy source. J. Fluid Mech., 277, 227–248.Google Scholar
He, L., and Clavin, P. 1994b. Theoretical and numerical analysis of the photochemical initiation of detonation in hydrogen–oxygen mixtures. Proc. Comb. Inst., 25, 45–51.Google Scholar
He, L., and Law, C.K. 1996. Geometrical effects on detonation initiation by a nonuniform hot pocket of reactive gas. Phys. Fluids, 8(1), 248–257.Google Scholar
He, L., and Lee, J.H. 1995. On the dynamic limit of one-dimensional detonations. Phys. Fluids, 7, 1151–1158.Google Scholar
Hewson, J.C., and Williams, F.A. 1999. Rate–ratio asymptotic analysis of methane–air diffusion-flame structure for prediction of oxides of nitrogen. Combust. Flame, 117, 441–476.Google Scholar
Higgins, B. 1802. On the sound produced by a current of hydrogen gas passing through a tube. A Journal of Natural Philosophy, Chemistry and the Arts, 1, 129–131.Google Scholar
Higuera, F.J. 2009. Aerodynamics of a slender axisymmetric Bunsen flame with large gas expansion. Combust. Flame, 156, 1063–1067.Google Scholar
Higuera, F.J. 2010. Effects of fresh gas velocity and thermal expansion on the structure of a Bunsen flame tip. Combust. Flame, 157(8), 1586–1593.Google Scholar
Hinze, J.O. 1975. Turbulence. McGraw-Hill.
Huang, K. 1987. Statistical mechanics. 2nd edn. New York: Wiley.
Hugoniot, P.H. 1889. Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits. Journal de l'École Polytechnique, 58(1), 1–125.Google Scholar
Istratov, A.G., and Librovich, V.B. 1969. On the stability of gasdynamic discontinuities associated with chemical reaction; the case of spherical flame. Acta Astronaut., 14, 453–457.Google Scholar
Ivanov, M.F., Kiverin, A.D., and Liberman, M.A. 2011. Hydrogen–oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model. Phys. Rev. E, 83, 056313.Google Scholar
Ivanov, M.F., Kiverin, A.D., Yakovenko, I.S., and Liberman, M.A. 2013. Hydrogen–oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channel with no-slip walls. J. Hydrogen Energy, 38, 16427–16440.Google Scholar
Janka, H.T. 2012. Explosion mechanism of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci., 62, 407–451.Google Scholar
Janka, H.-T., Langanke, K., Marek, A., Martnez-Pinedo, G., and Müller, B. 2007. Theory of core-collapse supernovae. Phys. Rep., 442, 38–74.Google Scholar
Jomaas, G., Law, C.K., and Bechtold, J.K. 2007. On the transition to cellularity in expanding spherical flames. J. Fluid Mech., 583, 1–26.Google Scholar
Joubert, F., Desbordes, D., and Presles, H.-N. 2008. Detonation cellular structure in NO2/N2O4-fuel gaseous mixtures. Combust. Flame, 152, 482–495.Google Scholar
Joulin, G. 1985. Point-source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Technol., 43, 99–113.Google Scholar
Joulin, G. 1987. Preferential diffusion and the initiation of lean flames of light fuels.SIAM. J. Appl. Math., 47(5), 998–1016.Google Scholar
Joulin, G. 1989. On the hydrodynamic stability of curved premixed flames. J. Phys.–Paris., 50, 1069–1082.Google Scholar
Joulin, G. 1994a. Nonlinear hydrodynamic instability of expanding flames: Intrinsic dynamics. Phys. Rev. E, 50(3), 2030–2047.Google Scholar
Joulin, G. 1994b. On the response of premixed flames to time-dependent stretch and curvature. Combust. Sci. Technol., 97, 219–229.Google Scholar
Joulin, G., and Cambray, P. 1992. On a tentative approximate evolution equation for markedly wrinkled premixed flames. Combust. Sci. Technol., 81, 243–256.Google Scholar
Joulin, G., and Clavin, P. 1976. Analyse asymptotique des conditions d'extinction des flammes laminaires. Acta Astronaut., 3, 223–240.Google Scholar
Joulin, G., and Clavin, P. 1979. Linear stability analysis of nonadiabatic flames: Diffusional-thermal model. Combust. Flame, 35, 139–153.Google Scholar
Joulin, G., and Vidal, P. 1998. An introduction to the instability of flames, shocks, and detonations. Pages 493–675 of: Godrèche, G., and Manneville, P. (eds), Hydrodynamics and nonlinear instabilities. Cambridge University Press.
Joulin, G., El-Rabii, H., and Kazakov, K.A. 2008. On-shell description of unsteady flames. J. Fluid Mech., 608, 217–242.Google Scholar
Kagan, L., Gordon, P., and Sivashinsky, G. 2015. An asymptotic study of the transition from slow to fast burning in narrow channels. Proc. Comb. Inst., 35, 913–920.Google Scholar
Kagan, L., and Sivashinsky, G. 2000. Flame propagation and extinction in large-scale vortical flows. Combust. Flame, 120(1–2), 222–232.Google Scholar
Kagan, L., and Sivashinsky, G. 2003. The transition from deflagration to detonation in thin channels. Combust. Flame, 134, 389–397.Google Scholar
Kagan, L., and Sivashinsky, G. 2014. Modeling of deflagration-to-detonation transition with ignition-temperature. In: Roy, G. S., and Frolov, S.M. (eds), Transient combustion and detonation phenomena. Moscow: Torus Press.
