Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T02:21:50.714Z Has data issue: false hasContentIssue false

13 - Translating Mechanical Force into Discrete Biochemical Signal Changes

Multimodularity Imposes Unique Properties to Mechanotransductive Proteins

Published online by Cambridge University Press:  05 July 2014

Vesa P. Hytönen
Affiliation:
ETH Zurich
Michael L. Smith
Affiliation:
ETH Zurich
Viola Vogel
Affiliation:
ETH Zurich
Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction: Mechanical Force Can Regulate Molecular Function

Cells can sense and transduce a broad range of mechanical forces into distinct sets of biochemical signals that ultimately regulate cellular processes, including adhesion, migration, proliferation, differentiation, and apoptosis. But how is force translated at the molecular level into biochemical signal changes that have the potential to alter cellular behavior? Is it just the rigidity of matrices that is sensed by cells, or can force applied to the extracellular matrix switch their functional display? How about other proteins that are part of the force-bearing protein networks that connect the extracellular matrix to the contractile cytoskeleton: Can their molecular recognition sites be altered if mechanically stretched? The advent of nanotech tools, particularly atomic force microscopy and optical tweezers (Fisher et al., 2000; Kellermayer et al., 1997; Rief et al., 1997; Tanase et al., 2007; Tskhovrebova et al., 1997), were a major milestone in recognizing the unique mechanical properties of proteins. After a decade of new insights into single molecule mechanics, the focus now turns to addressing how force-induced mechanical unfolding could potentially change protein functions (for reviews, see Bustamante et al., 2004; Discher et al., 2005; Gao et al., 2006; Giannone and Sheetz, 2006; Orr et al., 2006; Vogel, 2006; Vogel and Sheetz, 2006). Beyond the molecular recognition sites that confer biochemical specificity to proteins, are there common mechanical design criteria by which structural motifs are assembled to confer unique mechanical properties to proteins? If so, is it possible that cell generated tension is sufficient to mechanically unfold proteins that are part of force-bearing protein networks in living tissues? How are proteins stabilized against mechanical unfolding, and do cells switch protein functions by force to regulate or even switch between intracellular signaling networks?

Type
Chapter
Information
Cellular Mechanotransduction
Diverse Perspectives from Molecules to Tissues
, pp. 286 - 338
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Lail, N. I., Ohashi, T., Clark, R. L., Erickson, H. P., and Zauscher, S. 2006. Understanding the elasticity of fibronectin fibrils: Unfolding strengths of FN-III and GFP domains measured by single molecule force spectroscopy. Matrix Biol. 25: 175–184.CrossRefGoogle ScholarPubMed
Ainavarapu, S. R., Brujic, J., Huang, H. H., Wiita, A. P., Lu, H., Li, L., Walther, K. A., Carrion-Vazquez, M., Li, H., and Fernandez, J. M. 2007. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys. J. 92: 225–233.CrossRefGoogle ScholarPubMed
Alexandropoulos, K., Donlin, L. T., Xing, L., and Regelmann, A. G. 2003. Sin: good or bad? A T lymphocyte perspective. Immunol. Rev. 192: 181–195.CrossRefGoogle ScholarPubMed
Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., and Kaplan, D. L. 2003. Silk-based biomaterials. Biomaterials. 24: 401–416.CrossRefGoogle ScholarPubMed
Altmann, S. M., Grunberg, R. G., Lenne, P. F., Ylanne, J., Raae, A., Herbert, K., Saraste, M., Nilges, M., and Horber, J. K. 2002. Pathways and intermediates in forced unfolding of spectrin repeats. Structure. 10: 1085–1096.CrossRefGoogle ScholarPubMed
Antia, M., Islas, L. D., Boness, D. A., Baneyx, G., and Vogel, V. 2006. Single molecule fluorescence studies of surface-adsorbed fibronectin. Biomaterials. 27: 679–690.CrossRefGoogle ScholarPubMed
Apic, G., Gough, J., and Teichmann, S. A. 2001. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol. 310: 311–325.CrossRefGoogle ScholarPubMed
Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., and Geiger, B. 2001. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3: 466–472.CrossRefGoogle Scholar
Baneyx, G., Baugh, L., and Vogel, V. 2001. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA. 98: 14464–14468.CrossRefGoogle Scholar
Baneyx, G., Baugh, L., and Vogel, V. 2002. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl. Acad. Sci. USA. 99: 5139–5143.CrossRefGoogle Scholar
Baneyx, G., and Vogel, V. 1999. Self-assembly of fibronectin into fibrillar networks underneath dipalmitoyl phosphatidylcholine monolayers: Role of lipid matrix and tensile forces. Proc. Natl. Acad. Sci. USA. 96: 12518–12523.CrossRefGoogle ScholarPubMed
Bao, G., and Suresh, S. 2003. Cell and molecular mechanics of biological materials. Nat. Mater. 2: 715–725.CrossRefGoogle ScholarPubMed
Barker, T. H., Baneyx, G., Cardo-Vila, M., Workman, G. A., Weaver, M., Menon, P. M., Dedhar, S., Rempel, S. A., Arap, W., Pasqualini, R., Vogel, V., and Sage, E. H. 2005. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J. Biol. Chem. 280: 36483–36493.CrossRefGoogle Scholar
Barreiro, O., Yanez-Mo, M., Serrador, J. M., Montoya, M. C., Vicente-Manzanares, M., Tejedor, R., Furthmayr, H., and Sanchez-Madrid, F. 2002. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157: 1233–1245.CrossRefGoogle Scholar
