Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T08:46:45.376Z Has data issue: false hasContentIssue false

Part I - Models of Cognitive Aging

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access
Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 3 - 124
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anstey, K. J., Hofer, S. M., & Luszcz, M. A. (2003). Cross-sectional and longitudinal patterns of dedifferentiation in late-life cognitive and sensory function: The effects of age, ability, attrition, and occasion of measurement. Journal of Experimental Psychology: General, 132(3), 470487. https://dx.doi.org/10.1037/0096-3445.132.3.470Google Scholar
Anstey, K. J., Lord, S. R., & Williams, P. (1997). Strength in the lower limbs, visual contrast sensitivity, and simple reaction time predict cognition in older women. Psychology and Aging, 12(1), 137144. https://dx.doi.org/10.1037/0882-7974.12.1.137CrossRefGoogle ScholarPubMed
Anstey, K. J., Luszcz, M. A., & Sanchez, L. (2001). A reevaluation of the common factor theory of shared variance among age, sensory function, and cognitive function in older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 56(1), 311. https://dx.doi.org/10.1093/geronb/56.1.p3Google Scholar
Anstey, K., Stankov, L., & Lord, S. (1993). Primary aging, secondary aging, and intelligence. Psychology and Aging, 8(4), 562570. https://dx.doi.org/10.1037//0882-7974.8.4.562Google Scholar
Arbuckle, T. Y., & Gold, D. P. (1993). Aging, inhibition, and verbosity. Journals of Gerontology, 48(5), 225232. https://dx.doi.org/10.1093/geronj/48.5.p225CrossRefGoogle ScholarPubMed
Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In Krantz, D. H., Atkinson, R. C., Luce, R. D., & Suppes, P. (Eds.), Learning, memory and thinking (Contemporary developments in mathematical psychology, Vol. 1) (pp. 242293). Oxford: W. H. Freeman.Google Scholar
Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging, 12(1), 1221. https://dx.doi.org/10.1037/0882-7974.12.1.12Google Scholar
Belleville, S., Clément, F., Mellah, S., et al. (2011). Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain, 134(Pt. 6), 16231634. https://dx.doi.org/10.1093/brain/awr037Google Scholar
Berry, A. S., Zanto, T. P., Clapp, W. C., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS One, 5(7), e11537. https://dx.doi.org/10.1371/journal.pone.0011537Google Scholar
Bowman, C. R., Chamberlain, J. D., & Dennis, N. A. (2019). Sensory representations supporting memory specificity: Age effects on behavioral and neural discriminability. Journal of Neuroscience, 39(12), 22652275. https://dx.doi.org/10.1523/jneurosci.2022-18.2019Google Scholar
Bunting, M. (2006). Proactive interference and item similarity in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(2), 183196. https://dx.doi.org/10.1037/0278-7393.32.2.183Google Scholar
Burianová, H., Lee, Y., Grady, C. L., & Moscovitch, M. (2013). Age-related dedifferentiation and compensatory changes in the functional network underlying face processing. Neurobiology of Aging, 34(12), 27592767. https://dx.doi.org/10.1016/j.neurobiolaging.2013.06.016Google Scholar
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85100. https://dx.doi.org/10.1037//0882-7974.17.1.85CrossRefGoogle ScholarPubMed
Cabeza, R., Albert, M., Belleville, S., et al. (2018). Maintenance, reserve, and compensation: The cognitive neuroscience of healthy aging. Nature Reviews Neuroscience, 19(11), 701710. https://dx.doi.org/10.1038/s41583-018-0068-2Google Scholar
Cabeza, R., & Dennis, N. A. (2012). Frontal lobes and aging: Deterioration and Compensation. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function (2nd ed., pp. 628652). New York: Oxford University Press.Google Scholar
Cabeza, R., Grady, C. L., Nyberg, L., et al. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. Journal of Neuroscience, 17(1), 391400. https://dx.doi.org/10.1523/jneurosci.17-01-00391.1997Google Scholar
Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462473. https://dx.doi.org/10.1016/j.cortex.2009.11.009Google Scholar
Carp, J., Park, J., Polk, T. A., & Park, D. C. (2011). Age differences in neural distinctiveness revealed by multi-voxel pattern analysis. NeuroImage, 56(2), 736743. https://dx.doi.org/10.1016/j.neuroimage.2010.04.267Google Scholar
Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory and Cognition, 24(4), 403416. https://dx.doi.org/10.3758/bf03200930Google Scholar
Chevalier, N., Kurth, S., Doucette, M. R., et al. (2015). Myelination is associated with processing speed in early childhood: Preliminary insights. PLoS One, 10(10), e0139897. https://dx.doi.org/10.1371/journal.pone.0139897Google Scholar
Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In Craik, F. I. M. & Trehub, S. E. (Eds.), Aging and Cognitive Processes (pp. 191211). New York: Plenum.Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450466. https://dx.doi.org/10.1016/S0022-5371(80)90312-6CrossRefGoogle Scholar
Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cerebral Cortex, 16, 17711782. https://dx.doi.org/10.1093/cercor/bhj112Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18, 12011209. https://dx.doi.org/10.1093/cercor/bhm155Google Scholar
Deary, I. J., Pattie, A., & Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian birth cohort of 1921. Psychological Science, 24, 23612368. https://dx.doi.org/10.1177/0956797613486487CrossRefGoogle ScholarPubMed
DeCaro, R., & Thomas, A. K. (2019). How retrieval success and task demands drive age differences in self-regulated learning. Journal of Memory and Language.Google Scholar
Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of health cognitive aging. In Craik, F. E. M. & Salthouse, T. (Eds.), Handbook of cognitive aging (3rd ed., pp. 154). New York: Psychological Press.Google Scholar
Dennis, N. A., & Cabeza, R. (2011). Age-related dedifferentiation of learning systems: An fMRI study of implicit and explicit learning. Neurobiology of Aging, 32, p. 2318.e17–2318.e30. https://dx.doi.org/10.1016/j.neurobiolaging.2010.04.004Google Scholar
Dodson, C. S., Holland, P. W., & Shimamura, A. P. (1998). On the recollection of specific- and partial-source information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(5), 11211136. https://dx.doi.org/10.1037//0278-7393.24.5.1121Google Scholar
Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 972992. https://dx.doi.org/10.1037//0278-7393.18.5.972Google Scholar
Ferguson, S. A., Hashtroudi, S., & Johnson, M. K. (1992). Age differences in using source-relevant cues. Psychology and Aging, 7(3), 443452. https://dx.doi.org/10.1037/0882-7974.7.3.443Google Scholar
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101135. https://dx.doi.org/10.1037/0096-3445.133.1.101Google Scholar
Gazzaley, A., Sheridan, M. A., Cooney, J. W., & D’Esposito, M. (2007). Age-related deficits in component processes of working memory. Neuropsychology, 21(5), 532539.Google Scholar
Glisky, E. L., Rubin, S. R., & Davidson, P. S. (2001). Source memory in older adults: an encoding or retrieval problem? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(5), 11311146. https://dx.doi.org/10.1037//0278-7393.27.5.1131Google Scholar
Gow, A. J., Johnson, W., Pattie, A., et al. (2011). Stability and change in intelligence from age 11 to ages 70, 79, and 87: The Lothian birth cohorts of 1921 and 1936. Psychology and Aging, 26, 232240. https://dx.doi.org/10.1037/a0021072Google Scholar
Grady, C. L., Maisog, J. M., Horwitz, B., et al. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. Journal of Neuroscience, 14, 14501462. https://dx.doi.org/10.1523/jneurosci.14-03-01450.1994Google Scholar
Grady, C. L., McIntosh, A. R., Horwitz, B., et al. (1995). Age-related reductions in human recognition memory due to impaired encoding. Science, 269, 218221. https://dx.doi.org/10.1126/science.7618082Google Scholar
Grady, C. L., Protzner, A. B., Kovacevic, N., et al. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20, 14321447. https://dx.doi.org/10.1093/cercor/bhp207Google Scholar
Gruppuso, V., Lindsay, D. S., & Kelley, C. M. (1997). The process-dissociation procedure and similarity: Defining and estimating recollection and familiarity in recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(2), 259278. https://dx.doi.org/10.1037/0278-7393.23.2.259Google Scholar
Gutchess, A. H. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346, 579582. https://dx.doi.org/10.1126/science.1254604Google Scholar
Gutchess, A. H., Welsh, R. C., Hedden, T., et al. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17, 8496. https://dx.doi.org/10.1162/0898929052880048Google Scholar
Hamm, V. P., & Hasher, L. (1992). Age and the availability of inferences. Psychology and Aging, 7(1), 5664. https://dx.doi.org/10.1037/0882-7974.7.1.56Google Scholar
Hampstead, B. M., Sathian, K., Phillips, P. A., et al. (2012). Mnemonic strategy training improves memory for object location associations in both healthy elderly and patients with amnestic mild cognitive impairment: A randomized, single-blind study. Neuropsychology, 26, 385399. https://dx.doi.org/10.1037/a0027545CrossRefGoogle ScholarPubMed
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 22, pp. 193–225). San Diego: Academic Press. https://doi.org/10.1016/S0079-7421(08)60041-9Google Scholar
Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1989). Aging and source monitoring. Psychology and Aging, 4(1), 106112. https://dx.doi.org/10.1037//0882-7974.4.1.106Google Scholar
Hedden, T., & Park, D. C. (2003). Contributions of source and inhibitory mechanisms to age-related retroactive interference in verbal working memory. Journal of Experimental Psychology: General, 132(1), 93112. https://dx.doi.org/10.1037/0096-3445.132.1.93Google Scholar
Hintzman, D. L., & Curran, T. (1994). Retrieval dynamics of recognition and frequency judgments: Evidence for separate processes of familiarity and recall. Journal of Memory and Language, 33(1), 118. https://dx.doi.org/10.1006/jmla.1994.1001Google Scholar
Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107129. https://dx.doi.org/10.1016/0001-6918(67)90011-xGoogle Scholar
Hsu, W. Y., Ku, Y., Zanto, T. P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiology of Aging, 36, 23482359. https://dx.doi.org/10.1016/j.neurobiolaging.2015.04.016Google Scholar
Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30(5), 513541. https://dx.doi.org/10.1016/0749-596x(91)90025-fCrossRefGoogle Scholar
