Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T15:51:17.507Z Has data issue: false hasContentIssue false

Part VII - Adjunctive Therapy

Published online by Cambridge University Press:  01 December 2023

Omar Viswanath
Affiliation:
Creighton University, Omaha
Ivan Urits
Affiliation:
Southcoast Brain & Spine Center, Wareham
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Moayedi, M, Davis, KD. Theories of pain: From specificity to gate control. J Neurophysiol. 2013;109(1):512. https://pubmed.ncbi.nlm.nih.gov/23034364/.CrossRefGoogle ScholarPubMed
Viswanath, O, Urits, I, Bouley, E et al. Evolving spinal cord stimulation technologies and clinical implications in chronic pain management. Curr Pain Headache Rep. 2019;23(6):39. https://doi.org/10.1007/s11916-019-0778-9.CrossRefGoogle ScholarPubMed
Urits, I, Schwartz, R, Smoots, D et al. Peripheral neuromodulation for the management of headache. Anesthesiol Pain Med. 2020;10(6):110. https://pubmed.ncbi.nlm.nih.gov/34150578/.CrossRefGoogle ScholarPubMed
Börjesson, M, Andréll, P, Mannheimer, C. Spinal cord stimulation for long-term treatment of severe angina pectoris: What does the evidence say? Future Cardiol. 2011;7(6):825833. https://pubmed.ncbi.nlm.nih.gov/22050067/.CrossRefGoogle ScholarPubMed
Rock, AK, Truong, H, Park, YL, Pilitsis, J. Spinal cord stimulation. Neurosurg Clin North Am. 2019;30(2):169194.CrossRefGoogle ScholarPubMed
North, RB, Kidd, DH, Farrokhi, F, Piantadosi, SA. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: A randomized, controlled trial. Neurosurgery. 2005;56(1):98106. https://pubmed.ncbi.nlm.nih.gov/15617591/.CrossRefGoogle ScholarPubMed
Kumar, K, Taylor, RS, Jacques, L et al. The effects of spinal cord stimulation in neuropathic pain are sustained: A 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery. 2008;63(4):762768. https://pubmed.ncbi.nlm.nih.gov/18981888/.CrossRefGoogle ScholarPubMed
Deer, T, Slavin, KV, Amirdelfan, K et al. Success using neuromodulation with BURST (SUNBURST) study: Results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation Technol Neural Interface. 2018;21(1):5666.CrossRefGoogle ScholarPubMed
Kapural, L, Yu, C, Doust, MW et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: The SENZA-RCT randomized controlled trial. Anesthesiology. 2015;123(4):851860. https://pubmed.ncbi.nlm.nih.gov/26218762/.CrossRefGoogle ScholarPubMed
Kapural, L, Yu, C, Doust, MW et al. Comparison of 10-kHz high-frequency and traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: 24-month results from a multicenter, randomized, controlled pivotal trial. Neurosurgery. 2016;79(5):667676.CrossRefGoogle ScholarPubMed
Harden, RN, Bruehl, S, Perez, RSGM et al. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for complex regional pain syndrome. Pain. 2010;150(2):268274. doi: 10.1016/j.pain.2010.04.030.CrossRefGoogle ScholarPubMed
Barolat, G, Schwartzman, R, Woo, R. Epidural spinal cord stimulation in the management of reflex sympathetic dystrophy. Stereotact Funct Neurosurg. 1989;53(1):2939. https://pubmed.ncbi.nlm.nih.gov/2740656/.CrossRefGoogle ScholarPubMed
Kemler, MA, Barendse, GAM, van Kleef, M et al. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med. 2000;343(9):618624. https://pubmed.ncbi.nlm.nih.gov/10965008/.CrossRefGoogle ScholarPubMed
Mannheimer, C, Eliasson, T, Andersson, B et al. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action. BMJ. 1993;307(6902):477480. https://pubmed.ncbi.nlm.nih.gov/8400930/.CrossRefGoogle ScholarPubMed
Eliasson, T, Jern, S, Augustinsson, LE, Mannheimer, C. Safety aspects of spinal cord stimulation in severe angina pectoris. Coron Artery Dis. 1994;5(10):845850. https://pubmed.ncbi.nlm.nih.gov/7866604/.Google ScholarPubMed