Barry, E. L., and Mosher, D. F. 1988. Factor XIII cross-linking of fibronectin at cellular matrix assembly sites. J. Biol. Chem. 263: 10464–10469.Google ScholarPubMed
Barthel, S. R., Johansson, M. W., Annis, D. S., and Mosher, D. F. 2006. Cleavage of human 7-domain VCAM-1 (CD106) by thrombin. Thromb. Haemost. 95: 873–880.CrossRefGoogle ScholarPubMed
Baugh, L., and Vogel, V. 2004. Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. J. Biomed. Mater. Res. 69A: 525–534.CrossRefGoogle Scholar
Bennett, V., and Gilligan, D. M. 1993. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu. Rev. Cell Biol. 9: 27–66.CrossRefGoogle Scholar
Bhasin, N., Carl, P., Harper, S., Feng, G., Lu, H., Speicher, D. W., and Discher, D. E. 2004. Chemistry on a single protein, vascular cell adhesion molecule-1, during forced unfolding. J. Biol. Chem. 279: 45865–45874.CrossRefGoogle ScholarPubMed
Booth, I. R., Edwards, M. D., Black, S., Schumann, U., and Miller, S. 2007. Mechanosensitive channels in bacteria: Signs of closure?Nat. Rev. Microbiol. 5: 431–440.CrossRefGoogle Scholar
Borradori, L., and Sonnenberg, A. 1999. Structure and function of hemidesmosomes: More than simple adhesion complexes. J. Invest. Dermatol. 112: 411–418.CrossRefGoogle ScholarPubMed
Borrego-Diaz, E., Kerff, F., Lee, S. H., Ferron, F., Li, Y., and Dominguez, R. 2006. Crystal structure of the actin-binding domain of alpha-actinin 1: Evaluating two competing actin-binding models. J. Struct. Biol. 155: 230–238.CrossRefGoogle ScholarPubMed
Bouton, A. H., Riggins, R. B., and Bruce-Staskal, P. J. 2001. Functions of the adapter protein Cas: Signal convergence and the determination of cellular responses. Oncogene. 20: 6448–6458.CrossRefGoogle Scholar
Briknarova, K., Akerman, M. E., Hoyt, D. W., Ruoslahti, E., and Ely, K. R. 2003. Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors. J. Mol. Biol. 332: 205–215.CrossRefGoogle ScholarPubMed
Broderick, M. J., and Winder, S. J. 2005. Spectrin, alpha-actinin, and dystrophin. Adv. Protein Chem. 70: 203–246.CrossRefGoogle ScholarPubMed
Brown, R. A., Blunn, G. W., and Ejim, O. S. 1994. Preparation of orientated fibrous mats from fibronectin: Composition and stability. Biomaterials. 15: 457–464.CrossRefGoogle ScholarPubMed
Brzeska, H., Venyaminov, S., Grabarek, Z., and Drabikowski, W. 1983. Comparative studies on thermostability of calmodulin, skeletal muscle troponin C and their tryptic fragments. FEBS Lett. 153: 169–173.CrossRefGoogle ScholarPubMed
Bustamante, C., Chemla, Y. R., Forde, N. R., and Izhaky, D. 2004. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73: 705–748.CrossRefGoogle ScholarPubMed
Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., McGlade, C. J., Liddington, R. C., and Ginsberg, M. H. 2003. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA. 100: 2272–2277.CrossRefGoogle ScholarPubMed
Calderwood, D. A., and Ginsberg, M. H. 2003. Talin forges the links between integrins and actin. Nat. Cell Biol. 5: 694–697.CrossRefGoogle ScholarPubMed
Calderwood, D. A., Shattil, S. J., and Ginsberg, M. H. 2000. Integrins and actin filaments: Reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275: 22607–22610.CrossRefGoogle ScholarPubMed
Carl, P., Kwok, C. H., Manderson, G., Speicher, D. W., and Discher, D. E. 2001. Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proc. Natl. Acad. Sci. USA. 98: 1565–1570.CrossRefGoogle ScholarPubMed
Carrion-Vazquez, M., Oberhauser, A. F., Fisher, T. E., Marszalek, P. E., Li, H., and Fernandez, J. M. 2000. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 74: 63–91.CrossRefGoogle ScholarPubMed
Carrion-Vazquez, M., Oberhauser, A. F., Fowler, S. B., Marszalek, P. E., Broedel, S. E., Clarke, J., and Fernandez, J. M. 1999. Mechanical and chemical unfolding of a single protein: A comparison. Proc. Natl. Acad. Sci. USA. 96: 3694–3649.CrossRefGoogle ScholarPubMed
Chauvet, V., Tian, X., Husson, H., Grimm, D. H., Wang, T., Hiesberger, T., Igarashi, P., Bennett, A. M., Ibraghimov-Beskrovnaya, O., Somlo, S., and Caplan, M. J. 2004. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J. Clin. Invest. 114: 1433–1443.CrossRefGoogle ScholarPubMed
Chen, C. S., Tan, J., and Tien, J. 2004. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng. 6: 275–302.CrossRefGoogle ScholarPubMed
Chen, H., Cohen, D. M., Choudhury, D. M., Kioka, N., and Craig, S. W. 2005. Spatial distribution and functional significance of activated vinculin in living cells. J. Cell. Biol. 169: 459–470.CrossRefGoogle Scholar
Chen, Y., Zardi, L., and Peters, D. M. 1997. High-resolution cryo-scanning electron microscopy study of the macromolecular structure of fibronectin fibrils. Scanning. 19: 349–355.CrossRefGoogle ScholarPubMed
Chernousov, M. A., Faerman, A. I., Frid, M. G., Printseva, O., and Koteliansky, V. E. 1987. Monoclonal antibody to fibronectin which inhibits extracellular matrix assembly. FEBS Lett. 217: 124–128.CrossRefGoogle ScholarPubMed
Chi, R. J., Olenych, S. G., Kim, K., and Keller, T. C.. 2005. Smooth muscle alpha-actinin interaction with smitin. Int. J. Biochem. Cell Biol. 37: 1470–1482.CrossRefGoogle ScholarPubMed
Choi, B., and Zocchi, G. 2006. Mimicking cAMP-dependent allosteric control of protein kinase A through mechanical tension. J. Am. Chem. Soc. 128: 8541–8548.CrossRefGoogle Scholar