Kagan, L., Gordon, P., and Sivashinsky, G. 2015. An asymptotic study of the transition from slow to fast burning in narrow channels. Proc. Comb. Inst., 35, 913–920.Google Scholar
Kagan, L.K., and Sivashinsky, G. 2008. Autoignition due to hydraulic resistance and deflagration-to-detonation transition. Combust. Flame, 154, 186–190.Google Scholar
Kampe, T. 1986. Acoustic emission by vortex motion. J. Fluid Mech., 173, 643.Google Scholar
Kapila, A.K., Schwendeman, D.W., Quirk, J.J., and Hawa, T. 2002. Mechanism of detonation formation due to a temperature gradient. Combust. Theor. Model., 6, 553–594.Google Scholar
Kapitza, P.L. 1951. Dynamic stability of a pendulum when its point of suspension vibrates. Sov. Phys. – JETP, 21(in Russian).
Karlin, V., and Sivashinsky, G. 2006. The rate of expansion of spherical flames. Combust. Theor. Model., 10(4), 625–637.Google Scholar
Karlovitz, B., Denniston, J.R., Knapschaeffer, D.H., and Wells, F.E. 1953. Studies in turbulent flames. Proc. Comb. Inst., 4, 613.Google Scholar
Kaskan, W.E. 1953. An investigation of vibrating flames. Proc. Comb. Inst., 4, 575–591.Google Scholar
Kazakov, K.A. 2005. On-shell description of stationary flames. Phys. Rev. Lett., 17, 032107.Google Scholar
Kazakov, K.A. 2012. Analytical study in the mechanism of flame movement in horizontal tubes. Phys. Fluids, 24, 022108.Google Scholar
Kazakov, K.A. 2013. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes. Phys. Fluids, 25, 082107.Google Scholar
Kazakov, K.A. 2015. Mechanism of partial flame propagation and extinction in a strong gravitational field. Phys. Rev. Lett., 115, 264051.Google Scholar
Kelley, A.P., Jomaas, G., and Law, C.K. 2009. Critical radius for sustained propagation of spark-ignited spherical flames. Combust. Flame, 156, 1006–1013.Google Scholar
Keshet, U., and Balberg, S. 2012. Critical conditions for core-collapse supernovae. Phys. Rev. Lett., 108, 251101.Google Scholar
Kessler, D.A., Gamezo, V.N., and Oran, E.S. 2010. Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems. Combust. Flame, 157, 2063–2077.Google Scholar
Khokhlov, A.M. 1993. Stability of detonations in supernovae. Astrophys. J., 419, 200–206.Google Scholar
Kippenhahn, R., and Weigert, A. 1994. Stellar structure and evolution. 3rd edn. Springer-Verlag.
Kolmogorov, A.N., Petrovskii, I.G., and Piskunov, N.S. 1937. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul. Moskovskovo Gos. Univ, 1(7), 1–72.Google Scholar
Konnov, A.A. 2009. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combust. Flame, 156, 2093–2105.Google Scholar
Kontorovich, V.M. 1957. Concerning the stability of shock waves. Zh. Eksp. Teor. Fiz., 33, 1525.Google Scholar
Korobeinikov, P.V. 1971. Gas dynamics of explosions. Ann. Rev. Fluid Mech., 3, 317–346.Google Scholar
Kull, H.J. 1989. Incompressible description of Rayleigh–Taylor instabilities in laserablated plasmas. Phys. Fluids, B1, 170–82.Google Scholar
Kull, H.J. 1991. Theory of the Rayleigh–Taylor instability. Phys. Rep., 206(5), 197–325.Google Scholar
Kuo, K.K. 2005. Principles of combustion. 2nd edn. Hoboken, N.J.: John Wiley and Sons.
Kuramoto, Y. 1978. Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Supp., 64, 346–367.Google Scholar
Kuramoto, Y., and Tsuzuki, T. 1976. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys., 55(2), 356–369.Google Scholar
Kurdyumov, V., Sanchez, A.L., and Liñan, A. 2003. Heat propagation from a concentrated external heat source in gas. J. Fluid Mech., 491, 379–410.Google Scholar
Kuznetsov, M., Alekseev, V., Matsukov, I., and Dorofeev, S. 2005. DTT in a smooth tube filled with hydrogen–oxygen mixture. Shock Waves, 14(3), 205–215.Google Scholar
Kuznetsov, M., Liberman, M., and Matsukov, I. 2010. Experimental study of the preheated zone formation and deflagration to detonation transition. Combust. Sci. Technol., 182, 1628–1644.Google Scholar
Kwon, O.C., Abid, M., Liu, J.B., Ronney, P.D., Struk, P.M., and Weiland, K.J. 2004. Structure of Flame Balls at Low Lewis Number (SOFBALL) Experiment. Paper No. 2004–0289 of: 42nd AIAA Aerospace Sciences Meeting, Reno.
Landau, L. 1944. On the theory of slow combustion. Acta Phys. Chim., 19, 77–85.Google Scholar
Landau, L., and Lifchitz, E. 1967. Mécanique quantique. Mir.