Jacoby, L. L. (1999). Ironic effects of repetition: Measuring age-related differences in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 322. https://dx.doi.org/10.1037//0278-7393.25.1.3Google Scholar
Jacoby, L. L., Bishara, A. J., Hessels, S., & Toth, J. P. (2005). Aging, subjective experience, and cognitive control: Dramatic false remembering by older adults. Journal of Experimental Psychology: General, 134(2), 131148. https://dx.doi.org/10.1037/0096-3445.134.2.131CrossRefGoogle ScholarPubMed
Jacoby, L. L., Kelley, C., Brown, J., & Jasechko, J. (1989a). Becoming famous overnight: Limits on the ability to avoid unconscious influences of the past. Journal of Personality and Social Psychology, 56(3), 326338. https://dx.doi.org/10.1037//0022-3514.56.3.326Google Scholar
Jacoby, L. L., Kelley, C. M., & Dywan, J. (1989b). Memory attributions. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 391–422). Lawrence Erlbaum Associates, Inc.Google Scholar
Jacoby, L. L., Yonelinas, A. P., & Jennings, J. M. (1997). The relation between conscious and unconscious (automatic) influences: A declaration of independence. In Cohen, J. D. & Schooler, J. W. (Eds.), Carnegie Mellon Symposia on cognition: Scientific approaches to consciousness (pp. 1347). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Kane, M. J., Hasher, L., Stoltzfus, E. R., Zacks, R. T., & Connelly, S. (1994). Inhibitory attentional mechanisms and aging. Psychology and Aging, 9(1), 103112. https://dx.doi.org/10.1037//0882-7974.9.1.103Google Scholar
Kaszniak, A. W., & Newman, M. C. (2000). Toward a neuropsychology of cognitive aging. In Honn Qualis, S. & Abeles, N. (Eds.), Psychology and the aging revolution: How we adapt to longer life (pp. 4367). Washington: American Psychological Association, Washington, DC.Google Scholar
Kausler, D. H., & Puckett, J. M. (1981a). Adult age differences in memory for sex of voice. Journal of Gerontology, 36(1), 4450. https://dx.doi.org/10.1093/geronj/36.1.44Google Scholar
Kausler, D. H., & Puckett, J. M. (1981b). Modality memory and frequency of occurrence memory for young and middle-aged adults. Experimental Aging Research, 7(3), 235243. https://dx.doi.org/10.1080/03610738108259807Google Scholar
Kelley, C. M., & Sahakyan, L. (2003). Memory, monitoring, and control in the attainment of memory accuracy. Journal of Memory and Language, 48(4), 704721. https://dx.doi.org/10.1016/s0749-596x(02)00504-1Google Scholar
Kiely, K. M., & Anstey, K. J. (2015). Common cause theory in aging. In Pachana, N. (Ed.), Encyclopedia of Geropsychology (pp. 559569). Singapore: Springer.Google Scholar
Kirchhoff, B. A., Anderson, B. A., Smith, S. E., Barch, D. M., & Jacoby, L. L. (2012). Cognitive training-related changes in hippocampal activity associated with recollection in older adults. Neuroimage, 62(3), 19561964. https://dx.doi.org/10.1016/j.neuroimage.2012.06.017Google Scholar
Koen, J. D., Hauck, N., & Rugg, M. D. (2019). The relationship between age, neural differentiation, and memory performance. Journal of Neuroscience, 39, 149162. https://dx.doi.org/10.1101/345181Google Scholar
Li, K. Z., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: Age-related differences in compensatory behavior. Psychological Science, 12(3), 230237. https://dx.doi.org/10.1111/1467-9280.00341Google Scholar
Li, S. C., & Lindenberger, U. (1999). Cross-level unification: A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In Nilsson, L.-G. & Markowitsch, H. J., (Eds.), Cognitive Neuroscience of Memory (pp. 103146). Seattle: Hogrefe & Huber.Google Scholar
Light, L. L. (2012). Dual-process theories of memory in old age: An update. In Naveh-Benjamin, M. & Ohta, N. (Eds.), Memory and aging: Current issues and future directions (pp. 97124). New York: Psychology Press.Google Scholar
Light, L. L., LaVoie, D., Valencia-Laver, D., Albertson Owens, S. A., & Mead, G. (1992). Direct and indirect measures of memory for modality in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(6), 12841297. https://dx.doi.org/10.1037//0278-7393.18.6.1284Google Scholar
Light, L. L., & Zelinski, E. M. (1983). Memory for spatial information in young and old adults. Developmental Psychology, 19(6), 901906. https://dx.doi.org/10.1037//0012-1649.19.6.901Google Scholar
Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9, 339355. https://dx.doi.org/10.1037//0882-7974.9.3.339Google Scholar
Lindenberger, U., & Ghisletta, P. (2009). Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychology and Aging, 24(1), 116. https://dx.doi.org/10.1037/a0014986Google Scholar
Lindenberger, U., Marsiske, M., & Baltes, P. B. (2000). Memorizing while walking: Increase in dual-task costs from young adulthood to old age. Psychology and Aging, 15(3), 417436. https://dx.doi.org/10.1037/0882-7974.15.3.417Google Scholar
Lindsay, D. S., Johnson, M. K., and Kwon, P. (1991). Developmental changes in memory source monitoring. Journal of Experimental Child Psychology, 52(3), 297318. https://dx.doi.org/10.1016/0022-0965(91)90065-zGoogle Scholar
Lustig, C., Hasher, L., & Zacks, R. T. (2007). Inhibitory deficit theory: Recent developments in a “new view.” In Gorfein, D. S. & MacLeod, C. M. (Eds.), Inhibition in cognition (pp. 145162). Washington: American Psychological Association.Google Scholar
Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130(2), 199207. https://dx.doi.org/10.1037/11587-008Google Scholar
Lustig, C., Snyder, A. Z., Bhakta, M., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences USA, 100, 1450414509. https://dx.doi.org/10.1073/pnas.2235925100Google Scholar
May, C. P., Hasher, L., & Kane, M. J. (1999). The role of interference in memory span. Memory and Cognition, 27(5), 759767. https://dx.doi.org/10.3758/bf03198529Google Scholar
McElree, B., Dolan, P. O., & Jacoby, L. L. (1999). Isolating the contributions of familiarity and source information to item recognition: A time course analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(3), 563582. https://dx.doi.org/10.1037/0278-7393.25.3.563Google Scholar
McIntyre, J. S., & Craik, F. I. (1987). Age differences in memory for item and source information. Canadian Journal of Psychology/Revue canadienne de psychologie, 41(2), 175192. https://dx.doi.org/10.1037/h0084154Google Scholar
Mitchell, D. B., Hunt, R. R., & Schmitt, F. A. (1986). The generation effect and reality monitoring: Evidence from dementia and normal aging. Journal of Gerontology, 41(1), 7984. https://dx.doi.org/10.1093/geronj/41.1.79Google Scholar
Mitchell, K. J., Johnson, M. K., Raye, C. L., Mather, M., & D’Esposito, M. (2000). Aging and reflective processes of working memory: Binding and test load deficits. Psychology and Aging, 15(3), 527541. https://dx.doi.org/10.1037//0882-7974.15.3.527Google Scholar
Mitchell, K. J., & Zaragoza, M. S. (2001). Contextual overlap and eyewitness suggestibility. Memory and Cognition, 29(4), 616626. https://dx.doi.org/10.3758/bf03200462Google Scholar
Monge, Z. A., Stanley, M. L., Geib, B. R., Davis, S. W., & Cabeza, R. C. (2018). Functional networks underlying item and source memory: Shared and distinct network components and age-related differences. Neurobiology of Aging, 69, 140150. https://dx.doi.org/10.1016/j.neurobiolaging.2018.05.016Google Scholar
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 11701187. https://dx.doi.org/10.1037//0278-7393.26.5.1170Google Scholar
Naveh-Benjamin, M., Brav, T. K., & Levy, O. (2007). The associative memory deficit of older adults: The role of strategy utilization. Psychology and Aging, 22(1), 202208. https://dx.doi.org/10.1037/0882-7974.22.1.202Google Scholar
Nyberg, L., Sandblom, J., Jones, S., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences USA, 100, 1372813733. https://dx.doi.org/10.1073/pnas.1735487100Google Scholar
O’Hanlon, L., Wilcox, K. A., & Kemper, S. (2001). Age differences in implicit and explicit associative memory: Exploring elaborative processing effects. Experimental Aging Research, 27(4), 341359. https://dx.doi.org/10.1080/03610730109342353Google Scholar
Old, S. R., & Naveh-Benjamin, M. (2008). Memory for people and their actions: Further evidence for an age-related associative deficit. Psychology and Aging, 23(2), 467472. https://dx.doi.org/10.1037/0882-7974.23.2.467Google Scholar
Park, D. C., & Payer, D. (2006). Working memory across the adult lifespan. In Bialystok, E. & Craik, F. I. M. (Eds.), Lifespan cognition: Mechanisms of change (pp. 128142). New York: Oxford University Press.Google Scholar
Park, D. C., Polk, T. A., Park, R., et al. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences USA, 101, 1309113095. https://dx.doi.org/10.1073/pnas.0405148101Google Scholar
Park, D. C., Puglisi, J. T., & Sovacool, M. (1983). Memory for pictures, words, and spatial location in older adults: Evidence for pictorial superiority. Journal of Gerontology, 38(5), 582588. https://dx.doi.org/10.1093/geronj/38.5.582Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. https://dx.doi.org/10.1146/annurev.psych.59.103006.093656Google Scholar
Park, J., Carp, J., Kennedy, K. M., et al. (2012). Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample. Journal of Neuroscience, 32, 21542158. https://dx.doi.org/10.1523/jneurosci.4494-11.2012Google Scholar
Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: A link to cognitive control? Journal of Cognitive Neuroscience, 19, 10211032. https://dx.doi.org/10.1162/jocn.2007.19.6.1021Google Scholar
Pezdek, K. (1983). Memory for items and their spatial locations by young and elderly adults. Developmental Psychology, 19(6), 895900. https://dx.doi.org/10.1037//0012-1649.19.6.895Google Scholar
Rabbitt, P. M. (1968). Channel-capacity, intelligibility and immediate memory. Quarterly Journal of Experimental Psychology, 20(3), 241248. https://dx.doi.org/10.1080/14640746808400158Google Scholar
Rabbitt, P. (1991). Management of the working population. Ergonomics, 34(6), 775790. https://dx.doi.org/10.1080/00140139108967350Google Scholar
Reinitz, M. T., Séguin, J. A., Peria, W., & Loftus, G. R. (2012). Confidence–accuracy relations for faces and scenes: Roles of features and familiarity. Psychonomic Bulletin and Review, 19(6), 10851093. https://dx.doi.org/10.3758/s13423-012-0308-9Google Scholar
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177182. https://dx.doi.org/10.1111/j.1467-8721.2008.00570.xCrossRefGoogle Scholar
Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., et al. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174187. https://dx.doi.org/10.1162/089892900561814Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24, 355370. https://dx.doi.org/10.1007/s11065-014-9270-9Google Scholar