Chrzanowska-Wodnicka, M., and Burridge, K. 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133: 1403–1415.CrossRefGoogle ScholarPubMed
Clausen-Schaumann, H., Seitz, M., Krautbauer, R., and Gaub, H. E. 2000. Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4: 524–530.CrossRefGoogle ScholarPubMed
Craig, D., Gao, M., Schulten, K., and Vogel, V. 2004. Tuning the mechanical stability of fibronectin type III modules through sequence variations. Structure. 12: 21–30.CrossRefGoogle ScholarPubMed
Craig, D., Krammer, A., Schulten, K., and Vogel, V. 2001. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc. Natl. Acad. Sci. USA. 98: 5590–5595.CrossRefGoogle ScholarPubMed
Defilippi, P., Di Stefano, P., and Cabodi, S. 2006. p130Cas: A versatile scaffold in signaling networks. Trends Cell Biol. 16: 257–263.CrossRefGoogle ScholarPubMed
Discher, D. E., Janmey, P., and Wang, Y. L. 2005. Tissue cells feel and respond to the stiffness of their substrate. Science. 310: 1139–1143.CrossRefGoogle ScholarPubMed
Djinovic-Carugo, K., Gautel, M., Ylanne, J., and Young, P. 2002. The spectrin repeat: A structural platform for cytoskeletal protein assemblies. FEBS Lett. 513: 119–123.CrossRefGoogle ScholarPubMed
Eaton, W. A., Munoz, V., Hagen, S. J., Jas, G. S., Lapidus, L. J., Henry, E. R., and Hofrichter, J. 2000. Fast kinetics and mechanisms in protein folding. Annu. Rev. Biophys. Biomol. Struct. 29: 327–359.CrossRefGoogle Scholar
Ejim, O. S., Blunn, G. W., and Brown, R. A. 1993. Production of artificial-orientated mats and strands from plasma fibronectin: A morphological study. Biomaterials. 14: 743–748.CrossRefGoogle ScholarPubMed
Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. 2006. Matrix elasticity directs stem cell lineage specification. Cell. 126: 677–689.CrossRefGoogle ScholarPubMed
Erickson, H. P. 1994. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc. Natl. Acad. Sci. USA. 91: 10114–10118.CrossRefGoogle ScholarPubMed
Fisher, T. E., Marszalek, P. E., and Fernandez, J. M. 2000. Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7: 719–724.Google ScholarPubMed
Florian, J. A., Kosky, J. R., Ainslie, K., Pang, Z., Dull, R. O., and Tarbell, J. M. 2003. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93: 136–142.CrossRefGoogle ScholarPubMed
Forero, M., Thomas, W. E., Sokurenko, E. V., and Vogel, V. 2006. Uncoiling mechanics of E. coli type I fimbriae are optimized for catch bonds. PLoS Biol. 4: 1–8.CrossRefGoogle ScholarPubMed
Forman, J. R., Qamar, S., Paci, E., Sandford, R. N., and Clarke, J. 2005. The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J. Mol. Biol. 349: 861–871.CrossRefGoogle ScholarPubMed
Fowler, S. B., Best, R. B., Toca Herrera, J. L., Rutherford, T. J., Steward, A., Paci, E., Karplus, M., and Clarke, J. 2002. Mechanical unfolding of a titin Ig domain: Structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J. Mol. Biol. 322: 841–849.CrossRefGoogle ScholarPubMed
Fredberg, J. J., and Kamm, R. D. 2006. Stress transmission in the lung: Pathways from organ to molecule. Annu. Rev. Physiol. 68: 507–541.CrossRefGoogle Scholar
Frishman, D., and Argos, P. 1995. Knowledge-based protein secondary structure assignment. Proteins. 23: 566–579.CrossRefGoogle ScholarPubMed
Förster, T. 1948. Intermolecular energy transference and fluorescenceAnn. Physik. 2: 55.CrossRefGoogle Scholar
Galbraith, C. G., Yamada, K. M., and Sheetz, M. P. 2002. The relationship between force and focal complex development. J. Cell. Biol. 159: 695–705.CrossRefGoogle ScholarPubMed
Gao, M., Craig, D., Lequin, O., Campbell, I. D., Vogel, V., and Schulten, K. 2003. Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proc. Natl. Acad. Sci. USA. 100: 14784–14789.CrossRefGoogle ScholarPubMed
Gao, M., Craig, D., Vogel, V., and Schulten, K. 2002a. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. J. Mol. Biol. 323: 939–950.CrossRefGoogle ScholarPubMed
Gao, M., Lu, H., and Schulten, K. 2002b. Unfolding of titin domains studied by molecular dynamics simulations. J. Muscle Res. Cell Motil. 23: 513–521.CrossRefGoogle ScholarPubMed
Gao, M., Sotomayor, M., Villa, E., Lee, E. H., and Schulten, K. 2006. Molecular mechanisms of cellular mechanics. Phys. Chem. Chem. Phys. 8: 3692–3706.CrossRefGoogle ScholarPubMed
Garcia-Alvarez, B., de Pereda, J. M., Calderwood, D. A., Ulmer, T. S., Critchley, D., Campbell, I. D., Ginsberg, M. H., and Liddington, R. C. 2003. Structural determinants of integrin recognition by talin. Mol. Cell. 11: 49–58.CrossRefGoogle Scholar
Geiger, B. 2006. A role for p130Cas in mechanotransduction. Cell. 127: 879–881.CrossRefGoogle ScholarPubMed
Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K. M. 2001. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2: 793–805.CrossRefGoogle ScholarPubMed
Geng, L., Burrow, C. R., Li, H. P., and Wilson, P. D. 2000. Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochim. Biophys. Acta. 1535: 21–35.CrossRefGoogle ScholarPubMed
Ghosh, I., Hamilton, A. D., and Regan, L. 2000. Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. J. Am. Chem. Soc. 122: 5658–5659.CrossRefGoogle Scholar
Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R., and Sheetz, M. P. 2003. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell. Biol. 163: 409–419.CrossRefGoogle Scholar
Giannone, G., and Sheetz, M. P. 2006. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16: 213–223.CrossRefGoogle ScholarPubMed