Hautvast, RWM, Dejongste, MJL, Staal, MJ, Van Gilst, WH, Lie, KI. Spinal cord stimulation in chronic intractable angina pectoris: A randomized, controlled efficacy study. Am Heart J. 1998;136(6):11141120. https://pubmed.ncbi.nlm.nih.gov/9842028/.CrossRefGoogle ScholarPubMed
Mannheimer, C, Eliasson, T, Augustinsson, LE et al. Electrical stimulation versus coronary artery bypass surgery in severe angina pectoris: The ESBY study. Circulation. 1998;97(12):11571163. https://pubmed.ncbi.nlm.nih.gov/9537342/.CrossRefGoogle ScholarPubMed
Augustinsson, L‐E. Epidural spinal electrical stimulation in peripheral vascular disease. Pacing Clin Electrophysiol. 1987;10(1 Pt 2):205206. https://pubmed.ncbi.nlm.nih.gov/2436178/.CrossRefGoogle ScholarPubMed
Robaina, FJ, Dominguez, M, Diaz, M, Rodriguez, JL, De Vera, JA. Spinal cord stimulation for relief of chronic pain in vasospastic disorders of the upper limbs. Neurosurgery. 1989;24(1):6367. https://pubmed.ncbi.nlm.nih.gov/2784547/.CrossRefGoogle ScholarPubMed
De La Cruz, P, Fama, C, Roth, S et al. Predictors of spinal cord stimulation success. Neuromodulation. 2015;18(7):599602. https://pubmed.ncbi.nlm.nih.gov/26119040/.CrossRefGoogle ScholarPubMed
Haider, S, Owusu-Sarpong, S, Peris Celda, M et al. A single center prospective observational study of outcomes with tonic cervical spinal cord stimulation. Neuromodulation. 2017;20(3):263268. https://pubmed.ncbi.nlm.nih.gov/27491956/.CrossRefGoogle ScholarPubMed
Babu, R, Hazzard, MA, Huang, KT et al. Outcomes of percutaneous and paddle lead implantation for spinal cord stimulation: A comparative analysis of complications, reoperation rates, and health-care costs. Neuromodulation. 2013;16(5):418427. https://pubmed.ncbi.nlm.nih.gov/23647789/.CrossRefGoogle ScholarPubMed
North, RB, Kidd, DH, Petrucci, L, Dorsi, MJ. Spinal cord stimulation electrode design: A prospective, randomized, controlled trial comparing percutaneous with laminectomy electrodes: Part II-clinical outcomes. Neurosurgery. 2005;57(5):990995. https://pubmed.ncbi.nlm.nih.gov/16284568/.CrossRefGoogle ScholarPubMed
Veizi, E, Hayek, SM, North, J et al. Spinal cord stimulation (SCS) with anatomically guided (3D) neural targeting shows superior chronic axial low back pain relief compared to traditional SCS-LUMINA study. Pain Med. 2017;18(8):15341548. https://pubmed.ncbi.nlm.nih.gov/28108641/.Google ScholarPubMed
North, RB, Kidd, DH, Olin, JC, Sieracki, JM. Spinal cord stimulation electrode design: Prospective, randomized, controlled trial comparing percutaneous and laminectomy electrodes-part I: Technical outcomes. Neurosurgery. 2002;51(2):381389. https://pubmed.ncbi.nlm.nih.gov/12182776/.Google ScholarPubMed
Roth, SG, Lange, S, Haller, J et al. A prospective study of the intra- and postoperative efficacy of intraoperative neuromonitoring in spinal cord stimulation. Stereotact Funct Neurosurg. 2015;93(5):348354. https://pubmed.ncbi.nlm.nih.gov/26444517/.CrossRefGoogle ScholarPubMed
Shils, JL, Arle, JE. Intraoperative neurophysiologic methods for spinal cord stimulator placement under general anesthesia. Neuromodulation. 2012;15(6):560572. https://pubmed.ncbi.nlm.nih.gov/22672099/.CrossRefGoogle ScholarPubMed
Falowski, SM, Celii, A, Sestokas, AK et al. Awake vs. asleep placement of spinal cord stimulators: A cohort analysis of complications associated with placement. Neuromodulation. 2011;14(2):130135. https://pubmed.ncbi.nlm.nih.gov/21992199/.CrossRefGoogle ScholarPubMed
Tamkus, AA, Scott, AF, Khan, FR. Neurophysiological monitoring during spinal cord stimulator placement surgery. Neuromodulation. 2015;18(6):460464. https://pubmed.ncbi.nlm.nih.gov/25677059/.CrossRefGoogle ScholarPubMed
Schoen, N, Chieng, LO, Madhavan, K, Jermakowicz, WJ, Vanni, S. The use of intraoperative electromyogram during spinal cord stimulator placement surgery: A case series. World Neurosurg. 2017;100:7484. https://pubmed.ncbi.nlm.nih.gov/28034811/.CrossRefGoogle ScholarPubMed