Rhodes, M. G., Castel, A. D., & Jacoby, L. L. (2008). Associative recognition of face pairs by younger and older adults: The role of familiarity-based processing. Psychology and Aging, 23(2), 239249. https://dx.doi.org/10.1037/0882-7974.23.2.239Google Scholar
Rosen, A. C., Prull, M. W., O’Hara, R., et al. (2002). Variable effects of aging on frontal lobe contributions to memory. NeuroReport, 13, 24252428. https://dx.doi.org/10.1097/00001756-200212200-00010Google Scholar
Rossi, S., Miniussi, C., Pasqualetti, P., et al. (2004). Age-related functional changes of prefrontal cortex in long-term memory: A repetitive transcranial magnetic stimulation study. Journal of Neuroscience, 24(36), 79397944. https://dx.doi.org/10.1523/jneurosci.0703-04.2004Google Scholar
Rowe, G., Hasher, L., & Turcotte, J. (2008). Age differences in visuospatial working memory. Psychology and Aging, 23(1), 7984. https://dx.doi.org/10.1037/0882-7974.23.1.79Google Scholar
Salthouse, T. A. (1979). Adult age and the speed-accuracy trade-off. Ergonomics, 22(7), 811821. https://dx.doi.org/10.1080/00140137908924659Google Scholar
Salthouse, T. A. (1985). Speed of behavior and its implications for cognition. In J. E. Birren & K. W. Schaie (Eds.), The handbooks of aging. Handbook of the psychology of aging (pp. 400–426). Van Nostrand Reinhold Co.Google Scholar
Salthouse, T. A. (1985a). Anticipatory processing in transcription typing. Journal of Applied Psychology, 70(2), 264271. https://dx.doi.org/10.1037//0021-9010.70.2.264Google Scholar
Salthouse, T. A. (1991a). Cognitive facets of aging well. Generations: Journal of the American Society on Aging, 15(1), 3538.Google Scholar
Salthouse, T. A. (1991b). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2(3), 179183. https://dx.doi.org/10.1111/j.1467-9280.1991.tb00127.xGoogle Scholar
Salthouse, T. A. (1994). How many causes are there of aging-related decrements in cognitive functioning? Developmental Review, 14, 413437. https://dx.doi.org/10.1006/drev.1994.1016Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. https://dx.doi.org/10.1037//0033-295x.103.3.403Google Scholar
Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54, 3554. https://dx.doi.org/10.1016/s0301-0511(00)00052-1Google Scholar
Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118127. https://dx.doi.org/10.1037/0882-7974.6.1.118Google Scholar
Salthouse, T. A., Legg, S., Palmon, R., & Mitchell, D. R. (1990). Memory factors in age-related differences in simple reasoning. Psychology and Aging, 5(1), 915. https://dx.doi.org/10.1037/0882-7974.5.1.9Google Scholar
Salthouse, T. A., & Mitchell, D. R. (1990). Effects of age and naturally occurring experience on spatial visualization performance. Developmental Psychology, 26(5), 845854. https://dx.doi.org/10.1037/0012-1649.26.5.845Google Scholar
Schacter, D. L., Koutstaal, W., Johnson, M. K., Gross, M. S., & Angell, K. E. (1997). False recollection induced by photographs: A comparison of older and younger adults. Psychology and Aging, 12(2), 203215. https://dx.doi.org/10.1037/0882-7974.12.2.203Google Scholar
Spencer, W. D., & Raz, N. (1995). Differential effects of aging on memory for content and context: A meta-analysis. Psychology and Aging, 10(4), 527539. https://dx.doi.org/10.1037//0882-7974.10.4.527Google Scholar
Spreng, R. N., & Turner, G. R. (2019). The shifting architecture of cognition and brain function in older adulthood. Perspectives on Psychological Science, 14(4), 523–542. https://doi.org/10.1177/1745691619827511Google Scholar
Stine, E. L., Wingfield, A., & Poon, L. W. (1989). Speech comprehension and memory through adulthood: The roles of time and strategy. In Poon, L. W., Rubin, D. C., & Wilson, B. A. (Eds.), Everyday cognition in adulthood and late life (pp. 195221). New York: Cambridge University Press.Google Scholar
Thomas, A. K., & Bulevich, J. B. (2006). Effective cue utilization reduces memory errors in older adults. Psychology and Aging, 21(2), 379389. https://dx.doi.org/10.1037/0882-7974.21.2.379Google Scholar
Thomas, A. K., Bulevich, J. B., & Loftus, E. F. (2003). Exploring the role of repetition and sensory elaboration in the imagination inflation effect. Memory and Cognition, 31(4), 630640. https://dx.doi.org/10.3758/bf03196103Google Scholar
Tipper, S. P. (1991). Mechanisms of visual selective attention. Canadian Psychology/Psychologie Canadienne, 32(4), 640642. http://dx.doi.org/10.1037/h0084644Google Scholar
Tucker-Drob, E. M. (2011). Global and domain-specific changes in cognition throughout adulthood. Developmental Psychology, 47, 331343. https://dx.doi.org/10.1037/a0021361Google Scholar
Tucker-Drob, E. M., Brandmaier, A. M., & Lindenberger, U. (2019). Coupled cognitive changes in adulthood: A meta-analysis. Psychological Bulletin, 145(3), 273301. https://dx.doi.org/10.1037/bul0000179Google Scholar
Turner, G. R., & Spreng, R. N. (2015). Prefrontal engagement and reduced default network suppression co-occur and are dynamically coupled in older adults: The default–executive coupling hypothesis of aging. Journal of Cognitive Neuroscience, 27, 24622476. https://dx.doi.org/10.1162/jocn_a_00869Google Scholar
Wong, J. T., Cramer, S. J., & Gallo, D. A. (2012). Age-related reduction of the confidence–accuracy relationship in episodic memory: Effects of recollection quality and retrieval monitoring. Psychology and Aging, 27(4), 10531065. https://dx.doi.org/10.1037/a0027686Google Scholar
Yonelinas, A. P., & Jacoby, L. L. (1996a). Noncriterial recollection: Familiarity as automatic, irrelevant recollection. Consciousness and Cognition: An International Journal, 5(1–2), 131141. https://dx.doi.org/10.1006/ccog.1996.0008Google Scholar
Yonelinas, A. P., & Jacoby, L. L. (1996b). Response bias and the process-dissociation procedure. Journal of Experimental Psychology: General, 125(4), 422434. https://dx.doi.org/10.1037//0096-3445.125.4.422Google Scholar
Yonelinas, A. P., & Jacoby, L. L. (2012). The process-dissociation approach two decades later: Convergence, boundary conditions, and new directions. Memory and Cognition, 40(5), 663680. https://dx.doi.org/10.3758/s13421-012-0205-5Google Scholar

References

Alexander, G. E., Furey, M. L., Grady, C. L., et al. (1997). Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: Implications for the cognitive reserve hypothesis. American Journal of Psychiatry, 154(2), 165172. https://dx.doi.org/10.1176/ajp.154.2.165Google Scholar
Bennett, D. A., Wilson, R. S., Schneider, J. A., et al. (2003). Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology, 60(12), 19091915. https://dx.doi.org/10.1212/01.wnl.0000069923.64550Google Scholar
Beydoun, M. A., Beydoun, H. A., Gamaldo, A. A., et al. (2014). Epidemiologic studies of modifiable factors associated with cognition and dementia: Systematic review and meta-analysis. BMC Public Health, 14, 643. https://dx.doi.org/10.1186/1471-2458-14-643Google Scholar
Bozzali, M., Dowling, C., Serra, L., et al. (2015). The impact of cognitive reserve on brain functional connectivity in Alzheimer’s disease. Journal of Alzheimer’s Disease, 44(1), 243250. https://dx.doi.org/10.3233/JAD-141824Google Scholar
Braak, H., & Braak, E. (1997). Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiology of Aging, 18(Suppl.4), 8588. https://dx.doi.org/10.1016/s0197-4580(97)00062-6Google Scholar
Brickman, A. M., Siedlecki, K. L., Muraskin, J., et al. (2011). White matter hyperintensities and cognition: Testing the reserve hypothesis. Neurobiology of Aging, 32(9), 15881598. https://dx.doi.org/10.1016/j.neurobiolaging.2009.10.013Google Scholar
Colangeli, S., Boccia, M., Verde, P., et al. (2016). Cognitive reserve in healthy aging and Alzheimer’s disease: A meta-analysis of fMRI studies. American Journal of Alzheimer’s Disease and Other Dementias, 31(5), 443449. https://dx.doi.org/10.1177/1533317516653826Google Scholar
Franzmeier, N., Buerger, K., Teipel, S., et al. (2017a). Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI. Neurobiology of Aging, 50, 152162. https://dx.doi.org/10.1016/j.neurobiolaging.2016.11.013Google Scholar
Franzmeier, N., Caballero, M. A. A., Taylor, A. N. W., et al. (2017b). Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment. Brain Imaging and Behavior, 11(2), 368382. https://dx.doi.org/10.1007/s11682-016-9599-1Google Scholar
Gallaway, P. J., Miyake, H., Buchowski, M. S., et al. (2017). Physical activity: A viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sciences, 7(2), 22. https://dx.doi.org/10.3390/brainsci7020022Google Scholar
Giogkaraki, E., Michaelides, M. P., & Constantinidou, F. (2013). The role of cognitive reserve in cognitive aging: Results from the neurocognitive study on aging. Journal of Clinical and Experimental Neuropsychology, 35(10), 10241035. https://dx.doi.org/10.1080/13803395.2013.847906Google Scholar
Guzzetti, S., & Daini, R. (2014). Inter-hemispheric recruitment as a function of task complexity, age and cognitive reserve. Aging, Neuropsychology, and Cognition, 21(6), 722745. https://dx.doi.org/10.1080/13825585.2013.874522Google Scholar
Hall, C. B., Derby, C., LeValley, A., et al. (2007). Education delays accelerated decline on a memory test in persons who develop dementia. Neurology, 69(17), 16571664. https://dx.doi.org/10.1212/01.wnl.0000278163.82636.30Google Scholar
Hall, C. B., Lipton, R. B., Sliwinski, M., et al. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73(5), 356361. https://dx.doi.org/10.1212/WNL.0b013e3181b04ae3Google Scholar
Hanyu, H., Sato, T., Shimizu, S., et al. (2008). The effect of education on rCBF changes in Alzheimer’s disease: A longitudinal SPECT study. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 21822190. https://dx.doi.org/10.1007/s00259-008-0848-4Google Scholar
Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2), 245263. https://dx.doi.org/10.1037/0882-7974.14.2.245Google Scholar
Jefferson, A. L., Gibbons, L. E., Rentz, D. M., et al. (2011). A life course model of cognitive activities, socioeconomic status, education, reading ability, and cognition. Journal of the American Geriatric Society, 59(8), 14031411. https://dx.doi.org/10.1111/j.1532-5415.2011.03499.xGoogle Scholar
Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology, 43(1), 1320. https://dx.doi.org/10.1212/wnl.43.1_part_1.13Google Scholar
Katzman, R., Terry, R., DeTeresa, R., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23(2), 138144. https://dx.doi.org/10.1002/ana.410230206Google Scholar
Kemppainen, N. M., Aalto, S., Karrasch, M., et al. (2008). Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Annals of Neurology, 63(1), 112118. https://dx.doi.org/10.1002/ana.21212Google Scholar