Landau, L., and Lifchitz, E.M. 1982. Statistical physics. Part I. 3rd edn. Oxford: Pergamon Press.
Landau, L., and Lifchitz, E.M. 1986. Fluid mechanics. 1st edn. Pergamon.
Landau, L.D., and Lifshitz, E.M. 1976. Mechanics. Butterworth-Heinemann.
Lapworth, K.C. 1959. An experimental investigation of the stability of planar shock waves. J. Fluid Mech., 6, 469–480.Google Scholar
Larsson, J., and Lele, S.K. 2009. Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids, 21, 126101.Google Scholar
Lavrentiev, M., and Chabat, B. 1980. Effets hydrodynamiques et modèles mathématiques. Editions MIR.
Law, C.K. 2006. Combustion physics. Cambridge University Press.
Law, C.K., Ishizuka, S., and Cho, P. 1982. On the opening of premixed Bunsen flame tips. Combust. Sci. Technol., 28, 89–96.Google Scholar
Layzer, D. 1955. On the instability of superposed fluids in a gravitational field. Astrophys. J., 122, 1–12.Google Scholar
Lee, J.H. 1977. Initiation of gaseous detonation. Ann. Rev. Phys. Chem., 28, 75–104.Google Scholar
Lee, J.H. 1984. Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech., 16, 311–336.Google Scholar
Lee, J.H., and Higgins, A.J. 1999. Comments on criteria of direct initiation of detonation. Proc. R. Soc. London Ser. A, 357, 3503–3521.Google Scholar
Lee, J.H., Knystautas, R., and Yoshikawa, N. 1978. Photochemical initiation of gaseous detonations. Acta Astronaut., 5, 971–982.Google Scholar
Lee, J.H.s. 2008. The detonation phenomenon. Cambridge University Press.
Lee, J.H.s., and Berman, M. 1997. Hydrogen combustion and its application to nuclear reactor safety. Advances in Heat Transfer, 29, 59–126.Google Scholar
Lee, J.H.s., and Moen, I.O. 1980. The mechanism of transition from deflagration to detonation in vapor cloud explosions. Prog. Energy Combust. Sci., 6, 359–389.Google Scholar
Lee, Y.C., and Chen, H.H. 1982. Nonlinear dynamical models of plasmas turbulence. Phys. Scripta, T2, 41–47.Google Scholar
Lehr, H.F. 1972. Experiments on shock-induced combustion. Acta Astronaut., 17, 589–597.Google Scholar
Lenglet-Dufresnoy, N. 1742. Histoire de la philosophie hermétique. Coustelier, Quai des Augustins.
Lewis, B., and von Elbe, G. 1961. Combustion flames and explosions of gases. Academic Press.
Libby, P.A., and Bray, K.N.C. 1981. Countergradient diffusion in premixed turbulent flames. AIAA J., 19, 205–213.Google Scholar
Libby, P.A., and Williams, F.A. 1982. Structure of laminar flamelets in premixed turbulent flames. Combust. Flame, 44(1–3), 287–303.Google Scholar
Libby, P.A., and Williams, F.A. 1987. Premixed laminar flames with general rates of strain. Combust. Sci. Technol., 54(1–6), 237–273.Google Scholar
Libby, P.A., Liñan, A., and Williams, F.A. 1983. Strained premixed laminar flames with nonunity Lewis numbers. Combust. Sci. Technol., 34, 257–291.Google Scholar
Liberman, M.A., Sivashinsky, G.I., Valiev, D.M., and Eriksson, L.-E. 2006. Numerical simulation of deflagration-to-detonation transition: The role of hydrodynamic instability. Int. J. Transp. Phenomena, 8, 253–277.Google Scholar
Lide, David R. (ed). 2014–2015. CRC handbook of chemistry and physics. 75th edn. CRC Press.
Lifshitz, E.M., and Pitaevskii, L.P. 1999. Physical kinetics. Butterworth Heinemann.
Lighthill, M.J. 1952. On sound generated aerodynamically. 1. General theory. Proc. R. Soc. London Ser. A, A221, 564–587.Google Scholar
Lighthill, M.J. 1954. On sound generated aerodynamically. 2. Turbulence as source of sound. Proc. R. Soc. London Ser. A, 222, 1–32.Google Scholar
Liñan, A. 1971. A theoretical analysis of premixed flame propagation with an isothermal chain reaction. AFOSR Contract No. E00AR68-0031 1. INTA Madrid.
Liñan, A. 1974. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut., 1(7–8), 1007–1039.Google Scholar
Liñan, A., and Clavin, P. 1987. Premixed flames with nonbranching chain reactions (structure and dynamics). Combust. Flame, 70, 137–159.Google Scholar
Liñan, A., Kurdyumov, V., and Sanchez, A.L. 2012a. Initiation of reactive blast waves by external energy sources. C. R. Mécanique, 340, 829–844.Google Scholar
Liñan, A., Kurdyumov, V., and Sanchez, A.L. 2012b. Initiation of reactive blast waves by external energy sources. In: Vazquez-Cendon, E., et al. (eds), Numerical methods of hyperbolic equations, vol. 61–74. Taylor and Francis.
Lindl, J.D. 1998. Inertial confinement fusion. Springer.
Lodato, G., and Vervisch, L. 2014. DNS of shock-vortex interaction using spectral difference high-order methods. Private communication.