Medical Advisory Secretariat. Spinal cord stimulation for neuropathic pain: An evidence-based analysis. Ont Health Technol Assess Ser. 2005;5(4):178. https://pubmed.ncbi.nlm.nih.gov/23074473/.Google Scholar
Lind, G, Meyerson, BA, Winter, J, Linderoth, B. Intrathecal baclofen as adjuvant therapy to enhance the effect of spinal cord stimulation in neuropathic pain: A pilot study. Eur J Pain. 2004;8(4):377383. https://pubmed.ncbi.nlm.nih.gov/15207519/.CrossRefGoogle ScholarPubMed
Schechtmann, G, Lind, G, Winter, J, Meyerson, BA, Linderoth, B. Intrathecal clonidine and baclofen enhance the pain-relieving effect of spinal cord stimulation: A comparative placebo-controlled, randomized trial. Neurosurgery. 2010;67(1):173181. https://pubmed.ncbi.nlm.nih.gov/20559103/.CrossRefGoogle ScholarPubMed
Gee, L, Smith, HC, Ghulam-Jelani, Z et al. Spinal cord stimulation for the treatment of chronic pain reduces opioid use and results in superior clinical outcomes when used without opioids. Neurosurgery. 2019;84(1):217226. https://pubmed.ncbi.nlm.nih.gov/29538696/.CrossRefGoogle ScholarPubMed

References

Urits, I, Capuco, A, Sharma, M et al. Stem cell therapies for treatment of discogenic low back pain: A comprehensive review. Curr Pain Headache Rep. 2019;23(9):112. https://doi.org/10.1007/S11916-019-0804-Y.Google ScholarPubMed
Zhang, YG, Guo, TM, Guo, X, Wu, SX. Clinical diagnosis for discogenic low back pain. Int J Biol Sci. 2009;5(7):647658. https://doi.org/10.7150/IJBS.5.647.CrossRefGoogle ScholarPubMed
Barakat, AH, Elwell, VA, Lam, KS. Stem cell therapy in discogenic back pain. J Spine Surg. 2019;5(4):561583. https://doi.org/10.21037/JSS.2019.09.22.CrossRefGoogle ScholarPubMed
Fujii, K, Yamazaki, M, Kang, JD et al. Discogenic back pain: Literature review of definition, diagnosis, and treatment. JBMR Plus. 2019;3(5):e10180. https://doi.org/10.1002/JBM4.10180.CrossRefGoogle ScholarPubMed
Hong, C, Lee, CG, Song, H. Characteristics of lumbar disc degeneration and risk factors for collapsed lumbar disc in Korean farmers and fishers. Ann Occup Environ Med. 2021;33(1):e16. https://doi.org/10.35371/AOEM.2021.33.E16.CrossRefGoogle ScholarPubMed
Dowdell, J, Erwin, M, Choma, T et al. Intervertebral disk degeneration and repair. Clin Neurosurg. 2017;80(3):S46S54. https://doi.org/10.1093/NEUROS/NYW078.CrossRefGoogle ScholarPubMed
Richardson, SM, Kalamegam, G, Pushparaj, PN et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods. 2016;99:6980. https://doi.org/10.1016/J.YMETH.2015.09.015.CrossRefGoogle ScholarPubMed
Urits, I, Viswanath, O, Galasso, AC et al. Platelet-rich plasma for the treatment of low back pain: A comprehensive review. Curr Pain Headache Rep. 2019;23(7):111. https://doi.org/10.1007/s11916-019-0797-6.Google ScholarPubMed
Zeckser, J, Wolff, M, Tucker, J, Goodwin, J. Multipotent mesenchymal stem cell treatment for discogenic low back pain and disc degeneration. Stem Cells Int. 2016;2016. https://doi.org/10.1155/2016/3908389.CrossRefGoogle ScholarPubMed
Dhillon, M, Behera, P, Patel, S, Shetty, V. Orthobiologics and platelet rich plasma. Indian J Orthop. 2014;48(1):19. https://doi.org/10.4103/0019-5413.125477.CrossRefGoogle ScholarPubMed
Wang, S-z, Chang, Q, Lu, J, Wang, C. Growth factors and platelet-rich plasma: Promising biological strategies for early intervertebral disc degeneration. Int Orthop. 2015;39(5):927934. https://doi.org/10.1007/S00264-014-2664-8.CrossRefGoogle ScholarPubMed
Pachito, DV, Bagattini, AM, de Almeida, AM, Mendrone-Júnior, A, Riera, R. Technical procedures for preparation and administration of platelet-rich plasma and related products: A scoping review. Front Cell Dev Biol. 2020;8:598816. https://doi.org/10.3389/FCELL.2020.598816/FULL.CrossRefGoogle ScholarPubMed

References