Gingras, A. R., Ziegler, W. H., Frank, R., Barsukov, I. L., Roberts, G. C., Critchley, D. R., and Emsley, J. 2005. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280: 37217–37224.CrossRefGoogle ScholarPubMed
Gonzalez, A. M., Otey, C., Edlund, M., and Jones, J. C. 2001. Interactions of a hemidesmosome component and actinin family members. J. Cell Sci. 114: 4197–4206.Google ScholarPubMed
Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H., and Gaub, H. E. 1999. How strong is a covalent bond?Science. 283: 1727–1730.CrossRefGoogle ScholarPubMed
Grater, F., Shen, J., Jiang, H., Gautel, M., and Grubmuller, H. 2005. Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Biophys. J. 88: 790–804.CrossRefGoogle ScholarPubMed
Halliday, N. L., and Tomasek, J. J. 1995. Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp. Cell Res. 217: 109–117.CrossRefGoogle ScholarPubMed
Harris, A. K., Wild, P., and Stopak, D. 1980. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science. 208: 177–179.CrossRefGoogle Scholar
Heiska, L., Kantor, C., Parr, T., Critchley, D. R., Vilja, P., Gahmberg, C. G., and Carpen, O. 1996. Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM-2) to alpha-actinin. J. Biol. Chem. 271: 26214–26219.CrossRefGoogle Scholar
Helfman, D. M., Levy, E. T., Berthier, C., Shtutman, M., Riveline, D., Grosheva, I., Lachish-Zalait, A., Elbaum, M., and Bershadsky, A. D. 1999. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell. 10: 3097–3112.CrossRefGoogle ScholarPubMed
Hocking, D. C., and Kowalski, K. 2002. A cryptic fragment from fibronectin’s III1 module localizes to lipid rafts and stimulates cell growth and contractility. J. Cell Biol. 158: 175–184.CrossRefGoogle ScholarPubMed
House, S. D., and Lipowsky, H. H. 1988. In vivo determination of the force of leukocyte-endothelium adhesion in the mesenteric microvasculature of the cat. Circ. Res. 63: 658–668.CrossRefGoogle ScholarPubMed
Huan, Y., and van Adelsberg, J. 1999. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J. Clin. Invest. 104: 1459–1468.CrossRefGoogle Scholar
Humphrey, W., Dalke, A., and Schulten, K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14: 33–38, 27–28.CrossRefGoogle ScholarPubMed
Hynes, R. O. 1990. Fibronectins. Springer-Verlag, New York.CrossRefGoogle Scholar
Hytönen, V., and Vogel, V. 2008. How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Comp. Biol. 2009 4(2): e24.CrossRefGoogle ScholarPubMed
Ibraghimov-Beskrovnaya, O., Bukanov, N. O., Donohue, L. C., Dackowski, W. R., Klinger, K. W., and Landes, G. M. 2000. Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum. Mol. Genet. 9: 1641–1649.CrossRefGoogle ScholarPubMed
Ingber, D. E. 2003. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35: 564–577.CrossRefGoogle ScholarPubMed
Ingham, K. C., Brew, S. A., Huff, S., and Litvinovich, S. V. 1997. Cryptic self-association sites in type III modules of fibronectin. J. Biol. Chem. 272: 1718–1724.CrossRefGoogle ScholarPubMed
Jeong, J., Kim, S. K., Ahn, J., Park, K., Jeong, E. J., Kim, M., and Chung, B. H. 2006. Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem. Biophys. Res. Commun. 339: 647–651.CrossRefGoogle ScholarPubMed
Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E., and Sheetz, M. P. 2003. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature. 424: 334–337.CrossRefGoogle ScholarPubMed
Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W., and Discher, D. E. 2007. Forced unfolding of proteins within cells. Science. 317: 663–666.CrossRefGoogle ScholarPubMed
Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K. 1999. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 151: 283–312.CrossRefGoogle Scholar
Kellermayer, M. S., Bustamante, C., and Granzier, H. L. 2003. Mechanics and structure of titin oligomers explored with atomic force microscopy. Biochim. Biophys. Acta. 1604: 105–114.CrossRefGoogle ScholarPubMed
Kellermayer, M. S., Smith, S. B., Granzier, H. L., and Bustamante, C. 1997. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 276: 1112–1116.CrossRefGoogle ScholarPubMed
Kelly, D. F., and Taylor, K. A. 2005. Identification of the beta1-integrin binding site on alpha-actinin by cryoelectron microscopy. J. Struct. Biol. 149: 290–302.CrossRefGoogle ScholarPubMed
Kiema, T., Lad, Y., Jiang, P., Oxley, C. L., Baldassarre, M., Wegener, K. L., Campbell, I. D., Ylanne, J., and Calderwood, D. A. 2006. The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell. 21: 337–347.CrossRefGoogle Scholar
Kim, E., Arnould, T., Sellin, L., Benzing, T., Comella, N., Kocher, O., Tsiokas, L., Sukhatme, V. P., and Walz, G. 1999. Interaction between RGS7 and polycystin. Proc. Natl. Acad. Sci. USA. 96: 6371–6376.CrossRefGoogle ScholarPubMed
Koide, T. 2005. Triple helical collagen-like peptides: Engineering and applications in matrix biology. Connect Tissue Res. 46: 131–141.CrossRefGoogle ScholarPubMed
Koonin, E. V., Wolf, Y. I., and Karev, G. P. 2002. The structure of the protein universe and genome evolution. Nature. 420: 218–223.CrossRefGoogle ScholarPubMed
Krammer, A., Craig, D., Thomas, W. E., Schulten, K., and Vogel, V. 2002. A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol. 21: 139–147.CrossRefGoogle ScholarPubMed
Krammer, A., Lu, H., Isralewitz, B., Schulten, K., and Vogel, V. 1999. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc. Natl. Acad. Sci. USA. 96: 1351–1356.CrossRefGoogle ScholarPubMed
Kung, C. 2005. A possible unifying principle for mechanosensation. Nature. 436: 647–654.CrossRefGoogle ScholarPubMed