Kennedy, G., Hardman, R. J., Macpherson, H., Scholey, A. B., & Pipingas, A. (2017). How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. Journal of Alzheimer’s Disease, 55(1), 118. https://dx.doi.org/10.3233/JAD-160665Google Scholar
Mortimer, J. A., Snowdon, D. A., & Markesbery, W. R. (2003). Head circumference, education and risk of dementia: Findings from the Nun Study. Journal of Clinical and Experimental Neuropsychology, 25(5), 671679. https://dx.doi.org/10.1076/jcen.25.5.671.14584Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Backman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305. https://dx.doi.org/10.1016/j.tics.2012.04.005Google Scholar
Oh, H., Razlighi, Q., Gazes, Y., Habeck, C., & Stern, Y. (2016). Protective mechanisms of cognitive reserve revealed by multimodal neuroimaging markers. Alzheimer’s and Dementia, 12(7), 8182. https://doi.org/10.1016/j.jalz.2016.06.1941Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. https://dx.doi.org/10.1146/annurev.psych.59.103006.093656Google Scholar
Puente, A. N., Lindbergh, C. A., & Miller, L. S. (2015). The relationship between cognitive reserve and functional ability is mediated by executive functioning in older adults. Clinical Neuropsychologist, 29(1), 6781. https://dx.doi.org/10.1080/13854046.2015.1005676Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://dx.doi.org/10.1007/s11065-014-9270-9Google Scholar
Richards, M., & Sacker, A. (2003). Lifetime antecedents of cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 25(5), 614624. https://dx.doi.org/10.1076/jcen.25.5.614.14581Google Scholar
Roldan-Tapia, L., Garcia, J., Canovas, R., & Leon, I. (2012). Cognitive reserve, age, and their relation to attentional and executive functions. Applied Neuropsychology: Adult, 19(1), 28. https://dx.doi.org/10.1080/09084282.2011.595458Google Scholar
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology, 7(3), 273295. https://dx.doi.org/http://dx.doi.org/10.1037/0894-4105.7.3.273Google Scholar
Scarmeas, N., Levy, G., Tang, M. X., Manly, J., & Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology, 57(12), 22362242. https://dx.doi.org/10.1212/wnl.57.12.2236Google Scholar
Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625633. https://dx.doi.org/10.1076/jcen.25.5.625.14576Google Scholar
Scarmeas, N., Zarahn, E., Anderson, K. E., et al. (2003). Association of life activities with cerebral blood flow in Alzheimer disease: Implications for the cognitive reserve hypothesis. Archives of Neurology, 60(3), 359365. https://dx.doi.org/10.1001/archneur.60.3.359Google Scholar
Schofield, P. W., Logroscino, G., Andrews, H. F., Albert, S., & Stern, Y. (1997). An association between head circumference and Alzheimer’s disease in a population-based study of aging and dementia. Neurology, 49(1), 3037. https://dx.doi.org/10.1212/wnl.49.1.30Google Scholar
Snowdon, D. A. (1997). Aging and Alzheimer’s disease: Lessons from the Nun Study. Gerontologist, 37(2), 150156. https://dx.doi.org/10.1093/geront/37.2.150Google Scholar
Snowdon, D. A., Greiner, L. H., & Markesbery, W. R. (2000). Linguistic ability in early life and the neuropathology of Alzheimer’s disease and cerebrovascular disease: Findings from the Nun Study. Annals of the New York Academy of Sciences, 903(1), 3438. https://dx.doi.org/10.1111/j.1749-6632.2000.tb06347.xGoogle Scholar
Sole-Padulles, C., Bartres-Faz, D., Junque, C., et al. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 30(7), 11141124. https://dx.doi.org/10.1016/j.neurobiolaging.2007.10.008Google Scholar
Speer, M. E., & Soldan, A. (2015). Cognitive reserve modulates ERPs associated with verbal working memory in healthy younger and older adults. Neurobiology of Aging, 36(3), 14241434. https://dx.doi.org/10.1016/j.neurobiolaging.2014.12.025Google Scholar
Staff, R. T., Murray, A. D., Deary, I. J., & Whalley, L. J. (2004). What provides cerebral reserve? Brain, 127(5), 11911199. https://dx.doi.org/10.1093/brain/awh144Google Scholar
Steffener, J., Reuben, A., Rakitin, B. C., & Stern, Y. (2011). Supporting performance in the face of age-related neural changes: Testing mechanistic roles of cognitive reserve. Brain Imaging and Behavior, 5(3), 212221. https://dx.doi.org/10.1007/s11682-011-9125-4Google Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460. https://dx.doi.org/https://doi.org/10.1017/S1355617702813248Google Scholar
Stern, Y., Albert, S., Tang, M. X., & Tsai, W. Y. (1999). Rate of memory decline in AD is related to education and occupation: Cognitive reserve? Neurology, 53(9), 19421947. https://dx.doi.org/10.1212/wnl.53.9.1942Google Scholar
Stern, Y., Alexander, G. E., Prohovnik, I., & Mayeux, R. (1992). Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease. Annals of Neurology, 32(3), 371375. https://dx.doi.org/10.1002/ana.410320311Google Scholar
Stern, Y., Gazes, Y., Razlighi, Q., Steffener, J., & Habeck, C. (2018). A task-invariant cognitive reserve network. NeuroImage, 178, 3645. https://dx.doi.org/10.1016/j.neuroimage.2018.05.033Google Scholar
Stern, Y., Gurland, B., Tatemichi, T. K., et al. (1994). Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA, 271(13), 10041010. https://dx.doi.org/10.1001/jama.1994.03510370056032Google Scholar
Stern, Y., Tang, M. X., Denaro, J., & Mayeux, R. (1995). Increased risk of mortality in Alzheimer’s disease patients with more advanced educational and occupational attainment. Annals of Neurology, 37(5), 590595.Google Scholar
Wilson, R. S., Mendes de Leon, C. F., Barnes, L. L., et al. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA, 287(6), 742748. https://dx.doi.org/10.1001/jama.287.6.742Google Scholar
Xu, W., Tan, L., Wang, H. F., et al. (2016). Education and risk of dementia: Dose-response meta-analysis of prospective cohort studies. Molecular Neurobiology, 53(5), 31133123. https://dx.doi.org/10.1007/s12035-015-9211-5Google Scholar
Zahodne, L. B., Glymour, M. M., Sparks, C., et al. (2011). Education does not slow cognitive decline with aging: 12-year evidence from the Victoria Longitudinal Study. Journal of the International Neuropsychological Society, 17(6), 10391046. https://dx.doi.org/10.1017/S1355617711001044Google Scholar
Zahodne, L. B., Stern, Y., & Manly, J. J. (2015). Differing effects of education on cognitive decline in diverse elders with low versus high educational attainment. Neuropsychology, 29(4), 649657. https://dx.doi.org/10.1037/neu0000141Google Scholar

References

Abel, K. M., Wicks, S., Susser, E. S., et al. (2010). Birth weight, schizophrenia, and adult mental disorder: Is risk confined to the smallest babies? Archives of General Psychiatry, 67(9), 923930. http://dx.doi.org/10.1001/archgenpsychiatry.2010.100Google Scholar
Bale, T. L. (2015). Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, 16(6), 332344. http://dx.doi.org/10.1038/nrn3818Google Scholar
Baltes, P. B., & Kliegl, R. (1992). Further testing of limits of cognitive plasticity: Negative age differences in a mnemonic skill are robust. Developmental Psychology, 28(1), 121125. http://dx.doi.org/10.1037/0012-1649.28.1.121Google Scholar
Barnes, S. K., & Ozanne, S. E. (2011). Pathways linking the early environment to long-term health and lifespan. Progress in Biophysics and Molecular Biology, 106(1), 323336. http://dx.doi.org/10.1016/j.pbiomolbio.2010.12.005Google Scholar
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28(28), 70317035. http://dx.doi.org/10.1523/JNEUROSCI.0742-08.2008Google Scholar
Bratsberg, B., & Rogeberg, O. (2018). Flynn effect and its reversal are both environmentally caused. Proceedings of the National Academy of Sciences USA, 115(26), 66746678. http://dx.doi.org/10.1073/pnas.1718793115Google Scholar
Brehmer, Y., Kalpouzos, G., Wenger, E., & Lövdén, M. (2014). Plasticity of brain and cognition in older adults. Psychological Research, 78(6), 790802. http://dx.doi.org/10.1007/s00426-014-0587-zGoogle Scholar
Brehmer, Y., Li, S. C., Müller, V., von Oertzen, T., & Lindenberger, U. (2007). Memory plasticity across the life span: Uncovering children’s latent potential. Developmental Psychology, 43(2), 465478. http://dx.doi.org/10.1037/0012-1649.43.2.465Google Scholar
Brehmer, Y., Shing, Y. L., Heekeren, H. R., Lindenberger, U., & Bäckman, L. (2016). Training-induced changes in subsequent-memory effects: No major differences among children, younger adults, and older adults. NeuroImage, 131, 214225. http://dx.doi.org/10.1016/j.neuroimage.2015.11.074Google Scholar
Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, p. 63. http://dx.doi.org/10.3389/fnhum.2012.00063Google Scholar
Bürki, C. N., Ludwig, C., Chicherio, C., & de Ribaupierre, A. (2014). Individual differences in cognitive plasticity: An investigation of training curves in younger and older adults. Psychological Research, 78(6), 821835. http://dx.doi.org/10.1007/s00426-014-0559-3Google Scholar
Carretti, B., Borella, E., & De Beni, R. (2007). Does strategic memory training improve the working memory performance of younger and older adults? Experimental Psychology, 54(4), 311320. http://dx.doi.org/10.1027/1618-3169.54.4.311Google Scholar
Chang, L., Douet, V., Bloss, C., et al. (2016). Gray matter maturation and cognition in children with different APOE ε genotypes. Neurology, 87(6), 585594. http://dx.doi.org/10.1212/WNL.0000000000002939Google Scholar
Colom, R., Lluis-Font, J. M., & Andrés-Pueyo, A. (2005). The generational intelligence gains are caused by decreasing variance in the lower half of the distribution: Supporting evidence for the nutrition hypothesis. Intelligence, 33(1), 8391. http://dx.doi.org/10.1016/j.intell.2004.07.010Google Scholar
Corder, E. H., Saunders, A. M., Strittmatter, W. J., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921923. http://dx.doi.org/10.1126/science.8346443Google Scholar
Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720730. http://dx.doi.org/10.1037/a0014296Google Scholar
de Lange, A. M. G., Bråthen, A. C. S., Grydeland, H., et al. (2016). White matter integrity as a marker for cognitive plasticity in aging. Neurobiology of Aging, 47, 7482. http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.007Google Scholar
de Lange, A. M. G., Bråthen, A. C. S., Rohani, D. A., et al. (2017). The effects of memory training on behavioral and microstructural plasticity in young and older adults. Human Brain Mapping, 38(11), 56665680. http://dx.doi.org/10.1002/hbm.23756Google Scholar