Urits, I, Hubble, A, Peterson, E et al. An update on cognitive therapy for the management of chronic pain: A comprehensive review. Curr Pain Headache Rep. 2019;23(8):17. https://doi.org/10.1007/s11916-019-0794-9.Google ScholarPubMed
Heapy, AA, Wandner, L, Driscoll, MA et al. Developing a typology of patient-generated behavioral goals for cognitive behavioral therapy for chronic pain (CBT-CP): Classification and predicting outcomes. J Behav Med. 2017;41(2):174185. https://doi.org/10.1007/S10865-017-9885-4.CrossRefGoogle ScholarPubMed
Nascimento, SS, Oliveira, LR, DeSantana, JM. Correlations between brain changes and pain management after cognitive and meditative therapies: A systematic review of neuroimaging studies. Complement Ther Med. 2018;39:137145. https://doi.org/10.1016/J.CTIM.2018.06.006.CrossRefGoogle ScholarPubMed
Shpaner, M, Kelly, C, Lieberman, G et al. Unlearning chronic pain: A randomized controlled trial to investigate changes in intrinsic brain connectivity following cognitive behavioral therapy. Neuroimage Clin. 2014;5:365376. https://doi.org/10.1016/J.NICL.2014.07.008.CrossRefGoogle ScholarPubMed
Yuan, M, Zhu, H, Qiu, C et al. Group cognitive behavioral therapy modulates the resting-state functional connectivity of amygdala-related network in patients with generalized social anxiety disorder. BMC Psychiatry. 2016;16(1):19. https://doi.org/10.1186/S12888-016-0904-8/TABLES/2.CrossRefGoogle ScholarPubMed
Yoshino, A, Okamoto, Y, Okada, G et al. Changes in resting-state brain networks after cognitive-behavioral therapy for chronic pain. Psychol Med. 2018;48(7):11481156. https://doi.org/10.1017/S0033291717002598.CrossRefGoogle ScholarPubMed
Ng, QX, Venkatanarayanan, N, Kumar, L. A systematic review and meta-analysis of the efficacy of cognitive behavioral therapy for the management of pediatric migraine. Headache. 2017;57(3):349362. https://doi.org/10.1111/HEAD.13016.CrossRefGoogle ScholarPubMed
Cousins, S, Ridsdale, L, Goldstein, LH et al. A pilot study of cognitive behavioural therapy and relaxation for migraine headache: A randomised controlled trial. J Neurol. 2015;262(12):27642772. https://doi.org/10.1007/S00415-015-7916-Z.CrossRefGoogle ScholarPubMed
Haugstad, GK, Kirste, U, Leganger, S, Haakonsen, E, Haugstad, TS. Somatocognitive therapy in the management of chronic gynaecological pain: A review of the historical background and results of a current approach. Scand J Pain. 2011;2(3):124129. https://doi.org/10.1016/J.SJPAIN.2011.02.005/MACHINEREADABLECITATION/RIS.CrossRefGoogle Scholar
Haugstad, GK, Haugstad, TS, Kirste, UM et al. Continuing improvement of chronic pelvic pain in women after short-term Mensendieck somatocognitive therapy: Results of a 1-year follow-up study. Am J Obstet Gynecol. 2008;199(6):615.e1–615.e8. https://doi.org/10.1016/j.ajog.2008.06.019.CrossRefGoogle ScholarPubMed
Menga, G, Ing, S, Khan, O et al. Fibromyalgia: Can online cognitive behavioral therapy help? Ochsner J. 2014;14(3):343. /pmc/articles/PMC4171792/.Google Scholar
Ismail, A, Moore, C, Alshishani, N, Yaseen, K, Alshehri, MA. Cognitive behavioural therapy and pain coping skills training for osteoarthritis knee pain management: A systematic review. J Phys Ther Sci. 2017;29(12):2228. https://doi.org/10.1589/JPTS.29.2228.CrossRefGoogle ScholarPubMed
O’Sullivan, PB, Caneiro, JP, O’Keeffe, M et al. Cognitive functional therapy: An integrated behavioral approach for the targeted management of disabling low back pain. Phys Ther. 2018;98(5):408410. https://doi.org/10.1093/PTJ/PZY022.CrossRefGoogle ScholarPubMed
O’Sullivan, K, Dankaerts, W, O’Sullivan, L, O’Sullivan, PB. Cognitive functional therapy for disabling nonspecific chronic low back pain: Multiple case-cohort study. Phys Ther. 2015;95(11):14781488. https://doi.org/10.2522/PTJ.20140406.CrossRefGoogle ScholarPubMed

References