Longair, M. 2003. Theoretical concepts in physics. Cambridge University Press.
Majda, A., and Rosales, R. 1983. A theory for spontaneous Mach stem formation in reacting fronts, I: The basic perturbation analysis. SIAM J. Appl. Math., 43(6), 1310–1334.Google Scholar
Mallard, E.E., and Le Chatelier, H. 1883. Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosifs. Annales des Mines, Paris, Series 8(4), 296–378.Google Scholar
Manneville, P. 2014. On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular. J. Mech. B/Fluids, 49(SI), 345–362.Google Scholar
Marble, F.E. 1985. Growth of a diffusion flame in the field of a vortex. Pages 395–413 of: Recent advances in the aerospace sciences. New York: Plenum Press.
Marble, F.E., and Candel, S. 1977. Acoustic disturbances from gas non-uniformities convected through a nozzle. J. Sound Vib., 55(2), 225–243.Google Scholar
Markstein, G.H. 1953. Instability phenomena in combustion waves. Proc. Comb. Inst., 4, 44–59.Google Scholar
Markstein, G.H. 1956. A shock-tube study of flame front pressure wave interaction. Proc. Comb. Inst., 6, 387–398.Google Scholar
Markstein, G.H. 1957. Flow disturbances induced near a slightly wavy contact surface, or flame front, traversed by a shock wave. J. Aero. Sci., 24, 238–239.Google Scholar
Markstein, G.H. 1964. Nonsteady flame propagation. New York: Pergamon.
Matalon, M. 2007. Intrinsic flame instabilities in premixed and nonpremixed combustion. Ann. Rev. Fluid Mech., 39, 163–191.Google Scholar
Matalon, M., and Creta, F. 2012. The turbulent flame speed of wrinkled premixed flames. C. R. Mécanique, 340, 845–858.Google Scholar
Matalon, M., and Matkowsky, B.J. 1982. Flames as gas dynamic discontinuities. J. Fluid Mech., 124, 239–259.Google Scholar
McComb, W.D. 1990. The physics of fluid turbulence. Clarendon Press–Oxford Science Publications.
McQuarrie, D.A. 1973. Statistical mechanics. Harper and Row.
McQuarrie, D.A. 2003. Mathematical methods for scientists and engineers. University Science Books.
Mendoza, E. (ed). 1977. Reflections on the motive power of fire by Sadi Carnot and other papers. Gloucester, Mass.: Peter Smith.
Mery, Y., Hakim, L., Scouflaire, P., Vingert, L., Ducruix, S., and Candel, S. 2013. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations. C. R. Mécanique, 341, 100–109.Google Scholar
Merzhanov, A.G., and Khaikin, B.I. 1988. Theory of combustion in homogeneous media. Prog. Energy Combust. Sci., 14(1), 1–98.Google Scholar
Meunier, P., and Villermaux, E. 2010. The diffusive strip method for scalar mixing in two dimensions. J. Fluid Mech., 662, 134–172.Google Scholar
Mevel, R., Davidenko, D., Austin, J.M., Pintgen, F., and Shepherd, J.E. 2014. Application of a laser induced fluorescence model to the numerical simulation of detonation waves in hydrogen–oxygen–diluent mixtures. J. Hydrogen Energy, 39, 6044–6060.Google Scholar
Meyer, J.M., Urtiew, P.A., and Oppenheim, A.K. 1970. On the inadequacy of gas dynamic processes for triggering the transition to detonations. Combust. Flame, 14(1), 13–20.Google Scholar
Michelson, D.M., and Sivashinsky, G.I. 1977. Nonlinear analysis of hydrodynamic instability in laminar flames – II. Numerical experiments. Acta Astronaut., 4, 1207–1221.Google Scholar
Monin, A.S., and Yaglom, A.M. 1971. Statistical fluid mechanics. Vols. 1 and 2. MIT Press.
Morse, P.M., and Ingard, K.U. 1986. Theoretical acoustics. Princeton University Press.
Müller, I. 2007. A history of thermodynamics. Springer.
Murray, J.D. 1993. Mathematical biology. Biomathematics, vol. 19. Springer.
Nicoli, C., and Pelcé, P. 1989. One-dimensional model for the Rijke tube. J. Fluid Mech., 202, 83–96.Google Scholar
Nicoli, C., Clavin, P., and Liñan, A. 1990. Travelling waves in the cool flame regime. Pages 317–334 of: Gray, P., Nicolis, G., Barras, F., Borkmans, P., and Scott, S.K. (eds), Spatial inhomogeneities and transient behavior in chemical kinetics. Manchester University Press.
NIST (ed). NIST-JANAF Thermochemical tables. http://kinetics.nist.gov/janaf/.
Noiray, N., and Schuermans, B. 2013a. Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Int. J. NonLin. Mech., 50, 152–163.Google Scholar
Noiray, N., and Schuermans, B. 2013b. On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc. R. Soc. London Ser. A, 469, 20120535.Google Scholar
Onsager, L. 1949. Statistical hydrodynamics. Nuovo Cimento, 6, 279–287.Google Scholar
Oppenheim, A.K., and Soloukhin, R.I. 1973. Experiments in gasdynamics of explosions. Ann. Rev. Fluid Mech., 5, 31–58.Google Scholar
Oran, E.S., and Gamezo, V. N. 2007. Origins of the deflagration-to-transition detonation in gas-phase combustion. Combust. Flame, 148, 4–47.Google Scholar
Oran, E.S., Gamezo, V.N., and Zipf, R.K. 2015. Large-scale experiments and absolute detonability of methane–air mixtures. Combust. Sci. Technol., 187, 324–341.Google Scholar
Ostriker, J.P. (ed). 1992. Selected works of Ya.B. Zeldovich. Vol. 1, p. 193. Princeton University Press.
