Book contents
- Frontmatter
- Foreword, Preface and Dedication
- Contents
- Summary for Policymakers
- Technical Summary
- Chapters
- Chapter 1 Introduction
- Chapter 2 Observations: Atmosphere and Surface
- Chapter 3 Observations: Ocean Pages
- Chapter 4 Observations: Cryosphere
- Chapter 5 Information from Paleoclimate Archives
- Chapter 6 Carbon and Other Biogeochemical Cycles
- Chapter 7 Clouds and Aerosols
- Chapter 8 Anthropogenic and Natural Radiative Forcing
- Chapter 9 Evaluation of Climate Models
- Chapter 10 Detection and Attribution of Climate Change: from Global to Regional
- Chapter 11 Near-term Climate Change: Projections and Predictability
- Chapter 12 Long-term Climate Change: Projections, Commitments and Irreversibility Pages 1029 to 1076
- Chapter 13 Sea Level Change
- Chapter 14 Climate Phenomena and their Relevance for Future Regional Climate Change
- Annexes
- Index
Chapter 10 - Detection and Attribution of Climate Change: from Global to Regional
Published online by Cambridge University Press: 05 June 2014
- Frontmatter
- Foreword, Preface and Dedication
- Contents
- Summary for Policymakers
- Technical Summary
- Chapters
- Chapter 1 Introduction
- Chapter 2 Observations: Atmosphere and Surface
- Chapter 3 Observations: Ocean Pages
- Chapter 4 Observations: Cryosphere
- Chapter 5 Information from Paleoclimate Archives
- Chapter 6 Carbon and Other Biogeochemical Cycles
- Chapter 7 Clouds and Aerosols
- Chapter 8 Anthropogenic and Natural Radiative Forcing
- Chapter 9 Evaluation of Climate Models
- Chapter 10 Detection and Attribution of Climate Change: from Global to Regional
- Chapter 11 Near-term Climate Change: Projections and Predictability
- Chapter 12 Long-term Climate Change: Projections, Commitments and Irreversibility Pages 1029 to 1076
- Chapter 13 Sea Level Change
- Chapter 14 Climate Phenomena and their Relevance for Future Regional Climate Change
- Annexes
- Index
Summary
Executive Summary
Atmospheric Temperatures
More than half of the observed increase in global mean surface temperature (GMST) from 1951 to 2010 is very likely due to the observed anthropogenic increase in greenhouse gas (GHG) concentrations. The consistency of observed and modeled changes across the climate system, including warming of the atmosphere and ocean, sea level rise, ocean acidification and changes in the water cycle, the cryosphere and climate extremes points to a large-scale warming resulting primarily from anthropogenic increases in GHG concentrations. Solar forcing is the only known natural forcing acting to warm the climate over this period but it has increased much less than GHG forcing, and the observed pattern of long-term tropospheric warming and stratospheric cooling is not consistent with the expected response to solar irradiance variations. The Atlantic Multi-decadal Oscillation (AMO) could be a confounding influence but studies that find a significant role for the AMO show that this does not project strongly onto 1951–2010 temperature trends. (10.3.1, Table 10.1}
It is extremely likely that human activities caused more than half of the observed increase in GMST from 1951 to 2010. This assessment is supported by robust evidence from multiple studies using different methods. Observational uncertainty has been explored much more thoroughly than previously and the assessment now considers observations from the first decade of the 21st century and simulations from a new generation of climate models whose ability to simulate historical climate has improved in many respects relative to the previous generation of models considered in AR4.
- Type
- Chapter
- Information
- Climate Change 2013 – The Physical Science BasisWorking Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 867 - 952Publisher: Cambridge University PressPrint publication year: 2014
- 118
- Cited by