de Lange, A. M. G., Bråthen, A. C. S., Rohani, D. A., Fjell, A. M., & Walhovd, K. B. (2018). The temporal dynamics of brain plasticity in aging. Cerebral Cortex, 28(5), 18571865. http://dx.doi.org/10.1093/cercor/bhy003Google Scholar
Deary, I. J., Pattie, A., & Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian birth cohort of 1921. Psychological Science, 24(12), 23612368. http://dx.doi.org/10.1177/0956797613486487Google Scholar
Dekaban, A. S., & Sadowsky, D. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 4(4), 345356. https://doi.org/10.1002/ana.410040410Google Scholar
Draganski, B., Gaser, C., Busch, V., et al. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311312. http://dx.doi.org/10.1038/427311aGoogle Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 16671676. http://dx.doi.org/10.1016/j.neuroimage.2010.05.041Google Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2012a). Memory training impacts short‐term changes in aging white matter: A longitudinal diffusion tensor imaging study. Human Brain Mapping, 33(10), 23902406. http://dx.doi.org/10.1002/hbm.21370Google Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2012b). Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. NeuroImage, 61(1), 188194. http://dx.doi.org/10.1016/j.neuroimage.2012.02.072Google Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2014). Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimer’s Disease, 41(3), 779791. http://dx.doi.org/10.3233/JAD-131889Google Scholar
Fjell, A. M., Grydeland, H., Krogsrud, S. K., et al. (2015). Development and aging of cortical thickness correspond to genetic organization patterns. Proceedings of the National Academy of Sciences USA, 112(50), 1546215467. http://dx.doi.org/10.1073/pnas.1508831112Google Scholar
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: Courses, causes and cognitive consequences. Reviews in the Neurosciences, 21(3), 187222. https://doi.org/10.1515/REVNEURO.2010.21.3.187Google Scholar
Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin, 101(2), 171191. http://dx.doi.org/10.1037/0033-2909.101.2.171Google Scholar
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491. http://dx.doi.org/10.1038/nrn3256Google Scholar
Haukvik, U. K., Rimol, L. M., Roddey, J. C., et al. (2014). Normal birth weight variation is related to cortical morphology across the psychosis spectrum. Schizophrenia Bulletin, 40(2), 410419. http://dx.doi.org/10.1093/schbul/sbt005Google Scholar
Hogstrom, L. J., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2013). The structure of the cerebral cortex across adult life: Age-related patterns of surface area, thickness, and gyrification. Cerebral Cortex, 23(11), 25212530. http://dx.doi.org/10.1093/cercor/bhs231Google Scholar
Hülür, G., Ram, N., Willis, S. L., Schaie, K. W., & Gerstorf, D. (2015). Cognitive dedifferentiation with increasing age and proximity of death: Within-person evidence from the Seattle Longitudinal Study. Psychology and Aging, 30(2), 311323. http://dx.doi.org/10.1037/a0039260Google Scholar
Jack, C. R., Bennett, D. A., Blennow, K., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s and Dementia, 14(4), 535562. http://dx.doi.org/10.1016/j.jalz.2018.02.018Google Scholar
Jagust, W. J. (2016). Early life sets the stage for aging. Proceedings of the National Academy of Sciences USA, 113(33), 91489150. http://dx.doi.org/10.1073/pnas.1609720113Google Scholar
Karama, S., Bastin, M. E., Murray, C., et al. (2014). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19(5), 555559. http://dx.doi.org/10.1038/mp.2013.64Google Scholar
Khan, W., Giampietro, V., Banaschewski, T., et al. (2017). A multi-cohort study of ApoE ɛ4 and Amyloid-β effects on the hippocampus in Alzheimer’s disease. Journal of Alzheimer’s Disease, 56(3), 11591174. http://dx.doi.org/10.3233/JAD-161097Google Scholar
Kivipelto, M., Solomon, A., Ahtiluoto, S., et al. (2013). The Finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER): Study design and progress. Alzheimer’s and Dementia, 9(6), 657665. http://dx.doi.org/10.1016/j.jalz.2012.09.012Google Scholar
Kliegl, R., Smith, J., & Baltes, P. B. (1990). On the locus and process of magnification of age differences during mnemonic training. Developmental Psychology, 26(6), 894904. http://dx.doi.org/10.1037/0012-1649.26.6.894Google Scholar
Knickmeyer, R. C., Wang, J., Zhu, H., et al. (2013). Common variants in psychiatric risk genes predict brain structure at birth. Cerebral Cortex, 24(5), 12301246. http://dx.doi.org/10.1093/cercor/bhs401Google Scholar
Kovacs, G. G., Adle-Biassette, H., Milenkovic, I., et al. (2014). Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience, 269, 152172. http://dx.doi.org/10.1016/j.neuroscience.2014.03.045Google Scholar
Livingston, G., Sommerlad, A., Orgeta, V., et al. (2017). Dementia prevention, intervention, and care. Lancet, 390(10113), 26732734. http://dx.doi.org/10.1016/S0140-6736(17)31363-6Google Scholar
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010a). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659676. http://dx.doi.org/10.1037/a0020080Google Scholar
Lövdén, M., Bodammer, N. C., Kühn, S., et al. (2010b). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48(13), 38783883. http://dx.doi.org/10.1016/j.neuropsychologia.2010.08.026Google Scholar
Lövdén, M., Schaefer, S., Noack, H., et al. (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33(3), 620e9620e22. http://dx.doi.org/10.1016/j.neurobiolaging.2011.02.013Google Scholar
Lyall, A. E., Shi, F., Geng, X., et al. (2015). Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral Cortex, 25(8), 22042212. http://dx.doi.org/10.1093/cercor/bhu027Google Scholar
Lyons, M. J., York, T. P., Franz, C. E., et al. (2009). Genes determine stability and the environment determines change in cognitive ability during 35 years of adulthood. Psychological Science, 20(9), 11461152. http://dx.doi.org/10.1111/j.1467-9280.2009.02425.xGoogle Scholar
Melka, M. G., Gillis, J., Bernard, M., et al. (2013). FTO, obesity and the adolescent brain. Human Molecular Genetics, 22(5), 10501058. http://dx.doi.org/10.1093/hmg/dds504Google Scholar
Mosing, M. A., Madison, G., Pedersen, N. L., & Ullén, F. (2016). Investigating cognitive transfer within the framework of music practice: Genetic pleiotropy rather than causality. Developmental Science, 19(3), 504512. http://dx.doi.org/10.1111/desc.12306Google Scholar
Muller, M., Sigurdsson, S., Kjartansson, O., et al. (2014). Birth size and brain function 75 years later. Pediatrics, 134(4), 761770. http://dx.doi.org/10.1542/peds.2014-1108Google Scholar
Ngandu, T., Lehtisalo, J., Solomon, A., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 385(9984), 22552263. http://dx.doi.org/10.1016/S0140-6736(15)60461-5Google Scholar
Nyberg, L., & Pudas, S. (2019). Successful memory aging. Annual Review of Psychology, 70, 219243. http://dx.doi.org/10.1146/annurev-psych-010418-103052Google Scholar
Nyberg, L., Sandblom, J., Jones, S., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences USA, 100(23), 1372813733. http://dx.doi.org/10.1073/pnas.1735487100Google Scholar
Pietschnig, J., & Voracek, M. (2015). One century of global IQ gains: A formal meta-analysis of the Flynn effect (1909–2013). Perspectives on Psychological Science, 10(3), 282306. http://dx.doi.org/10.1177/1745691615577701Google Scholar
Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51(2), 501511. http://dx.doi.org/10.1016/j.neuroimage.2010.03.020Google Scholar
Raz, N., Lindenberger, U., Rodrigue, K. M., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 16761689. http://dx.doi.org/10.1093/cercor/bhi044Google Scholar
Raznahan, A., Greenstein, D., Lee, N. R., Clasen, L. S., & Giedd, J. N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences USA, 109(28), 1136611371. http://dx.doi.org/10.1073/pnas.1203350109Google Scholar
Reitz, C., Tosto, G., Mayeux, R., & Luchsinger, J. A. (2012). Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer’s disease. PLoS One, 7(12), e50354. http://dx.doi.org/10.1371/journal.pone.0050354Google Scholar
Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. Journal of Neuroscience, 23(8), 32953301. http://dx.doi.org/10.1523/JNEUROSCI.23-08-03295.2003Google Scholar
Salthouse, T. A. (2016). Continuity of cognitive change across adulthood. Psychonomic Bulletin and Review, 23(3), 932939. http://dx.doi.org/10.3758/s13423-015-0910-8Google Scholar
Schaie, K. W. (1994). The course of adult intellectual development. American Psychologist, 49(4), 304313. http://dx.doi.org/10.1037/0003-066X.49.4.304Google Scholar
Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, p. 27. http://dx.doi.org/10.3389/fnagi.2010.00027Google Scholar
Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 13701371. http://dx.doi.org/10.1038/nn.2412Google Scholar
Sexton, C. E., Walhovd, K. B., Storsve, A. B., et al. (2014). Accelerated changes in white matter microstructure during aging: A longitudinal diffusion tensor imaging study. Journal of Neuroscience, 34(46), 1542515436. http://dx.doi.org/10.1523/JNEUROSCI.0203-14.2014Google Scholar
Smith, A. D., Smith, S. M., De Jager, C. A., et al. (2010). Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A randomized controlled trial. PLoS One, 5(9), e12244. http://dx.doi.org/10.1371/journal.pone.0012244Google Scholar
Storsve, A. B., Fjell, A. M., Tamnes, C. K., et al. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. Journal of Neuroscience, 34(25), 84888498. http://dx.doi.org/10.1523/JNEUROSCI.0391-14.2014Google Scholar
Thompson, P. M. (2015). Cracking the brain’s genetic code. Proceedings of the National Academy of Sciences USA, 112(50), 1526915270. http://dx.doi.org/10.1073/pnas.1520702112Google Scholar
Tucker-Drob, E. M. (2011). Global and domain-specific changes in cognition throughout adulthood. Developmental Psychology, 47(2), 331343. http://dx.doi.org/10.1037/a0021361Google Scholar
Tucker-Drob, E. M., Brandmaier, A. M., & Lindenberger, U. (2019). Coupled cognitive changes in adulthood: A meta-analysis. Psychological Bulletin, 145(3), 273301. http://dx.doi.org/10.1037/bul0000179Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., et al. (2012). Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Annals of Neurology, 72(5), 730738. http://dx.doi.org/10.1002/ana.23665Google Scholar
Walhovd, K. B., Bjørnebekk, A., Haabrekke, K., et al. (2015). Child neuroanatomical, neurocognitive, and visual acuity outcomes with maternal opioid and polysubstance detoxification. Pediatric Neurology, 52(3), 326332. http://dx.doi.org/10.1016/j.pediatrneurol.2014.11.008Google Scholar