Palm-Leis, A., and Strehlow, R.A. 1969. On the propagation of the turbulent flames. Combust. Flame, 13, 111–129.Google Scholar
Pathria, P.K. 1972. Statistical mechanics. Pergamon Press.
Pelcé, P. 2004. New visions on form and growth. Oxford University Press.
Pelcé, P., and Clavin, P. 1982. Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech., 124, 219–237.Google Scholar
Pelcé, P., and Clavin, P. 1987. The stability of curved fronts. Europhys. Lett., 3, 907–913.Google Scholar
Pelcé, P., and Rochwerger, D. 1992. Vibratory instability of cellular flames propagating in tubes. J. Fluid Mech., 239, 293–307.Google Scholar
Peters, N. 1986. Laminar flamelet concepts in turbulent combustion. Proc. Comb. Inst., 21, 1231–1250.Google Scholar
Peters, N. 1997. Kinetic foundation of thermal flame theory. Prog. Astronaut. Aeronaut., 173, 73–91.Google Scholar
Peters, N. 2000. Turbulent combustion. Benjamin Cummings.
Peters, N., and Rogg, B. (eds). 1993. Reduced kinetic mechanisms for applications in combustion systems. Springer-Verlag.
Peters, N., and Williams, F.A. 1987. The asymptotic structure of stoichiometric methane air flames. Combust. Flame, 68(2), 185–207.Google Scholar
Peters, N., and Williams, F.A. 1988. Premixed combustion in a vortex. Proc. Comb. Inst., 22, 495–503.Google Scholar
Phillips, A.C. 1994. The physics of stars. John Wiley and Sons.
Piriz, A.R. 2001. Hydrodynamic instability of ablation fronts in inertial confinement fusion. Phys. Plasmas, 8, 997–1002.Google Scholar
Piriz, A.R., Sanchez, A.L., and Ibanez, L.F. 1997. Rayleigh–Taylor instability of the steady ablation fronts: The discontinuity model revisited. Phys. Plasmas, 4, 1117–1126.Google Scholar
Pocheau, A. 1994. Scale invariance in turbulent combustion. Phys. Rev. E, 49, 1109–1122.Google Scholar
Pocheau, A. 2000. Scale covariance and geometry in turbulent combustion. Pages 187– 204 of: Chaté, H., Chomaz, J.M., and Villermaux, E. (eds), Chaos and turbulence. Series B, vol. 373. NATO ASI.
Pocheau, A., and Harambat, F. 2008. Front propagation in a laminar cellular flow: Shapes, velocities, and least time criterion. Phys. Rev. E, 77(3), 036304.Google Scholar
Pocheau, A., and Queiros-Condé, D. 1996a. Scale covariance of the wrinkling law of turbulent propagating interfaces. Phys. Rev. Lett., 76(18), 3352–3355.Google Scholar
Pocheau, A., and Queiros-Condé, D. 1996b. Transition from Euclidean to fractal forms within a scale-covariant process: A turbulent combustion study. Europhys. Lett., 35, 439–444.Google Scholar
Poincaré, H. 1908. Conférences sur la télégraphie sans fil. Revue d'électricité, 387.Google Scholar
Poinsot, T., and Veynante, D. 2005. Theoretical and numerical combustion. Edwards.
Poinsot, T., Candel, S., and Trouvé, A. 1996. Application of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci., 21, 531–576.Google Scholar
Poisson, S.D. 1808. Mémoire sur la théorie du son. Journal de l'École Polytechnique, 14(7), 319–392.Google Scholar
Pomeau, Y. 1986. Front motion, metastability and subcritical bifurcation in hydrodynamics. Physica D, 23, 3–11.Google Scholar
Pomeau, Y. 2014. The transition to turbulence in parallel flow: A personal view. C. R. Acad. Sci. A, 343(3), 210–218.Google Scholar
Pope, S.B. 2000. Turbulent flows. Cambridge University Press.
Presles, H.N., Desbordes, D., and Bauer, P. 1987. An optical method for the study of the detonation front structure in gaseous explosive mixtures. Combust. Flame, 70, 207–213.Google Scholar
Prigogine, I. 1967. Thermodynamics of irreversible processes. 3rd edn. Interscience.
Prigogine, I., and Kondepudi, D. 1999. Thermodynamique. Des moteurs thermiques aux structures dissipatives. Odile Jacob.
Radulescu, M.I., Sharpe, G., Law, C.K., and Lee, J.H.s. 2007. The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech., 580, 31–81.Google Scholar
Rahibe, M., Aubry, N., Sivahinsky, G.I., and Lima, R. 1995. Formation of wrinkles in outwardly propagating flames. Phys. Rev. E, 52(4), 3675–3686.Google Scholar
Rankine, W.J.M. 1870. On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. London, 160, 277–288.Google Scholar
Rauschenbakh, B.V. 1961. Vibrational combustion. Moscow: Fizmatgiz, Mir.