Califf, RM, Woodcock, J, Ostroff, S. A proactive response to prescription opioid abuse. New Engl J Med. 2016;374:14801485.CrossRefGoogle ScholarPubMed
Stanos, S, Brodsky, M, Argoff, C et al. Rethinking chronic pain in a primary care setting. Postgrad Med. 2016;128(5):502515.CrossRefGoogle Scholar
Kroenke, K, Cheville, A. Management of chronic pain in the aftermath of the opioid backlash. JAMA. 2017;317(23):2365.CrossRefGoogle ScholarPubMed
Theisen, K, Jacobs, B, Macleod, L et al. The United States opioid epidemic: A review of the surgeon’s contribution to it and health policy initiatives. BJU Int. 2018;122:754759.CrossRefGoogle ScholarPubMed
Fuentes, AV, Pineda, MD, Venkata, KCN. Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice. Pharmacy (Basel). 2018;6(2):43.CrossRefGoogle Scholar
Mills, SEE, Nicolson, KP, Smith, BH. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br J Anaesth. 2019;123(2):e273e283.CrossRefGoogle ScholarPubMed
Simpson, CA. Complementary medicine in chronic pain treatment. Phys Med Rehabil Clin North Am. 2015;26(2):321347.CrossRefGoogle ScholarPubMed
Vickers, AJ, Cronin, AM, Maschino, AC et al. Acupuncture for chronic pain: Individual patient data meta-analysis. Arch Intern Med. 2012;172(19):14441453.CrossRefGoogle ScholarPubMed
Patil, S, Sen, S, Bral, M et al. The role of acupuncture in pain management. Curr Pain Headache Rep. 2016;20(4):22. doi: 10.1007/s11916-016-0552-1.CrossRefGoogle ScholarPubMed
Hall, A, Copsey, B, Richmond, H et al. Effectiveness of tai chi for chronic musculoskeletal pain conditions: Updated systematic review and meta-analysis. Phys Ther. 2017;97(2):227238.CrossRefGoogle ScholarPubMed
Bodine, WA. Osteopathic manipulative treatment: A primary care approach. Am Fam Physician. 2019;99(4):214. PMID: 30763051.Google ScholarPubMed
Hawk, C, Whalen, W, Farabaugh, RJ et al. Best practices for chiropractic management of patients with chronic musculoskeletal pain: A clinical practice guideline. J Altern Complement Med. 2020;26(10):884901.CrossRefGoogle ScholarPubMed
Vos, T, Allen, C, Arora, M. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease study 2016. Lancet. 2017;390:12111259.CrossRefGoogle Scholar
Yong, RJ, Mullins, PM, Bhattacharyya, N. Prevalence of chronic pain among adults in the United States. Pain. 2022;163(2):e328e332.CrossRefGoogle ScholarPubMed
Fayaz, A, Croft, P, Langford, RM, Donaldson, LJ, Jones, GT. Prevalence of chronic pain in the UK: A systematic review and meta-analysis of population studies. BMJ Open. 2016;6(6):e010364. doi: 10.1136/bmjopen-2015-010364.CrossRefGoogle Scholar
Greenspan, J, Craft, R, LeResche, L. Studying sex and gender differences in pain and analgesia: A consensus report. Pain. 2007;132:S26S45.CrossRefGoogle ScholarPubMed
Ferreira Kdos, S, Speciali, J. Epidemiology of chronic pain in the office of a pain specialist neurologist. Arq Neuropsiquiatr. 2015;73:582585.CrossRefGoogle ScholarPubMed
Malon, J, Shah, P, Koh, WY et al. Characterizing the demographics of chronic pain patients in the state of Maine using the Maine all payer claims database. BMC Public Health. 2018;18:810. doi: 10.1186/s12889-018-5673-5.CrossRefGoogle ScholarPubMed
Janevic, MR, McLaughlin, SJ, Heapy, AA, Thacker, C, Piette, JD. Racial and socioeconomic disparities in disabling chronic pain: Findings from the health and retirement study. J Pain. 2017;18:14591467.CrossRefGoogle ScholarPubMed
Geneen, LJ, Moore, RA, Clarke, C et al. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst Rev. 2017;1(1):CD011279.Google ScholarPubMed
Elliott, A, Smith, B, Hannaford, P. The course of chronic pain in the community: Results of a 4-year follow-up study. Pain. 2002;99:299307.CrossRefGoogle ScholarPubMed
McIntosh, AM, Hall, LS, Zeng, Y et al. Genetic and environmental risk for chronic pain and the contribution of risk variants for major depressive disorder: A family-based mixed-model analysis. PLoS Med. 2016;13(8):e1002090.CrossRefGoogle ScholarPubMed