Walhovd, K. B., Fjell, A. M., Brown, T. T., et al. (2012a). Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences USA, 109(49), 2008920094. http://dx.doi.org/10.1073/pnas.1208180109Google Scholar
Walhovd, K. B., Fjell, A. M., & Espeseth, T. (2014a). Cognitive decline and brain pathology in aging – need for a dimensional, lifespan and systems vulnerability view. Scandinavian Journal of Psychology, 55(3), 244254. http://dx.doi.org/10.1111/sjop.12120Google Scholar
Walhovd, K. B., Krogsrud, S. K., Amlien, I. K., et al. (2016). Neurodevelopmental origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences USA, 113(33), 93579362. http://dx.doi.org/10.1073/pnas.1524259113Google Scholar
Walhovd, K. B., Moe, V., Slinning, K., et al. (2007). Volumetric cerebral characteristics of children exposed to opiates and other substances in utero. NeuroImage, 36(4), 13311344. http://dx.doi.org/10.1016/j.neuroimage.2007.03.070Google Scholar
Walhovd, K. B., Moe, V., Slinning, K., et al. (2009). Effects of prenatal opiate exposure on brain development – a call for attention. Nature Reviews Neuroscience, 10(5), 390. http://dx.doi.org/10.1038/nrn2598-c1Google Scholar
Walhovd, K. B., Storsve, A. B., Westlye, L. T., et al. (2014b). Blood markers of fatty acids and vitamin D, cardiovascular measures, body mass index, and physical activity relate to longitudinal cortical thinning in normal aging. Neurobiology of Aging, 35(5), 10551064. http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.011Google Scholar
Walhovd, K. B., Tamnes, C. K., Østby, Y., Due-Tønnessen, P., & Fjell, A. M. (2012b). Normal variation in behavioral adjustment relates to regional differences in cortical thickness in children. European Child and Adolescent Psychiatry, 21(3), 133140. http://dx.doi.org/10.1007/s00787-012-0241-5Google Scholar
Walhovd, K. B., Watts, R., Amlien, I., & Woodward, L. J. (2012c). Neural tract development of infants born to methadone-maintained mothers. Pediatric Neurology, 47(1), 16. http://dx.doi.org/10.1016/j.pediatrneurol.2012.04.008CrossRefGoogle ScholarPubMed
Wenger, E., Schaefer, S., Noack, H., et al. (2012). Cortical thickness changes following spatial navigation training in adulthood and aging. NeuroImage, 59(4), 33893397. http://dx.doi.org/10.1016/j.neuroimage.2011.11.015Google Scholar
Westlye, L. T., Reinvang, I., Rootwelt, H., & Espeseth, T. (2012). Effects of APOE on brain white matter microstructure in healthy adults. Neurology, 79(19), 19611969. http://dx.doi.org/10.1212/WNL.0b013e3182735c9cGoogle Scholar
Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528536. http://dx.doi.org/10.1038/nn.3045Google Scholar

References

Adams, M. M., Smith, T. D., Moga, D., et al. (2001). Hippocampal dependent learning ability correlates with N-methyl-D-aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats. Journal of Computational Neurology, 432(2), 230243. https://doi.org/10.1002/cne.1099Google Scholar
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509. https://doi.org/10.1016/j.tics.2013.08.012Google Scholar
Blalock, E. M., Chen, K. C., Sharrow, K., et al. (2003). Gene microarrays in hippocampal aging: Statistical profiling identifies novel processes correlated with cognitive impairment. Journal of Neuroscience, 23(9), 38073819. https://dx.doi.org/10.1523/JNEUROSCI.23-09-03807.2003Google Scholar
Boric, K., Munoz, P., Gallagher, M., & Kirkwood, A. (2008). Potential adaptive function for altered long-term potentiation mechanisms in aging hippocampus. Journal of Neuroscience, 28(32), 80348039. https://dx.doi.org/10.1523/JNEUROSCI.2036-08.2008Google Scholar
Bories, C., Husson, Z., Guitton, M. J., & De Koninck, Y. (2013). Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging. Journal of Neuroscience, 33(4), 13441356. https://dx.doi.org/10.1523/JNEUROSCI.3258-12.2013Google Scholar
Burger, C. (2010). Region-specific genetic alterations in the aging hippocampus: Implications for cognitive aging. Frontiers in Aging Neuroscience, 2, P. 140. https://doi.org/10.3389/fnagi.2010.00140.Google Scholar
Burger, C., Lopez, M. C., Baker, H. V., Mandel, R. J., & Muzyczka, N. (2008). Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiology of Learning and Memory, 89(4), 379396. https://doi.org/10.3389/fnagi.2010.00140Google Scholar
Burke, S. N., & Barnes, C. A. (2006). Neural plasticity in the ageing brain. Nature Reviews Neuroscience, 7(1), 3040. https://doi.org/10.1038/nrn1809Google Scholar
Burwell, R. D., & Gallagher, M. (1993). A longitudinal study of reaction time performance in Long-Evans rats. Neurobiology of Aging, 14(1), 5764. https://doi.org/10.1016/0197-4580(93)90023-5Google Scholar
Cabeza, R., & Dennis, N. A. (2013). Frontal lobes and aging: Deterioration and compensation. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function (pp. 628652). Oxford: Oxford University Press.Google Scholar
Castellano, J. F., Fletcher, B. R., Kelley-Bell, et al. (2012). Age-related memory impairment is associated with disrupted multivariate epigenetic coordination in the hippocampus. PLoS One, 7(3), e33249. https://doi.org/10.1371/journal.pone.0033249Google Scholar
Fabiani, M. (2012). It was the best of times, it was the worst of times: A psychophysiologist’s view of cognitive aging. Psychophysiology, 49(3), 283304. https://doi.org/10.1111/j.1469-8986.2011.01331.xGoogle Scholar
Fletcher, B. R., Hill, G. S., Long, J. M., et al. (2014). A fine balance: Regulation of hippocampal Arc/Arg3.1 transcription, translation and degradation in a rat model of normal cognitive aging. Neurobiology of Learning and Memory, 115, 5867. https://doi.org/10.1016/j.nlm.2014.08.007Google Scholar
Fletcher, B. R., & Rapp, P. R. (2013). Normal neurocognitive aging. In Weiner, I. B., Nelson, R. J., & Mizumori, S. J. Y. (Eds.), Handbook of psychology (2nd ed., Vol. 3, pp. 643664). Hoboken: Wiley & Sons.Google Scholar
Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347470. https://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-IGoogle Scholar
Freund, T. F., & Gulyas, A. I. (1997). Inhibitory control of GABAergic interneurons in the hippocampus. Canadian Journal of Physiology and Pharmacology, 75(5), 479487. https://doi.org/10.1139/y97-033Google Scholar
Geinisman, Y., Ganeshina, O., Yoshida, R., et al. (2004). Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiology of Aging, 25(3), 407416. https://doi.org/10.1016/j.neurobiolaging.2003.12.001Google Scholar
Gray, D. T., & Barnes, C. A. (2015). Distinguishing adaptive plasticity from vulnerability in the aging hippocampus. Neuroscience, 309, 1728. https://doi.org/10.1016/j.neuroscience.2015.08.001Google Scholar
Gutchess, A. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346(6209), 579582. https://dx.doi.org/10.1126/science.1254604Google Scholar
Guzowski, J. F., Lyford, G. L., Stevenson, G. D., et al. (2000). Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. Journal of Neuroscience, 20(11), 39934001. https://dx.doi.org/10.1523/jneurosci.20-11-03993.2000Google Scholar
Haberman, R. P., Colantuoni, C., Stocker, A. M., et al. (2011). Prominent hippocampal CA3 gene expression profile in neurocognitive aging. Neurobiology of Aging, 32(9), 16781692. https://dx.doi.org/10.1016/j.neurobiolaging.2009.10.005Google Scholar
Haberman, R. P., Koh, M. T., & Gallagher, M. (2017). Heightened cortical excitability in aged rodents with memory impairment. Neurobiology of Aging, 54, 144151. https://doi.org/10.1016/j.neurobiolaging.2016.12.021Google Scholar
Haberman, R. P., Quigley, C. K., & Gallagher, M. (2012). Characterization of CpG island DNA methylation of impairment-related genes in a rat model of cognitive aging. Epigenetics, 7(9), 10081019. https://doi.org/10.4161/epi.21291Google Scholar
Hara, Y., Punsoni, M., Yuk, F., et al. (2012). Synaptic distributions of GluA2 and PKMzeta in the monkey dentate gyrus and their relationships with aging and memory. Journal of Neuroscience, 32(21), 73367344. https://doi.org/10.1523/JNEUROSCI.0605-12.2012Google Scholar
Hernandez, A. R., Reasor, J. E., Truckenbrod, L. M., et al. (2017). Medial prefrontal-perirhinal cortical communication is necessary for flexible response selection. Neurobiology of Learning and Memory, 137, 3647. https://dx.doi.org/10.1016/j.nlm.2016.10.012Google Scholar
Hernandez, A. R., Reasor, J. E., Truckenbrod, L. M., et al. (2018). Dissociable effects of advanced age on prefrontal cortical and medial temporal lobe ensemble activity. Neurobiology of Aging, 70, 217232. https://doi.org/10.1016/j.neurobiolaging.2018.06.028Google Scholar
Ianov, L., De Both, M., Chawla, M. K., et al. (2017). Hippocampal transcriptomic profiles: Subfield vulnerability to age and cognitive impairment. Frontiers in Aging Neuroscience, 9, p. 383. https://dx.doi.org/10.3389/fnagi.2017.00383Google Scholar
Ianov, L., Rani, A., Beas, B. S., Kumar, A., & Foster, T. C. (2016). Transcription profile of aging and cognition-related genes in the medial prefrontal cortex. Frontiers in Aging Neuroscience, 8, p. 113. https://dx.doi.org/10.3389/fnagi.2016.00113Google Scholar
Jeune, H. L., Cécyre, D., Rowe, W., Meaney, M. J., & Quirion, R. (1996). Ionotropic glutamate receptor subtypes in the aged memory-impaired and unimpaired Long–Evans rat. Neuroscience, 74(2), 349363. https://dx.doi.org/10.1016/0306-4522(96)00213-8Google Scholar
Kaeberlein, M., Rabinovitch, P. S., & Martin, G. M. (2015). Healthy aging: The ultimate preventative medicine. Science, 350(6265), 11911193. https://dx.doi.org/10.1126/science.aad3267Google Scholar
Lee, H. K., Min, S. S., Gallagher, M., & Kirkwood, A. (2005). NMDA receptor-independent long-term depression correlates with successful aging in rats. Nature Neuroscience, 8(12), 16571659. https://dx.doi.org/10.1038/nn1586Google Scholar
Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? Science, 346(6209), 572578. https://dx.doi.org/10.1126/science.1254403Google Scholar
McQuail, J. A., Johnson, S. A., Burke, S. N., & Bizon, J. L. (2018). Rat models of cognitive aging. In Ram, J. and Conn, P.M. (Eds.), Conn’s handbook of models for human aging (2nd ed., pp. 211–230). Cambridge, MA: Academic Press.Google Scholar
Meunier, D., Stamatakis, E. A., & Tyler, L. K. (2014). Age-related functional reorganization, structural changes, and preserved cognition. Neurobiology of Aging, 35(1), 4254. https://doi.org/10.1016/j.neurobiolaging.2013.07.003Google Scholar
Migues, P. V., Hardt, O., Wu, D. C., et al. (2010). PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nature Neuroscience, 13(5), 630634. https://dx.doi.org/10.1038/nn.2531Google Scholar