Lai, C. S., Wolff, C. E., Novello, D., Griffone, L., Cuniberti, C., Molina, F., and Rocco, M. 1993. Solution structure of human plasma fibronectin under different solvent conditions. Fluorescence energy transfer, circular dichroism and light-scattering studies. J. Mol. Biol. 230: 625–640.CrossRefGoogle Scholar
Langenbach, K. J., and Sottile, J. 1999. Identification of protein-disulfide isomerase activity in fibronectin. J. Biol. Chem. 274: 7032–7038.CrossRefGoogle ScholarPubMed
Larsen, M., Artym, V. V., Green, J. A., and Yamada, K. M. 2006. The matrix reorganized: Extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell Biol. 18: 463–471.CrossRefGoogle ScholarPubMed
Law, R., Carl, P., Harper, S., Dalhaimer, P., Speicher, D. W., and Discher, D. E. 2003. Cooperativity in forced unfolding of tandem spectrin repeats. Biophys. J. 84: 533–544.CrossRefGoogle ScholarPubMed
Lee, G., Abdi, K., Jiang, Y., Michaely, P., Bennett, V., and Marszalek, P. E. 2006. Nanospring behaviour of ankyrin repeats. Nature. 440: 246–249.CrossRefGoogle ScholarPubMed
Lee, S. E., Kamm, R. D., and Mofrad, M. R. 2007. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40: 2096–2106.CrossRefGoogle ScholarPubMed
Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Marszalek, P. E., and Fernandez, J. M. 2000. Point mutations alter the mechanical stability of immunoglobulin modules. Nat. Struct. Biol. 7: 1117–1120.Google ScholarPubMed
Li, H., and Fernandez, J. M. 2003. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy. J. Mol. Biol. 334: 75–86.CrossRefGoogle ScholarPubMed
Li, H., Linke, W. A., Oberhauser, A. F., Carrion-Vazquez, M., Kerkvliet, J. G., Lu, H., Marszalek, P. E., and Fernandez, J. M. 2002. Reverse engineering of the giant muscle protein titin. Nature. 418: 998–1002.CrossRefGoogle ScholarPubMed
Li, H., Oberhauser, A. F., Redick, S. D., Carrion-Vazquez, M., Erickson, H. P., and Fernandez, J. M. 2001. Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc. Natl. Acad. Sci. USA. 98: 10682–10686.CrossRefGoogle ScholarPubMed
Li, L., Huang, H. H., Badilla, C. L., and Fernandez, J. M. 2005. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. J. Mol. Biol. 345: 817–826.CrossRefGoogle Scholar
Little, W. C., Smith, M. L., Ebneter, U., and Vogel, V. 2008. Assay to mechanically tune and optically probe the conformation of fibrillar fibronectin from fully relaxed to breakage. Matrix Biol. 27(5):451–461.CrossRefGoogle ScholarPubMed
Liu, J., Taylor, D. W., and Taylor, K. A. 2004. A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J. Mol. Biol. 338: 115–125.CrossRefGoogle ScholarPubMed
Lu, H., Isralewitz, B., Krammer, A., Vogel, V., and Schulten, K. 1998. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75: 662–671.CrossRefGoogle ScholarPubMed
Lu, H., and Schulten, K. 1999. Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins. 35: 453–463.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
MacDonald, R. I., and Pozharski, E. V. 2001. Free energies of urea and of thermal unfolding show that two tandem repeats of spectrin are thermodynamically more stable than a single repeat. Biochemistry. 40: 3974–3984.CrossRefGoogle ScholarPubMed
Malhas, A. N., Abuknesha, R. A., and Price, R. G. 2002. Interaction of the leucine-rich repeats of polycystin-1 with extracellular matrix proteins: Possible role in cell proliferation. J. Am. Soc. Nephrol. 13: 19–26.Google ScholarPubMed
Mao, Y., and Schwarzbauer, J. E. 2005. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 24: 389–399.CrossRefGoogle ScholarPubMed
Marszalek, P. E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Schulten, K., and Fernandez, J. M. 1999. Mechanical unfolding intermediates in titin modules. Nature. 402: 100–103.CrossRefGoogle Scholar
Masaki, T., Endo, M., and Ebashi, S. 1967. Localization of 6S component of a alpha-actinin at Z-band. J. Biochem. (Tokyo). 62: 630–632.CrossRefGoogle ScholarPubMed
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., and Chen, C. S. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6: 483–495.CrossRefGoogle Scholar
Minajeva, A., Kulke, M., Fernandez, J. M., and Linke, W. A. 2001. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys. J. 80: 1442–1451.CrossRefGoogle ScholarPubMed
Mochizuki, S., Vink, H., Hiramatsu, O., Kajita, T., Shigeto, F., Spaan, J. A., and Kajiya, F. 2003. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am. J. Physiol. Heart Circ. Physiol. 285: H722–726.CrossRefGoogle Scholar
Morla, A., Zhang, Z., and Ruoslahti, E. 1994. Superfibronectin is a functionally distinct form of fibronectin. Nature. 367: 193–196.CrossRefGoogle ScholarPubMed
Mosavi, L. K., Cammett, T. J., Desrosiers, D. C., and Peng, Z. Y. 2004. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13: 1435–1448.CrossRefGoogle ScholarPubMed
Mould, A. P., and Humphries, M. J. 1991. Identification of a novel recognition sequence for the integrin alpha 4 beta 1 in the COOH-terminal heparin-binding domain of fibronectin. Embo. J. 10: 4089–4095.Google ScholarPubMed
Mukai, H., Toshimori, M., Shibata, H., Takanaga, H., Kitagawa, M., Miyahara, M., Shimakawa, M., and Ono, Y. 1997. Interaction of PKN with alpha-actinin. J. Biol. Chem. 272: 4740–4746.CrossRefGoogle ScholarPubMed
Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E., Lu, W., Brown, E. M., Quinn, S. J., Ingber, D. E., and Zhou, J. 2003. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33: 129–137.CrossRefGoogle ScholarPubMed