Rayleigh, J.W.S. 1910. Aerial plane waves of finite amplitude. Proc. R. Soc. London, 84, 247–284.Google Scholar
Rayleigh, J.W.S. 1945. The theory of sound. Vols. 1 and 2. New York: Dover.
Reif, F. 1965. Fundamentals of statistical and thermal physics. McGraw-Hill.
Ribner, S.S. 1985. Cylindrical sound wave generated by shock–vortex interaction. AIAA J., 23(11), 1708–1715.Google Scholar
Richtmyer, R.D. 1960. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13, 297–319.Google Scholar
Riemann, B. 1860. Über die fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhandl. Ges. Wiss. Göttingen, 8, 43–65. (English translation Int. J. Fusion Energy 2, 1–23, 1980).Google Scholar
Rijke, P.L. 1859. On the vibration of the air in a tube open at both ends. Phil. Mag., 17, 419–422.Google Scholar
Ronney, P.D. 1985. Effects of gravity on laminar premixed gas combustion. II: Ignition and extinction phenomena. Combust. Flame, 62, 121–133.Google Scholar
Ronney, P.D. 1990. Near-limit flame structures at low Lewis number. Combust. Flame, 82, 1–14.Google Scholar
Ronney, P.D., and Wachman, H.Y. 1985. Effect of gravity on laminar premixed gas combustion. I: Flammability limits and burning velocities. Combust. Flame, 62, 107–119.Google Scholar
Ronney, P.D., Wu, M.S., Pearlman, H.G., and Weiland, K.J. 1998. Experimental study of flame balls in space: Preliminary results from STS-83. AIAA J., 36, 1361–1368.Google Scholar
Salamandra, G.D., Bazhenova, T.V., and Naboko, I.M. 1958. Formation of detonation wave during combustion of gas in combustion tube. Proc. Comb. Inst., 7, 851–855.Google Scholar
Sanchez, A.L., and Williams, F.A. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci., 41, 1–55.Google Scholar
Sanchez, A.L., Carretero, M., Clavin, P., and Williams, F.A. 2001. One-dimensional overdriven detonations with branched-chain kinetics. Phys. Fluids, 13(3), 776–792.Google Scholar
Sanz, J. 1994. Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. Lett., 73, 2700–2703.Google Scholar
Sanz, J. 1996. Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. E, 53, 4026–45.Google Scholar
Sanz, J., Liñan, A., Rodriguez, M., and Sanmartin, J.R. 1981. Quasi-steady expansion of plasma ablated from laser-irradiated pellets. Phys. Fluids, 24(11), 2098–2106.Google Scholar
Sanz, J., Masse, L., and Clavin, P. 2006. The linear Darrieus–Landau and Rayleigh–Taylor instabilities in inertial confinement fusion revisited. Phys. Plasmas, 13, 102702.Google Scholar
Saxena, P., and Williams, F.A. 2006. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust. Flame, 145, 316–323.Google Scholar
Searby, G. 1992. Acoustic instability in premixed flames. Combust. Sci. Technol., 81, 221–231.Google Scholar
Searby, G., and Clavin, P. 1986. Weakly turbulent wrinkled flames in premixed gases. Combust. Sci. Technol., 46, 167–193.Google Scholar
Searby, G., and Quinard, J. 1990. Direct and indirect measurements of Markstein numbers of premixed flames. Combust. Flame, 82(3-4), 298–311.Google Scholar
Searby, G., and Rochwerger, D. 1991. A parametric acoustic instability in premixed flames. J. Fluid Mech., 231, 529–543.Google Scholar
Searby, G., Sabathier, F., Clavin, P., and Boyer, L. 1983. Hydrodynamical coupling between the motion of a flame front and the upstream gas flow. Phys. Rev. Lett., 51(16), 1450–1453.Google Scholar
Searby, G., Truffaut, J.M., and Joulin, G. 2001. Comparison of experiments and a nonlinear model for spatially developing flame instability. Phys. Fluids, 13, 3270–3276.Google Scholar
Sedov, L.I. 1959. Similarity and dimensional methods in mechanics. Academic Press.
Seshadri, K., and Peters, N. 1990. The inner structure of methane–air flames. Combust. Flame, 81, 96–118.Google Scholar
Seshadri, K., Peters, N., and Williams, F.A. 1994. Asymptotic analyses of stoichiometric and lean hydrogen–air flames. Combust. Flame, 96, 407–427.Google Scholar
Shandarin, S.F., and Zeldovich, Ya.B. 1989. The large-scale structure of the universe. Rev. Mod. Phys., 61(2), 185–222.Google Scholar
Shchelkin, K.I., and Troshin, Ya.K. 1965. Gasdynamics of combustion. Baltimore, Md.: Mono Book Corp.