Morrison, J. H., & Baxter, M. G. (2012). The ageing cortical synapse: Hallmarks and implications for cognitive decline. Nature Reviews Neuroscience, 13(4), 240250. https://dx.doi.org/10.1038/nrn3200Google Scholar
Nicholson, D. A., Yoshida, R., Berry, R. W., Gallagher, M., & Geinisman, Y. (2004). Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. Journal of Neuroscience, 24(35), 76487653. https://dx.doi.org/10.1523/JNEUROSCI.1725-04.2004Google Scholar
Pelleymounter, M., Beatty, G., & Gallagher, M. (1990). Hippocampal 3H-CPP binding and spatial learning deficits in aged rats. Psychobiology, 18(3), 298304. https://dx.doi.org/10.3758/BF03327247Google Scholar
Rapp, P. R. (2009). Aging and memory in animals. In Squire, L. R. (Ed.), Encyclopedia of neuroscience (Vol. 1, pp. 167174). Oxford: Academic Press.Google Scholar
Rapp, P. R., & Gallagher, M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proceedings of the National Academy of Sciences USA, 93, 99269930. https://dx.doi.org/10.1073/pnas.93.18.9926Google Scholar
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Sciences, 17(3), 177182.Google Scholar
Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: Reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245251. https://dx.doi.org/10.1111/j.1467-8721.2008.00570.xGoogle Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://dx.doi.org/10.1007/s11065-014-9270-9Google Scholar
Rogalski, E., Gefen, T., Mao, Q., et al. (2018). Cognitive trajectories and spectrum of neuropathology in SuperAgers: The first 10 cases. Hippocampus, 29(5), 458467. https://dx.doi.org/10.1002/hipo.22828Google Scholar
Rosenzweig, E. S., & Barnes, C. A. (2003). Impact of aging on hippocampal function: Plasticity, network dynamics, and cognition. Progress in Neurobiology, 69(3), 143179. https://doi.org/10.1016/S0301-0082(02)00126-0Google Scholar
Rowe, W. B., Blalock, E. M., Chen, K. C., et al. (2007). Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats. Journal of Neuroscience, 27(12), 30983110. https://dx.doi.org/10.1523/JNEUROSCI.4163-06.2007Google Scholar
Schulte, T., Muller-Oehring, E. M., Chanraud, S., et al. (2011). Age-related reorganization of functional networks for successful conflict resolution: A combined functional and structural MRI study. Neurobiology of Aging, 32(11), 20752090. https://doi.org/10.1016/j.neurobiolaging.2009.12.002Google Scholar
Shankar, S., Teyler, T. J., & Robbins, N. (1998). Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. Journal of Neurophysiology, 79(1), 334341. https://doi.org/10.1152/jn.1998.79.1.334Google Scholar
Shepherd, J. D., Rumbaugh, G., Wu, J., et al. (2006). Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron, 52(3), 475484. https://doi.org/10.1016/j.neuron.2006.08.034Google Scholar
Shetty, A. K., & Turner, D. A. (1998). Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. Journal of Computational Neurology, 394(2), 252269. https://doi.org/10.1002/(SICI)1096-9861(19980504)394:2<252::AID-CNE9>3.0.CO;2-1Google Scholar
Spiegel, A. M., Koh, M. T., Vogt, N. M., et al. (2013). Hilar interneuron vulnerability distinguishes aged rats with memory impairment. Journal of Computational Neurology, 521(15), 35083523. https://doi.org/10.1002/cne.23367Google Scholar
Spiegel, A. M., Perez, E. J., Long, J. M., Park, P., & Rapp, P. R. (2014a). Regionally selective decline in hippocampal somatostatin-immunoreactive neuron number in aged rhesus monkeys with memory impairment. Presented at the Society for Neuroscience Annual Meeting, Chicago, IL, November 19.Google Scholar
Spiegel, A. M., Sewal, A. S., & Rapp, P. R. (2014b). Epigenetic contributions to cognitive aging: Disentangling mindspan and lifespan. Learning and Memory, 21(10), 569574. https://doi.org/10.1101/lm.033506.113Google Scholar
Stanley, D. P., & Shetty, A. K. (2004). Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. Journal of Neurochemistry, 89(1), 204216. https://dx.doi.org/10.1111/j.1471-4159.2004.02318.xGoogle Scholar
Staudinger, U. M. (1999). Older and wiser? Integrating results on the relationship between age and wisdom-related performance. International Journal of Behavioral Development, 23(3), 641664. https://doi.org/10.1080/016502599383739Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004Google Scholar
Tannenbaum, C., Mayo, N., & Ducharme, F. (2005). Older women’s health priorities and perceptions of care delivery: Results of the WOW health survey. Canadian Medical Association Journal, 173(2), 153159. https://dx.doi.org/10.1503/cmaj.050059Google Scholar
Thome, A., Gray, D. T., Erickson, C. A., Lipa, P., & Barnes, C. A. (2016). Memory impairment in aged primates is associated with region-specific network dysfunction. Molecular Psychiatry, 21(9), 12571262. https://dx.doi.org/10.1038/mp.2015.160Google Scholar
Tomas Pereira, I., Gallagher, M., & Rapp, P. R. (2015). Head west or left, east or right: Interactions between memory systems in neurocognitive aging. Neurobiology of Aging, 36(11), 30673078. https://doi.org/10.1016/j.neurobiolaging.2015.07.024Google Scholar
Tran, T., Gallagher, M., & Kirkwood, A. (2018). Enhanced postsynaptic inhibitory strength in hippocampal principal cells in high-performing aged rats. Neurobiology of Aging 70, 92101. https://doi.org/10.1016/j.neurobiolaging.2018.06.008Google Scholar
Verbitsky, M., Yonan, A. L., Malleret, G., et al. (2004). Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learning and Memory, 11(3), 253260. https://doi.org/10.1101/lm.68204Google Scholar
Wagster, M. V., King, J. W., Resnick, S. M., & Rapp, P. R. (2012). The 87%. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 67(7), 739740. https://doi.org/10.1093/gerona/gls140Google Scholar
Waung, M. W., Pfeiffer, B. E., Nosyreva, E. D., Ronesi, J. A., & Huber, K. M. (2008). Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron, 59(1), 8497. https://doi.org/10.1016/j.neuron.2008.05.014Google Scholar
Wilson, I. A., Ikonen, S., Gallagher, M., Eichenbaum, H., & Tanila, H. (2005). Age-associated alterations of hippocampal place cells are subregion specific. Journal of Neuroscience, 25(29), 68776886. https://dx.doi.org/10.1523/JNEUROSCI.1744-05.2005Google Scholar
Witter, M. P., & Amaral, D. G. (2004). Hippocampal formation. In Paxinos, G. (Ed.), The rat nervous system (pp. 635704). Cambridge, MA: Academic Press.Google Scholar
Yang, Y. J., Chen, H. B., Wei, B., et al. (2015). Cognitive decline is associated with reduced surface GluR1 expression in the hippocampus of aged rats. Neuroscience Letters, 591, 176181. https://doi.org/10.1016/j.neulet.2015.02.030Google Scholar
Zhao, X., Rosenke, R., Kronemann, D., et al. (2009). The effects of aging on N-methyl-D-aspartate receptor subunits in the synaptic membrane and relationships to long-term spatial memory. Neuroscience, 162(4), 933945. https://doi.org/10.1016/j.neuroscience.2009.05.018Google Scholar

References

Aalto, S., Brück, A., Laine, M., Någren, K., & Rinne, J. O. (2005). Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: A positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. Journal of Neuroscience, 25(10), 24712477. https://doi.org/10.1523/JNEUROSCI.2097-04.2005Google Scholar
Atri, A., Sherman, S., Norman, K. A., et al. (2004). Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behavioral Neuroscience, 118(1), 223236. http://dx.doi.org/10.1037/0735-7044.118.1.223Google Scholar
Bäckman, L., Ginovart, N., Dixon, R. A., et al. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157(4), 635637. https://doi.org/10.1176/ajp.157.4.635Google Scholar
Bäckman, L., Karlsson, S., Fischer, H., et al. (2011). Dopamine D(1) receptors and age differences in brain activation during working memory. Neurobiology of Aging, 32(10), 18491856. https://doi.org/10.1016/j.neurobiolaging.2009.10.018Google Scholar
Bäckman, L., Lindenberger, U., Li, S. C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience and Biobehavioral Reviews, 34(5), 670677. https://doi.org/10.1016/j.neubiorev.2009.12.008Google Scholar
Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791807. https://doi.org/10.1016/j.neubiorev.2006.06.005Google Scholar
Bartus, R. T., Dean, R. L. 3rd, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408414. https://doi.org/10.1126/science.7046051Google Scholar
Bentley, P., Driver, J., & Dolan, R. J. (2011). Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging. Progress in Neurobiology, 94(4), 360388. https://doi.org/10.1016/j.pneurobio.2011.06.002Google Scholar
Berry, A. S., Shah, V. D., Furman, D. J., et al. (2018a). Dopamine synthesis capacity is associated with D2/3 receptor binding but not dopamine release. Neuropsychopharmacology, 43(6), 12011211. https://doi.org/10.1038/npp.2017Google Scholar
Berry, A. S., Shah, V. D., & Jagust, W. J. (2018b). The influence of dopamine on cognitive flexibility is mediated by functional connectivity in young but not older adults. Journal of Cognitive Neuroscience, 30(9), 115. https://doi.org/10.1162/jocn_a_01286Google Scholar
Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194202. https://doi.org/10.1016/j.tins.2007.03.006Google Scholar
Bolam, J. P., Hanley, J. J., Booth, P. A. C., & Bevan, M. D. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196(4), 527542. https://doi.org/10.1046/j.1469-7580.2000.19640527.xGoogle Scholar
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960969. https://doi.org/10.1097/NEN.0b013e318232a379Google Scholar
Brozoski, T. J., Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205(4409), 929932. https://doi.org/10.1126/science.112679Google Scholar
Carlsson, A., & Winblad, B. (1976). Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. Journal of Neural Transmission, 38(3–4), 271276. https://doi.org/10.1007/BF01249444Google Scholar
Chandler, D. J. (2016). Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations. Brain Research, 1641(Pt. B), 197206. https://doi.org/10.1016/j.brainres.2015.11.022Google Scholar
Chowdhury, R., Guitart-Masip, M., Bunzeck, N., Dolan, R. J., & Düzel, E. (2012). Dopamine modulates episodic memory persistence in old age. Journal of Neuroscience, 32(41), 1419314204. https://doi.org/10.1523/JNEUROSCI.1278-12.2012Google Scholar
Clewett, D. V., Lee, T. H., Greening, S., et al. (2016). Neuromelanin marks the spot: Identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiology of Aging, 37, 117126. https://doi.org/10.1016/j.neurobiolaging.2015.09.019Google Scholar
Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), 113125. https://doi.org/10.1016/j.biopsych.2011.03.028Google Scholar