Barnett, K, Mercer, SW, Norbury, M et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet. 2012;380:3743.CrossRefGoogle ScholarPubMed
de Heer, E, Ten Have, M, van Marwijk, HWJ. Pain as a risk factor for common mental disorders. Results from the Netherlands mental health survey and incidence study-2: A longitudinal population-based study. Pain. 2018;159:712718.CrossRefGoogle Scholar
Stone, AA, Broderick, JE. Obesity and pain are associated in the United States. Obesity. 2012;20:1149111495.CrossRefGoogle ScholarPubMed
Zhuang, Y, Xing, JJ, Li, J, Zeng, BY, Liang, FR. History of acupuncture research. Int Rev Neurobiol. 2013;111:123.CrossRefGoogle ScholarPubMed
Lim, T-K, Ma, Y, Berger, F, Litscher, G. Acupuncture and neural mechanism in the management of low back pain-an update. Medicines. 2018;5(3):63. doi: 10.3390/medicines5030063.CrossRefGoogle ScholarPubMed
Wilkinson, J, Faleiro, R. Acupuncture in pain management. Contin Educ Anaesth Crit Care Pain. 2007;7(4):135138.CrossRefGoogle Scholar
Lao, L. Acupuncture techniques and devices. J Altern Complement Med. 1996;2(1):2325.CrossRefGoogle ScholarPubMed
Hall, A, Copsey, B, Richmond, H et al. Effectiveness of tai chi for chronic musculoskeletal pain conditions: Updated systematic review and meta-analysis. Phys Ther. 2017;97(2):227238.CrossRefGoogle ScholarPubMed
Slattengren, AH, Nissly, T, Blustin, J, Bader, A, Westfall, E. Best uses of osteopathic manipulation. J Fam Pract. 2017;66(12):743747.Google ScholarPubMed
Seffinger, MA, Hruby, RJ, Rogers, FJ et al. Philosophy of osteopathic medicine. In Seffinger, MA, Hruby, R, Willard, FH, Licciardone, J, eds. Foundations of osteopathic medicine: Philosophy, science, clinical applications, and research. 4th ed. Wolters Kluwer; 2018. pp. 218.Google Scholar
Licciardone, JC, Schultz, MJ, Amen, B. Osteopathic manipulation in the management of chronic pain: Current perspectives. J Pain Res. 2020;13:18391847.CrossRefGoogle ScholarPubMed
Ernst, E. Chiropractic: A critical evaluation. J Pain Symptom Manage. 2008;35(5):544562.CrossRefGoogle ScholarPubMed
Mu, J, Furlan, AD, Lam, WY et al. Acupuncture for chronic nonspecific low back pain. Cochrane Database Syst Rev. 2020;12(12):CD013814.Google ScholarPubMed
Seo, SY, Lee, KB, Shin, JS et al. Effectiveness of acupuncture and electroacupuncture for chronic neck pain: A systematic review and meta-analysis. Am J Chin Med. 2017;45(8):15731595.CrossRefGoogle ScholarPubMed
Qin, Z, Wu, J, Zhou, J, Liu, Z. Systematic review of acupuncture for chronic prostatitis/chronic pelvic pain syndrome. Medicine (Baltimore). 2016;95(11):e3095.CrossRefGoogle ScholarPubMed
Sung, SH, Sung, AD, Sung, HK et al. Acupuncture treatment for chronic pelvic pain in women: A systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2018:9415897. doi: 10.1155/2018/9415897.CrossRefGoogle Scholar
Liddle, SD, Pennick, V. Interventions for preventing and treating low-back and pelvic pain during pregnancy. Cochrane Database Syst Rev. 2015;9:CD001139.Google Scholar
Schlaeger, JM, Gabzdyl, EM, Bussell, JL et al. Acupuncture and acupressure in labor. J Midwifery Womens Health. 2017;62(1):1228.CrossRefGoogle ScholarPubMed
Zhang, Q, Yue, J, Golianu, B, Sun, Z, Lu, Y. Updated systematic review and meta-analysis of acupuncture for chronic knee pain. Acupunct Med. 2017;35(6):392403.CrossRefGoogle ScholarPubMed
Zhang, XC, Chen, H, Xu, WT et al. Acupuncture therapy for fibromyalgia: A systematic review and meta-analysis of randomized controlled trials. J Pain Res. 2019;12:527542.CrossRefGoogle ScholarPubMed
Ju, ZY, Wang, K, Cui, HS et al. Acupuncture for neuropathic pain in adults. Cochrane Database Syst Rev. 2017;12(12):CD012057.Google ScholarPubMed