Neuert, G., Albrecht, C. H., and Gaub, H. E. 2007. Predicting the rupture probabilities of molecular bonds in series. Biophys. J. 93: 1215–1223.CrossRefGoogle ScholarPubMed
Ng, S. P., Billings, K. S., Ohashi, T., Allen, M. D., Best, R. B., Randles, L. G., Erickson, H. P., and Clarke, J. 2007. Designing an extracellular matrix protein with enhanced mechanical stability. Proc. Natl. Acad. Sci. USA.CrossRefGoogle ScholarPubMed
Ng, S. P., Rounsevell, R. W., Steward, A., Geierhaas, C. D., Williams, P. M., Paci, E., and Clarke, J. 2005. Mechanical unfolding of TNfn3: The unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation. J. Mol. Biol. 350: 776–789.CrossRefGoogle ScholarPubMed
Nieset, J. E., Redfield, A. R., Jin, F., Knudsen, K. A., Johnson, K. R., and Wheelock, M. J. 1997. Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. J. Cell Sci. 110: 1013–1022.Google ScholarPubMed
Nilsson, L. M., Yakovenko, O., Tchesnokova, V., Thomas, W. E., Schembri, M. A., Vogel, V., Klemm, P., and Sokurenko, E. V. 2007. The cysteine bond in the Escherichia coli FimH adhesin is critical for adhesion under flow conditions. Mol. Microbiol. 65: 1158–1169.CrossRefGoogle ScholarPubMed
O’Neill, G. M., Fashena, S. J., and Golemis, E. A. 2000. Integrin signalling: A new Cas(t) of characters enters the stage. Trends Cell Biol. 10: 111–119.CrossRefGoogle Scholar
Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M., and Fernandez, J. M. 2002. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319: 433–447.CrossRefGoogle ScholarPubMed
Oberhauser, A. F., Hansma, P. K., Carrion-Vazquez, M., and Fernandez, J. M. 2001. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. USA. 98: 468–472.CrossRefGoogle ScholarPubMed
Oberhauser, A. F., Marszalek, P. E., Carrion-Vazquez, M., and Fernandez, J. M. 1999. Single protein misfolding events captured by atomic force microscopy. Nat. Struct. Biol. 6: 1025–1028.Google ScholarPubMed
Oberhauser, A. F., Marszalek, P. E., Erickson, H. P., and Fernandez, J. M. 1998. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 393: 181–185.Google ScholarPubMed
Ohashi, T., Kiehart, D. P., and Erickson, H. P. 1999. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc. Natl. Acad. Sci. USA. 96: 2153–2158.CrossRefGoogle ScholarPubMed
Ohashi, T., Kiehart, D. P., and Erickson, H. P. 2002. Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. J. Cell Sci. 115: 1221–1229.Google ScholarPubMed
Orr, A. W., Helmke, B. P., Blackman, B. R., and Schwartz, M. A. 2006. Mechanisms of mechanotransduction. Dev. Cell. 10: 11–20.CrossRefGoogle ScholarPubMed
Ortiz, V., Nielsen, S. O., Klein, M. L., and Discher, D. E. 2005. Unfolding a linker between helical repeats. J. Mol. Biol. 349: 638–647.CrossRefGoogle ScholarPubMed
Otey, C. A., and Carpen, O. 2004. Alpha-actinin revisited: A fresh look at an old player. Cell Motil. Cytoskeleton. 58: 104–111.CrossRefGoogle Scholar
Otey, C. A., Pavalko, F. M., and Burridge, K. 1990. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J. Cell Biol. 111: 721–729.CrossRefGoogle Scholar
Paci, E., and Karplus, M. 1999. Forced unfolding of fibronectin type 3 modules: An analysis by biased molecular dynamics simulations. J. Mol. Biol. 288: 441–459.CrossRefGoogle ScholarPubMed
Pankov, R., and Yamada, K. M. 2002. Fibronectin at a glance. J. Cell. Sci. 115: 3861–3863.CrossRefGoogle ScholarPubMed
Papagrigoriou, E., Gingras, A. R., Barsukov, I. L., Bate, N., Fillingham, I. J., Patel, B., Frank, R., Ziegler, W. H., Roberts, G. C., Critchley, D. R., and Emsley, J. 2004. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. Embo. J. 23: 2942–2951.CrossRefGoogle ScholarPubMed
Pasternak, C., Wong, S., and Elson, E. L. 1995. Mechanical function of dystrophin in muscle cells. J. Cell Biol. 128: 355–361.CrossRefGoogle ScholarPubMed
Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., and Weaver, V. M. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8: 241–254.CrossRefGoogle ScholarPubMed
Perez-Jimenez, R., Garcia-Manyes, S., Ainavarapu, S. R., and Fernandez, J. M. 2006. Mechanical unfolding pathways of the enhanced yellow fluorescent protein revealed by single molecule force spectroscopy. J. Biol. Chem. 281: 40010–40014.CrossRefGoogle ScholarPubMed
Peters, D. M. P., Chen, Y., Zardi, L., and Brummel, S. 1998. Conformation of fibronectin fibrils varies: Discrete globular domains of type III repeats detected. Microscopy. Microanal. 4: 385–396.Google ScholarPubMed
Pierschbacher, M. D., and Ruoslahti, E. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 309: 30–33.Google ScholarPubMed
Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E. 1986. Platelet membrane glycoprotein IIb/IIIa: Member of a family of Arg-Gly-Asp–specific adhesion receptors. Science. 231: 1559–1562.CrossRefGoogle ScholarPubMed
Pytela, R., Pierschbacher, M. D., and Ruoslahti, E. 1985. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 40: 191–198.CrossRefGoogle ScholarPubMed
Qian, F., Wei, W., Germino, G., and Oberhauser, A. 2005. The nanomechanics of polycystin-1 extracellular region. J. Biol. Chem. 280: 40723–40730.CrossRefGoogle Scholar
Rajfur, Z., Roy, P., Otey, C., Romer, L., and Jacobson, K. 2002. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat. Cell Biol. 4: 286–293.CrossRefGoogle ScholarPubMed