Shepherd, J.E. 2009. Detonation in gases. Proc. Comb. Inst., 32, 83–98.Google Scholar
Shy, S.S., Ronney, P.D., Buckley, S.G., and Yakhot, V. 1992. Experimental simulation of premixed turbulent combustion using aqueous autocatalytic reactions. Proc. Comb. Inst., 24, 543–551.Google Scholar
Sivashinsky, G.I. 1977a. Diffusional-thermal theory of cellular flames. Combust. Sci. Technol., 15, 137–146.Google Scholar
Sivashinsky, G.I. 1977b. Nonlinear analysis of hydrodynamic instability in laminar flames – I. Derivation of basic equations. Acta Astronaut., 4, 1177–1206.Google Scholar
Sivashinsky, G.I. 2002. Some developments in premixed combustion modeling. Proc. Comb. Inst., 29, 1737–1761.Google Scholar
Sivashinsky, G.I., and Clavin, P. 1987. On the nonlinear theory of hydrodynamic instability in flames. J. Phys., 48, 193–198.Google Scholar
Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S. Jr., Gardiner, W.C., Lissianski, V.V., and Qin, Z. 2000. GRI-Mech 3.0. www.me.berkeley.edu/grimech/.
Spitzer, L.J. 1962. Physics of fully ionized plasmas. 2nd edn. New York:Wiley Interscience.
Stoker, J.J. 1989. Differential geometry. Wiley-Interscience.
Strahle, W.C. 1985. A more modern theory of combustion noise. Pages 103–114 of: Casci, C., and Bruno, C. (eds), Recent advances in the aerospace sciences. New York: Plenum Press.
Strehlow, R.A. 1979. Fundamentals of combustion. New York: Kreiger.
Swesty, F.D., Lattimer, J.M., and Myra, E.S. 1994. The role of the equation of state in the prompt phase of type II supernovae. Astrophys. J., 425, 195–204.Google Scholar
Takabe, H., Montierth, L., and Morse, R.L. 1983. Self-consistent eigenvalue analysis of the Rayleigh–Taylor instability in an ablating plasma. Phys. Fluids, 26, 2299–2307.Google Scholar
Takabe, H., Mima, K, Monthierth, L., and Morse, R.L. 1985. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma plasma. Phys. Fluids, 28, 3676–82.Google Scholar
Taylor, B.D., Kessler, D.A., Gamezo, V.N., and Oran, E.S. 2013. Numerical simulations of hydrogen detonations with chemical kinetics. Proc. Comb. Inst., 34, 2009–2016.Google Scholar
Taylor, G.I. 1950a. The dynamics of the combustion products behind plane and spherical detonation fronts in explosives. Proc. R. Soc. London Ser. A, 200, 235–247.Google Scholar
Taylor, G.I. 1950b. The formation of a blast wave by a very intense explosion. Part I. Proc. R. Soc. London Ser. A, 201(1065), 159–174.Google Scholar
Taylor, G.I. 1950c. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London, A 201, 192–196.Google Scholar
Thual, O., Frisch, U., and Henon, M. 1985. Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts. J. Phys., 46(9), 1485–1494.Google Scholar
Truelove, J.K., and McKee, C.F. 1999. Evolution of nonradiative supernova remnants. Astrophys. J., 120, 299–326.Google Scholar
Truffaut, J.M. 1998. Etude expérimentale de l'origine du bruit émis par les flammes de chalumeaux. University thesis, Université d'Aix-Marseille I.
Truffaut, J.M., and Searby, G. 1999. Experimental study of the Darrieus–Landau instability on an inverted-‘V’ flame and measurement of the Markstein number. Combust. Sci. Technol., 149, 35–52.Google Scholar
Turing, A.M. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. London, B 237, 37–72.Google Scholar
Turns, S.R. 2000. An introduction to combustion. 2nd edn. McGraw-Hill.
Uhlenbeck, G.E., and Ford, G.W. 1963. Lectures in statistical mechanics, Lectures in applied mathematics. Providence, R.I.: American Mathematical Society.
Urtiew, P.A., and Oppenheim, A.K. 1966. Experimental observations of the transition to detonation in an explosive gas. Proc. R. Soc. London Ser. A, 295, 13–28.Google Scholar
Vagelopoulos, C.M., and Egolfopoulos, F.N. 1998. Direct experimental determination of laminar flame speeds. Proc. Comb. Inst., 27, 513–519.Google Scholar
Valiev, D., Bychkov, V., Akkerman, V., Eriksson, L.-E., and Markelund, M. 2008. Heating of the fuel mixture due to viscous stress ahead of accelerating flames in deflagrationto- detonation transition. Phys. Lett. A, 372, 4850–4857.Google Scholar
Valiev, D.M., Bychkov, V., Akkerman, V., and Eriksson, L.-E. 2009. Different stages of flame acceleration from slow burning to Chapman–Jouguet deflagration. Phys. Rev. E, 80, 036317.Google Scholar
Valiev, D.M., Bychkov, V., Akkerman, V., Eriksson, L.-E., and Law, C.K. 2013. Quasisteady stages in the process of premixed flame acceleration in narrow channels. Phys. Fluids, 25, 096101–16.Google Scholar
Van Maaren, A., Thung, D.S., and de Goey, L.P.H. 1994. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol., 96(4–6), 327–344.Google Scholar
Van-Mooren, K., and George, A.R. 1975. On the stability of plane shock. J. Fluid Mech., 68(1), 97–108.Google Scholar
Vaynblat, D., and Matalon, M. 2000. Stability of pole solutions for planar propagating flames. SIAM J. Appl. Math., 60(2), 703–728.Google Scholar
Vieille, P. 1900. Structure des détonations. C. R. Acad. Sci. Paris, 131, 413.Google Scholar
Villermaux, E. 2012. Mixing by porous media. C. R. Mécanique, 340, 933–943.Google Scholar
Villermaux, E., Innocenti, C., and Duplat, J. 2001. Short circuits in the Corrsin–Obukhov cascade. Phys. Fluids, 13(1), 284–289.Google Scholar
Vladimirova, N., Constantin, P., Kiselev, A., Ruchayskiy, O., and Ryzhik, L. 2003. Flame enhancement and quenching in fluid flows. Combust. Theor. Model., 7(3), 487–508.Google Scholar
von Hahnemann, H., and Ehret, L. 1943. Uber den Einfluss starker Schallwellen auf eine stationär brennende Gasflamme. Zeitschrift für Technische Physik, 24, 228–242.Google Scholar
Wheeler, J.C. 2012. Astrophysical explosions: From solar flares to cosmic gamma-ray bursts. Philos. Trans. R. Soc. London Ser. A, 370, 774–799.Google Scholar
Whitham, G.B. 1957. A new approach to problem of shock dynamics. Part I: Twodimensional problem. J. Fluid Mech., 2(2), 145–171.Google Scholar
Whitham, G.B. 1974. Linear and nonlinear waves. John Wiley.