Lau, CHY, Wu, X, Chung, VCH et al. Acupuncture and related therapies for symptom management in palliative cancer care: Systematic review and meta-analysis. Medicine (Baltimore). 2016;95(9):e2901.CrossRefGoogle ScholarPubMed
Linde, K, Allais, G, Brinkhaus, B et al. Acupuncture for the prevention of episodic migraine. Cochrane Database Syst Rev. 2016;6:CD001218.Google Scholar
Wen, YR, Shi, J, Wang, YF et al. Are mind-body exercise beneficial for treating pain, function, and quality of life in middle-aged and old people with chronic pain? A systematic review and meta-analysis. Front Aging Neurosci. 2022;14:921069. doi: 10.3389/fnagi.2022.921069.CrossRefGoogle ScholarPubMed
Chou, R, Deyo, R, Friedly, J et al. Nonpharmacologic therapies for low back pain: A systematic review for an American college of physicians clinical practice guideline. Ann Intern Med. 2017;166(7):493505.CrossRefGoogle ScholarPubMed
Mudano, AS, Tugwell, P, Wells, GA, Singh, JA. Tai chi for rheumatoid arthritis. Cochrane Database Syst Rev. 2019;9(9):CD004849.Google ScholarPubMed
Vasileios, P, Styliani, P, Nifon, G et al. Managing fibromyalgia with complementary and alternative medical exercise: A systematic review and meta-analysis of clinical trials. Rheumatol Int. 2022;42(11):19091923.CrossRefGoogle ScholarPubMed
Zhang, YH, Hu, HY, Xiong, YC et al. Exercise for neuropathic pain: A systematic review and expert consensus. Front Med (Lausanne). 2021;8:756940. doi: 10.3389/fmed.2021.756940.CrossRefGoogle ScholarPubMed
Burschka, JM, Keune, PM, Oy, UH, Oschmann, P, Kuhn, P. Mindfulness-based interventions in multiple sclerosis: Beneficial effects of tai chi on balance, coordination, fatigue and depression. BMC Neurol. 2014;14:165. doi: 10.1186/s12883-014-0165-4.CrossRefGoogle ScholarPubMed
Tavee, J, Rensel, M, Planchon, SM, Butler, RS, Stone, L. Effects of meditation on pain and quality of life in multiple sclerosis and peripheral neuropathy: A pilot study. Int J MS Care. 2011;13(4):163168.CrossRefGoogle ScholarPubMed
Chen, YW, Hunt, MA, Campbell, KL, Peill, K, Reid, WD. The effect of tai chi on four chronic conditions-cancer, osteoarthritis, heart failure and chronic obstructive pulmonary disease: A systematic review and meta-analyses. Br J Sports Med. 2016;50(7):397407.CrossRefGoogle ScholarPubMed
Dal Farra, F, Risio, RG, Vismara, L, Bergna, A. Effectiveness of osteopathic interventions in chronic non-specific low back pain: A systematic review and meta-analysis. Complement Ther Med. 2021;56:102616.CrossRefGoogle ScholarPubMed
Franke, H, Franke, JD, Belz, S, Fryer, G. Osteopathic manipulative treatment for low back and pelvic girdle pain during and after pregnancy: A systematic review and meta-analysis. J Bodyw Mov Ther. 2017;21(4):752762.CrossRefGoogle ScholarPubMed
Dal Farra, F, Buffone, F, Risio, RG et al. Effectiveness of osteopathic interventions in patients with non-specific neck pain: A systematic review and meta-analysis. Complement Ther Clin Pract. 2022;49:101655.CrossRefGoogle ScholarPubMed
Cerritelli, F, Ginevri, L, Messi, G et al. Clinical effectiveness of osteopathic treatment in chronic migraine: 3-armed randomized controlled trial. Complement Ther Med. 2015;23(2):149156.CrossRefGoogle ScholarPubMed
Rubinstein, SM, de Zoete, A, van Middelkoop, M et al. Benefits and harms of spinal manipulative therapy for the treatment of chronic low back pain: Systematic review and meta-analysis of randomised controlled trials. BMJ. 2019;364:l689. doi: 10.1136/bmj.l689.CrossRefGoogle ScholarPubMed
Coulter, ID, Crawford, C, Vernon, H et al. Manipulation and mobilization for treating chronic nonspecific neck pain: A systematic review and meta-analysis for an appropriateness panel. Pain Physician. 2019;22(2):E55E70.CrossRefGoogle ScholarPubMed