Randles, L. G., Rounsevell, R. W., and Clarke, J. 2007. Spectrin domains lose cooperativity in forced unfolding. Biophys. J. 92: 571–577.CrossRefGoogle ScholarPubMed
Redick, S. D., Settles, D. L., Briscoe, G., and Erickson, H. P. 2000. Defining fibronectin’s cell adhesion synergy site by site-directed mutagenesis. J. Cell Biol. 149: 521–527.CrossRefGoogle ScholarPubMed
Rief, M., Clausen-Schaumann, H., and Gaub, H. E. 1999a. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6: 346–349.Google Scholar
Rief, M., Gautel, M., and Gaub, H. E. 2000. Unfolding forces of titin and fibronectin domains directly measured by AFM. Adv. Exp. Med. Biol. 481: 129–136; discussion 137–141.Google ScholarPubMed
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 276: 1109–1112.CrossRefGoogle ScholarPubMed
Rief, M., Gautel, M., Schemmel, A., and Gaub, H. E. 1998. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys. J. 75: 3008–3014.CrossRefGoogle ScholarPubMed
Rief, M., Pascual, J., Saraste, M., and Gaub, H. E. 1999b. Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles. J. Mol. Biol. 286: 553–561.CrossRefGoogle ScholarPubMed
Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., and Bershadsky, A. D. 2001. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153: 1175–1186.CrossRefGoogle ScholarPubMed
Rounsevell, R. W., and Clarke, J. 2004. FnIII domains: Predicting mechanical stability. Structure. 12: 4–5.CrossRefGoogle ScholarPubMed
Sahaf, B., Heydari, K., Herzenberg, L. A., and Herzenberg, L. A. 2003. Lymphocyte surface thiol levels. Proc. Natl. Acad. Sci. USA. 100: 4001–4005.CrossRefGoogle ScholarPubMed
Sandford, R., Sgotto, B., Aparicio, S., Brenner, S., Vaudin, M., Wilson, R. K., Chissoe, S., Pepin, K., Bateman, A., Chothia, C., Hughes, J., and Harris, P. 1997. Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains. Hum. Mol. Genet. 6: 1483–1489.Google ScholarPubMed
Sawada, Y., and Sheetz, M. P. 2002. Force transduction by Triton cytoskeletons. J. Cell Biol. 156: 609–615.CrossRefGoogle ScholarPubMed
Sawada, Y., Tamada, M., Dubin-Thaler, B. J., Cherniavskaya, O., Sakai, R., Tanaka, S., and Sheetz, M. P. 2006. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 127: 1015–1026.CrossRefGoogle ScholarPubMed
Schnepel, J., and Tschesche, H. 2000. The proteolytic activity of the recombinant cryptic human fibronectin type IV collagenase from E. coli expression. J. Protein Chem. 19: 685–692.CrossRefGoogle ScholarPubMed
Schnepel, J., Unger, J., and Tschesche, H. 2001. Recombinant cryptic human fibronectinase cleaves actin and myosin: Substrate specificity and possible role in muscular dystrophy. Biol. Chem. 382: 1707–1714.CrossRefGoogle ScholarPubMed
Sechler, J. L., Rao, H., Cumiskey, A. M., Vega-Colon, I., Smith, M. S., Murata, T., and Schwarzbauer, J. E. 2001. A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly. J. Cell Biol. 154: 1081–1088.CrossRefGoogle ScholarPubMed
Sharma, A., Askari, J. A., Humphries, M. J., Jones, E. Y., and Stuart, D. I. 1999. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. Embo. J. 18: 1468–1479.CrossRefGoogle Scholar
Slade, R. E., and Pauling, L. 1948. The nature of forces between large molecules of biological interest. Royal Institution of Great Britain.Google Scholar
Smith, M. L., Gourdon, D., Little, W. C., Kubow, K. E., Eguiluz, R. A., Luna-Morris, S., and Vogel, V. 2007. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5: e268.CrossRefGoogle ScholarPubMed
Smith, M. L., Long, D. S., Damiano, E. R., and Ley, K. 2003. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J. 85: 637–645.CrossRefGoogle ScholarPubMed
Soteriou, A., Clarke, A., Martin, S., and Trinick, J. 1993. Titin folding energy and elasticity. Proc. Biol. Sci. 254: 83–86.CrossRefGoogle ScholarPubMed
Sotomayor, M., Corey, D. P., and Schulten, K. 2005. In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure. 13: 669–682.CrossRefGoogle Scholar
Sotomayor, M., and Schulten, K. 2007. Single-molecule experiments in vitro and in silico. Science. 316: 1144–1148.CrossRefGoogle ScholarPubMed
Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., and Schulten, K. 2007. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28: 2618–2640.CrossRefGoogle ScholarPubMed
Stossel, T. P., Condeelis, J., Cooley, L., Hartwig, J. H., Noegel, A., Schleicher, M., and Shapiro, S. S. 2001. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2: 138–145.CrossRefGoogle ScholarPubMed
Stossel, T. P., and Hartwig, J. H. 1975. Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin. J. Biol. Chem. 250: 5706–5712.Google ScholarPubMed
Strunz, T., Oroszlan, K., Schafer, R., and Guntherodt, H. J. 1999. Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. USA. 96: 11277–11282.CrossRefGoogle Scholar
Sutton, R. B., Ernst, J. A., and Brunger, A. T. 1999. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. J. Cell Biol. 147: 589–598.CrossRefGoogle Scholar
Tamada, M., Sheetz, M. P., and Sawada, Y. 2004. Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell. 7: 709–718.CrossRefGoogle ScholarPubMed
Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., and Chen, C. S. 2003. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA. 100: 1484–1489.CrossRefGoogle ScholarPubMed
Tanase, M., Biais, N., and Sheetz, M. 2007. Magnetic tweezers in cell biology. Methods Cell Biol. 83: 473–93.Google ScholarPubMed
Tapley, P., Horwitz, A., Buck, C., Duggan, K., and Rohrschneider, L. 1989. Integrins isolated from Rous sarcoma virus-transformed chicken embryo fibroblasts. Oncogene. 4: 325–333.Google Scholar