Williams, F.A. 1985. Combustion theory. 2nd edn. Menlo Park, Calif. Benjamin- Cummings.
Woosley, S., and Janka, H.T. 2005. Type II supernova. https://arxiv.org/abs/astro-ph/0601261, 1–11.
Woosley, S.E., Heger, A., and Weaver, T.A. 2002. The evolution and explosion of massive stars. Rev. Mod. Phys., 74, 1015–1071.Google Scholar
Wouchuk, J.G., Huete Ruiz de Lira, C., and Velikovich, A.L. 2009. Analytical linear theory of planar shock wave with isotropic turbulent flow field. Phys. Rev. E, 79(066315).Google Scholar
Wu, F., Saha, A., Chaudhuri, S., and Law, C.K. 2014. Facilitated ignition in turbulence through differential diffusion. Phys. Rev. Lett., 113, 024503.Google Scholar
Wu, M., and Wang, C. 2011. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures. Proc. Comb. Inst., 33, 2287–2293.Google Scholar
Wu, M., Burke, M.P., Son, S.F., and Yetter, R.A. 2007. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc. Comb. Inst., 31, 2429–2436.Google Scholar
Yahil, A. 1983. Self-similar stellar collapse. Astrophys. J., 265, 1047–1055.Google Scholar
Yanez, J., Kuznetsov, M., and Grune, J. 2015. Flame instability of lean hydrogen–air mixtures in a smooth open-ended vertical channel. Combust. Flame, 162, 2830–2839.Google Scholar
Yang, V., and Anderson, W. 1995. Liquid rocket engine combustion instability. Progress in Astronautics and Aeronautics, vol. 169. Washington, D.C. AIAA.
Yungster, S., and Radhakrishnan, K. 2004. Pulsating one-dimensional detonations in hydrogen–air mixtures. Combust. Theor. Model., 8, 745–770.Google Scholar
Yvon, J. 1966. Les corrélations et l'entropie. Dunod.
Zeldovich, Ya.B. 1941. The theory of the limit of propagation of a slow flame. Zh. Eksp. Teor. Fiz., 11(1), 159–169.Google Scholar
Zeldovich, Ya.B. 1961. Chain reactions in hot flames – an approximate theory for flame velocity. Kinetika i Katalis, 2, 305–313.Google Scholar
Zeldovich, Ya.B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame, 39, 211–214.Google Scholar
Zeldovich, Ya.B., and Frank-Kamenetskii, D.A. 1938. A theory of thermal flame propagation. Acta Phys. Chim., 9, 341–350.Google Scholar
Zeldovich, Ya.B., and Kompaneets, A.S. 1960. Theory of detonation. Academic Press.
Zeldovich, Ya.B., and Novikov, I.D. 1971. Stars and relativity. Dover.
Zeldovich, Ya.B., and Raizer, Yu.P. 1966. Physics of shock waves and high-temperature hydrodynamic phenomena I. Academic Press.
Zeldovich, Ya.B., and Raizer, Yu.P. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena II. Academic Press.
Zeldovich, Ya.B., Kogarko, S.M., and Simonov, N. 1956. An experimental investigation of spherical detonation of gases. Sov. Phys. Tech. Phys., 1, 1689–1713.Google Scholar
Zeldovich, Ya.B., Librovich, V.B., Makhviladze, G.M., and Sivashinsky, G.I. 1970. On the development of detonations in a non-uniformly preheated gases. Acta Astronaut., 15, 313.Google Scholar
Zeldovich, Ya.B., Istratov, A.G., Kidin, N.I., and Librovich, V.B. 1980. Flame propagation in tubes. Combust. Sci. Technol., 24, 1–13.Google Scholar
Zeldovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M. 1985. The mathematical theory of combustion and explosions. New York: Plenum.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Paul Clavin, Université d'Aix-Marseille, Geoff Searby
  • Book: Combustion Waves and Fronts in Flows
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162453.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Paul Clavin, Université d'Aix-Marseille, Geoff Searby
  • Book: Combustion Waves and Fronts in Flows
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162453.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Paul Clavin, Université d'Aix-Marseille, Geoff Searby
  • Book: Combustion Waves and Fronts in Flows
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162453.018
Available formats
×