Rist, PM, Hernandez, A, Bernstein, C et al. The impact of spinal manipulation on migraine pain and disability: A systematic review and meta-analysis. Headache. 2019;59(4):532542.CrossRefGoogle ScholarPubMed

References

Häuser, W, Welsch, P, Klose, P, Radbruch, L, Fitzcharles, MA. Efficacy, tolerability and safety of cannabis-based medicines for cancer pain: A systematic review with meta-analysis of randomised controlled trials. Schmerz. 2019;33(5):424436 Published online 2019. https://doi.org/10.1007/s00482-019-0373-3.CrossRefGoogle ScholarPubMed
Louis-Gray, K, Tupal, S, Premkumar, LS. TRPV1: A common denominator mediating antinociceptive and antiemetic effects of cannabinoids. Int J Mol Sci. 2022;23(17):10016. Published online 2022. https://doi.org/10.3390/ijms231710016.CrossRefGoogle ScholarPubMed
Köstenberger, M, Nahler, G, Jones, TM, Neuwersch, S, Likar, R. The role of cannabis, cannabidiol and other cannabinoids in chronic pain: The perspective of physicians. J Neuroimmune Pharmacol. 2022;17(1–2):38333. https://doi.org/10.1007/s11481-021-10010-x.CrossRefGoogle ScholarPubMed
MacCallum, CA, Russo, EB. Practical considerations in medical cannabis administration and dosing. Eur J Intern Med. 2018;49:1219. https://doi.org/10.1016/j.ejim.2018.01.004.CrossRefGoogle ScholarPubMed
Boehnke, KF, Yakas, L, Scott, JR et al. A mixed methods analysis of cannabis use routines for chronic pain management. J Cannabis Res. 2022;4(1):111. https://doi.org/10.1186/S42238-021-00116-7.CrossRefGoogle ScholarPubMed
Frane, N, Stapleton, E, Iturriaga, C et al. Cannabidiol as a treatment for arthritis and joint pain: An exploratory cross-sectional study. J Cannabis Res. 2022;4(1):47. https://doi.org/10.1186/s42238-022-00154-9.CrossRefGoogle Scholar
Henderson, LA, Kotsirilos, V, Cairns, EA et al. Medicinal cannabis in the treatment of chronic pain. Aust J Gen Pract. 2021;50. www.abs.gov.au/statistics/people/population/national-state-and-territory-population/dec-2020.CrossRefGoogle Scholar
Stephens, KL, Heineman, JT, Forster, GL, Timko, MP, Degeorge, BR. Cannabinoids and pain for the plastic surgeon: What is the evidence? Ann Plast Surg. 2022;88(5 Suppl 5):S508S511. https://doi.org/10.1097/SAP.0000000000003128.CrossRefGoogle Scholar
Yu, CHJ, Rupasinghe, HPV. Cannabidiol-based natural health products for companion animals: Recent advances in the management of anxiety, pain, and inflammation. Res Vet Sci. 2021;140:3846. https://doi.org/10.1016/J.RVSC.2021.08.001.CrossRefGoogle ScholarPubMed
Baraldi, C, lo Castro, F, Negro, A et al. Oral cannabinoid preparations for the treatment of chronic migraine: A retrospective study. Pain Med. 2022;23(2):396402. https://doi.org/10.1093/PM/PNAB245.CrossRefGoogle ScholarPubMed
Jesus, CHA, Ferreira, MV, Gasparin, AT et al. Cannabidiol enhances the antinociceptive effects of morphine and attenuates opioid-induced tolerance in the chronic constriction injury model. Behav Brain Res. 2022;435:114076. https://doi.org/10.1016/J.BBR.2022.114076.CrossRefGoogle ScholarPubMed
Razavi, Y, Rashvand, M, Sharifi, A et al. Cannabidiol microinjection into the nucleus accumbens attenuated nociceptive behaviors in an animal model of tonic pain. Neurosci Lett. 2021;762:136141. https://doi.org/10.1016/J.NEULET.2021.136141.CrossRefGoogle Scholar
Chou, R, Wagner, J, Ahmed, AY et al. Living systematic review on cannabis and other plant-based treatments for chronic pain. Rockville (MD): Agency for Healthcare Research and Quality (US). Published online October 27, 2021. www.ncbi.nlm.nih.gov/books/NBK586045/. https://doi.org/10.23970/AHRQEPCCER250.CrossRefGoogle Scholar
Campos, RMP, Aguiar, AFL, Paes-Colli, Y et al. Cannabinoid therapeutics in chronic neuropathic pain: From animal research to human treatment. 2021;12:785176. Published online 2021. https://doi.org/10.3389/fphys.2021.785176.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×