Thomas, W. E., Trintchina, E., Forero, M., Vogel, V., and Sokurenko, E. V. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell. 109: 913–923.CrossRefGoogle ScholarPubMed
Tsalkova, T. N., and Privalov, P. L. 1985. Thermodynamic study of domain organization in troponin C and calmodulin. J. Mol. Biol. 181: 533–544.CrossRefGoogle ScholarPubMed
Tskhovrebova, L., and Trinick, J. 2003. Titin: Properties and family relationships. Nat. Rev. Mol. Cell. Biol. 4: 679–689.CrossRefGoogle ScholarPubMed
Tskhovrebova, L., and Trinick, J. 2004. Properties of titin immunoglobulin and fibronectin-3 domains. J. Biol. Chem. 279: 46351–46354.CrossRefGoogle ScholarPubMed
Tskhovrebova, L., Trinick, J., Sleep, J. A., and Simmons, R. M. 1997. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 387: 308–312.CrossRefGoogle ScholarPubMed
Vallenius, T., Luukko, K., and Makela, T. P. 2000. CLP-36 PDZ-LIM protein associates with nonmuscle alpha-actinin-1 and alpha-actinin-4. J. Biol. Chem. 275: 11100–11105.CrossRefGoogle ScholarPubMed
Watanabe, K., Muhle-Goll, C., Kellermayer, M. S., Labeit, S., and Granzier, H. 2002. Different molecular mechanics displayed by titin’s constitutively and differentially expressed tandem Ig segments. J. Struct. Biol. 137: 248–258.CrossRefGoogle ScholarPubMed
Weston, B. S., Bagneris, C., Price, R. G., and Stirling, J. L. 2001. The polycystin-1 C-type lectin domain binds carbohydrate in a calcium-dependent manner, and interacts with extracellular matrix proteins in vitro. Biochim. Biophys. Acta. 1536: 161–176.CrossRefGoogle Scholar
Wiita, A. P., Ainavarapu, S. R., Huang, H. H., and Fernandez, J. M. 2006. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA. 103: 7222–7227.CrossRefGoogle Scholar
Williams, P. M., Fowler, S. B., Best, R. B., Toca-Herrera, J. L., Scott, K. A., Steward, A., and Clarke, J. 2003. Hidden complexity in the mechanical properties of titin. Nature. 422: 446–449.CrossRefGoogle ScholarPubMed
Vink, H., and Duling, B. R. 1996. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79: 581–589.CrossRefGoogle ScholarPubMed
Vogel, V. 2006. Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35: 459–488.CrossRefGoogle ScholarPubMed
Vogel, V., and Sheetz, M. 2006. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7: 265–275.CrossRefGoogle ScholarPubMed
Wolff, C., and Lai, C. S. 1988. Evidence that the two amino termini of plasma fibronectin are in close proximity: A fluorescence energy transfer study. Biochemistry. 27: 3483–3487.CrossRefGoogle Scholar
Wolff, C., and Lai, C. S. 1989. Fluorescence energy transfer detects changes in fibronectin structure upon surface binding. Arch Biochem Biophys. 268: 536–545.CrossRefGoogle Scholar
Wolff, C. E., and Lai, C. S. 1990. Inter-sulfhydryl distances in plasma fibronectin determined by fluorescence energy transfer: Effect of environmental factors. Biochemistry. 29: 3354–3361.CrossRefGoogle ScholarPubMed
Vollrath, M. A., Kwan, K. Y., and Corey, D. P. 2007. The micromachinery of mechanotransduction in hair cells. Annu. Rev. Neurosci. 30: 339–365.CrossRefGoogle Scholar
von Wichert, G., Haimovich, B., Feng, G. S., and Sheetz, M. P. 2003. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. Embo J. 22: 5023–5035.CrossRefGoogle ScholarPubMed
Vonderheide, R. H., and Springer, T. A. 1992. Lymphocyte adhesion through very late antigen 4: Evidence for a novel binding site in the alternatively spliced domain of vascular cell adhesion molecule 1 and an additional alpha 4 integrin counter-receptor on stimulated endothelium. J. Exp. Med. 175: 1433–1442.CrossRefGoogle ScholarPubMed
Wright, C. F., Teichmann, S. A., Clarke, J., and Dobson, C. M. 2005. The importance of sequence diversity in the aggregation and evolution of proteins. Nature. 438: 878–881.Google ScholarPubMed
Wu, C., Keivens, V. M., O’Toole, T. E., McDonald, J. A., and Ginsberg, M. H. 1995. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell. 83: 715–724.CrossRefGoogle ScholarPubMed
Ylanne, J., Scheffzek, K., Young, P., and Saraste, M. 2001. Crystal structure of the alpha-actinin rod reveals an extensive torsional twist. Structure. 9: 597–604.CrossRefGoogle ScholarPubMed
Young, P., Ferguson, C., Banuelos, S., and Gautel, M. 1998. Molecular structure of the sarcomeric Z-disk: Two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. Embo J. 17: 1614–1624.CrossRefGoogle Scholar
Yusuf-Makagiansar, H., Anderson, M. E., Yakovleva, T. V., Murray, J. S., and Siahaan, T. J. 2002. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 22: 146–167.CrossRefGoogle ScholarPubMed
Zaidel-Bar, R., Cohen, M., Addadi, L., and Geiger, B. 2004. Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans. 32: 416–420.CrossRefGoogle ScholarPubMed
Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R., and Geiger, B. 2007. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9: 858–867.CrossRefGoogle ScholarPubMed
Zamir, E., Katz, M., Posen, Y., Erez, N., Yamada, K. M., Katz, B. Z., Lin, S., Lin, D. C., Bershadsky, A., Kam, Z., and Geiger, B. 2000. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat. Cell Biol. 2: 191–196.CrossRefGoogle ScholarPubMed
Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A. M., and Burridge, K. 1998. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141: 539–551.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×