Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- Introduction
- Part I General Properties of Fields; Scalars and Gauge Fields
- Part II Solitons and Topology; Non-Abelian Theory
- 20 Kink Solutions in ϕ4 and Sine-Gordon, Domain Walls and Topology
- 21 The Skyrmion Scalar Field Solution and Topology
- 22 Field Theory Solitons for Condensed Matter: The XY and Rotor Model, Spins, Superconductivity, and the KT Transition
- 23 Radiation of a Classical Scalar Field: The Heisenberg Model
- 24 Derrick’s Theorem, Bogomolnyi Bound, theAbelian-Higgs System, andSymmetryBreaking
- 25 The Nielsen-Olesen Vortex, Topology and Applications
- 26 Non-Abelian Gauge Theory and the Yang–Mills Equation
- 27 The Dirac Monopole and Dirac Quantization
- 28 The ’t Hooft–Polyakov Monopole Solution and Topology
- 29 The BPST-’t Hooft Instanton Solution and Topology
- 30 General Topology and Reduction on an Ansatz
- 31 Other Soliton Types. Nontopological Solitons: Q-Balls; Unstable Solitons: Sphalerons
- 32 Moduli Space; Soliton Scattering in Moduli Space Approximation; Collective Coordinates
- Part III Other Spins or Statistics; General Relativity
- References
- Index
24 - Derrick’s Theorem, Bogomolnyi Bound, theAbelian-Higgs System, andSymmetryBreaking
from Part II - Solitons and Topology; Non-Abelian Theory
Published online by Cambridge University Press: 04 March 2019
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- Introduction
- Part I General Properties of Fields; Scalars and Gauge Fields
- Part II Solitons and Topology; Non-Abelian Theory
- 20 Kink Solutions in ϕ4 and Sine-Gordon, Domain Walls and Topology
- 21 The Skyrmion Scalar Field Solution and Topology
- 22 Field Theory Solitons for Condensed Matter: The XY and Rotor Model, Spins, Superconductivity, and the KT Transition
- 23 Radiation of a Classical Scalar Field: The Heisenberg Model
- 24 Derrick’s Theorem, Bogomolnyi Bound, theAbelian-Higgs System, andSymmetryBreaking
- 25 The Nielsen-Olesen Vortex, Topology and Applications
- 26 Non-Abelian Gauge Theory and the Yang–Mills Equation
- 27 The Dirac Monopole and Dirac Quantization
- 28 The ’t Hooft–Polyakov Monopole Solution and Topology
- 29 The BPST-’t Hooft Instanton Solution and Topology
- 30 General Topology and Reduction on an Ansatz
- 31 Other Soliton Types. Nontopological Solitons: Q-Balls; Unstable Solitons: Sphalerons
- 32 Moduli Space; Soliton Scattering in Moduli Space Approximation; Collective Coordinates
- Part III Other Spins or Statistics; General Relativity
- References
- Index
Summary
We prove Derrick's theorem about scalar field solitons, then we derive the Bogomolnyi bound for the energy of scalar field configurations in 1+1 dimensions and consider the example of the Higgs system and its kink soliton. Then we consider spontaneous symmetry breaking in the Abelian–Higgs syste, and the different fluctuations and their masses, as well as the description of this system in an unitary gauge. We end with a quick treatment of the non-Abelian Higgs system.
Keywords
- Type
- Chapter
- Information
- Classical Field Theory , pp. 217 - 225Publisher: Cambridge University PressPrint publication year: 2019