Decker, M. W. (1987). The effects of aging on hippocampal and cortical projections of the forebrain cholinergic system. Brain Research Reviews, 12(4), 423438. https://doi.org/10.1016/0165-0173(87)90007-5Google Scholar
Dewey, S. L., Volkow, N. D., Logan, J., et al. (1990). Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). Journal of Neuroscience Research, 27(4), 569575. https://doi.org/10.1002/jnr.490270418Google Scholar
Drachman, D. A., & Leavitt, J. (1974). Human memory and the cholinergic system: A relationship to aging? Archives of Neurology, 30(2), 113121. https://doi.org/10.1001/archneur.1974.00490320001001Google Scholar
Dumas, J. A., Saykin, A. J., McDonald, B. C., et al. (2008). Nicotinic versus muscarinic blockade alters verbal working memory-related brain activity in older women. American Journal of Geriatric Psychiatry, 16(4), 272282. https://doi.org/10.1097/JGP.0b013e3181602a2bGoogle Scholar
Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83(3), 17331750. https://doi.org/10.1152/jn.2000.83.3.1733Google Scholar
Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 3346. https://doi.org/10.1016/j.neuron.2015.09.020Google Scholar
Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114(5), 22832301. https://doi.org/10.1093/brain/114.5.2283Google Scholar
Fischer, H., Nyberg, L., Karlsson, S., et al. (2010). Simulating neurocognitive aging: Effects of a dopaminergic antagonist on brain activity during working memory. Biological Psychiatry, 67(6), 575580. https://doi.org/10.1016/j.biopsych.2009.12.013Google Scholar
Floel, A., Garraux, G., Xu, B., et al. (2008). Levodopa increases memory encoding and dopamine release in the striatum in the elderly. Neurobiology of Aging, 29, 267279. https://doi.org/10.1016/j.neurobiolaging.2006.10.009Google Scholar
Garrett, D. D., Nagel, I. E., Preuschhof, C., et al. (2015). Amphetamine modulates brain signal variability and working memory in younger and older adults. Proceedings of the National Academy of Sciences USA, 112(24), 75937598. https://doi.org/10.1073/pnas.1504090112Google Scholar
Hall, H., Sedvall, G., Magnusson, O., et al. (1994). Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology, 11(4), 245256. https://doi.org/10.1038/sj.npp.1380111Google Scholar
Hämmerer, D., Callaghan, M. F., Hopkins, A., et al. (2018). Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proceedings of the National Academy of Sciences USA, 115(9), 22282233. https://doi.org/10.1073/pnas.1712268115Google Scholar
Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710715. https://doi.org/10.1016/j.conb.2006.09.002Google Scholar
Hasselmo, M. E., & Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 36(1), 5273. https://doi.org/10.1038/npp.2010.104Google Scholar
Karlsson, S., Nyberg, L., Karlsson, P., et al. (2009). Modulation of striatal dopamine D1 binding by cognitive processing. NeuroImage, 48(2), 398404. https://doi.org/10.1016/j.neuroimage.2009.06.030Google Scholar
Karrer, T. M., Josef, A. K., Mata, R., Morris, E. D., & Samanez-Larkin, G. R. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis. Neurobiology of Aging, 57, 3646. https://doi.org/10.1016/j.neurobiolaging.2017.05.006Google Scholar
Koepp, M. J., Gunn, R. N., Lawrence, A. D., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266268. https://doi.org/10.1038/30498Google Scholar
Kuhl, D. E., Minoshima, S., Fessler, J. A., et al. (1996). In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Annals of Neurology, 40(3), 399410. https://doi.org/10.1002/ana.410400309Google Scholar
Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., & Jagust, W. J. (2009). Striatal dopamine and working memory. Cerebral Cortex, 19(2), 445454. https://doi.org/10.1093/cercor/bhn095Google Scholar
Laruelle, M. (2000). Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review. Journal of Cerebral Blood Flow and Metabolism, 20(3), 423451. https://doi.org/10.1097/00004647-200003000-00001Google Scholar
Lee, T. H., Greening, S. G., Ueno, T., et al. (2018). Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nature Human Behaviour, 2(5), 356366. https://doi.org/10.1038/s41562-018-0344-1Google Scholar
Lisman, J., Grace, A. A., & Düzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 34(10), 536547. https://doi.org/10.1016/j.tins.2011.07.006Google Scholar
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496502. https://doi.org/10.1016/j.tics.2005.08.005Google Scholar
Mather, M., & Harley, C. W. (2016). The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends in Cognitive Sciences, 20(3), 214226. https://doi.org/10.1016/j.tics.2016.01.001Google Scholar
Mattay, V. S., Fera, F., Tessitore, A., et al. (2006). Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience Letters, 392(1–2), 3237. https://doi.org/10.1016/j.neulet.2005.09.025Google Scholar
McNamara, C. G., & Dupret, D. (2017). Two sources of dopamine for the hippocampus. Trends in Neurosciences, 40(7), 383384. https://doi.org/10.1016/j.tins.2017.05.005Google Scholar
Mitsis, E. M., Cosgrove, K. P., Staley, J. K., et al. (2009). Age-related decline in nicotinic receptor availability with [123I]5-IA-85380 SPECT. Neurobiology of Aging, 30(9), 14901497. https://doi.org/10.1016/j.neurobiolaging.2007.12.008Google Scholar
Monchi, O., Hyun Ko, J., & Strafella, A. P. (2006). Striatal dopamine release during performance of executive functions: A [11C] raclopride PET study. NeuroImage, 33(3), 907912. https://doi.org/10.1016/j.neuroimage.2006.06.058Google Scholar
Morcom, A. M., Bullmore, E. T., Huppert, F. A., et al. (2009). Memory encoding and dopamine in the aging brain: A psychopharmacological neuroimaging study. Cerebral Cortex, 20(3), 743757. https://doi.org/10.1093/cercor/bhp139Google Scholar
Moriguchi, S., Yamada, M., Takano, H., et al. (2017). Norepinephrine transporter in major depressive disorder: A PET study. American Journal of Psychiatry, 174(1), 3641. https://doi.org/10.1176/appi.ajp.2016.15101334Google Scholar
Nordberg, A. (1999). PET studies and cholinergic therapy in Alzheimer’s disease. Revue Neurologique, 155(Suppl. 4), 5363. https://doi.org/10.1016/S0338-9898(99)80366-7Google Scholar
Nyberg, L., Andersson, M., Kauppi, K., et al. (2014). Age-related and genetic modulation of frontal cortex efficiency. Journal of Cognitive Neuroscience, 26(4), 746754. https://doi.org/10.1162/jocn_a_00521Google Scholar
Nyberg, L., Karalija, N., Salami, A., et al. (2016). Dopamine D2 receptor availability is linked to hippocampal-caudate functional connectivity and episodic memory. Proceedings of the National Academy of Sciences USA, 113(28), 79187923. https://doi.org/10.1073/pnas.1606309113Google Scholar
Onur, Ö. A., Piefke, M., Lie, C. H., et al. (2011). Modulatory effects of levodopa on cognitive control in young but not in older subjects: A pharmacological fMRI study. Journal of Cognitive Neuroscience, 23(10), 27972810. https://doi.org/10.1162/jocn.2011.21603Google Scholar
O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283328. https://doi.org/10.1162/089976606775093909Google Scholar
Persson, J., Kalpouzos, G., Nilsson, L. G., Ryberg, M., & Nyberg, L. (2011). Preserved hippocampus activation in normal aging as revealed by fMRI. Hippocampus, 21(7), 753766. https://doi.org/10.1002/hipo.20794Google Scholar
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron, 76(1), 116129. https://doi.org/10.1016/j.neuron.2012.08.036Google Scholar
Reeves, S., Bench, C., & Howard, R. (2002). Ageing and the nigrostriatal dopaminergic system. International Journal of Geriatric Psychiatry, 17(4), 359370. https://doi.org/10.1002/gps.606Google Scholar
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177182. https://doi.org/10.1111/j.1467-8721.2008.00570.xGoogle Scholar
Rieckmann, A., Buckner, R. L., & Hedden, T. (2016). Molecular imaging of aging and neurodegenerative disease. In Cabeza, R., Nyberg, L., & Park, D. C. (Eds.), Cognitive neuroscience of aging (2nd ed., pp. 3569). New York: Oxford University Press.Google Scholar
Rieckmann, A., Karlsson, S., Karlsson, P., et al. (2011). Dopamine D1 receptor associations within and between dopaminergic pathways in younger and elderly adults: Links to cognitive performance. Cerebral Cortex, 21(9), 20232032. https://doi.org/10.1093/cercor/bhq266Google Scholar
Robertson, I. H. (2013). A noradrenergic theory of cognitive reserve: Implications for Alzheimer’s disease. Neurobiology of Aging, 34(1), 298308. https://doi.org/10.1016/j.neurobiolaging.2012.05.019Google Scholar
Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130141. https://doi.org/10.1016/j.neuron.2012.09.011Google Scholar
Sawaguchi, T., & Goldman-Rakic, P. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251(4996), 947950. https://doi.org/10.1126/science.1825731Google Scholar
Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221(2), 555563. https://doi.org/10.1016/j.bbr.2010.11.058Google Scholar
Schwarz, L. A., & Luo, L. (2015). Organization of the locus coeruleus-norepinephrine system. Current Biology, 25(21), R1051R1056. https://doi.org/10.1016/j.cub.2015.09.039Google Scholar
Segal, S. K., Stark, S. M., Kattan, D., Stark, C. E., & Yassa, M. A. (2012). Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiology of Learning and Memory, 97(4), 465469. https://doi.org/10.1016/j.nlm.2012.03.010Google Scholar
Servan-Schreiber, D., Printz, H., & Cohen, J. (1990). A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior. Science, 249(4971), 892895. https://doi.org/10.1126/science.2392679Google Scholar
Shibata, E., Sasaki, M., Tohyama, K., et al. (2006). Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magnetic Resonance in Medical Sciences, 5(4), 197200. https://doi.org/10.2463/mrms.5.197Google Scholar
Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464472. https://doi.org/10.1016/j.tics.2010.08.002Google Scholar
Sperling, R. A., Bates, J. F., Chua, E. F., et al. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 74(1), 4450. http://dx.doi.org/10.1136/jnnp.74.1.44Google Scholar
Sperling, R. A., Greve, D., Dale, A., et al. (2002). Functional MRI detection of pharmacologically induced memory impairment. Proceedings of the National Academy of Sciences USA, 99(1), 455460. https://doi.org/10.1073/pnas.012467899Google Scholar
Strange, B. A., & Dolan, R. J. (2004). Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proceedings of the National Academy of Sciences USA, 101(31), 1145411458. https://doi.org/10.1073/pnas.0404282101Google Scholar
Takahashi, H., Kato, M., Takano, H., et al. (2008). Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions. Journal of Neuroscience, 28(46), 1203212038. https://doi.org/10.1523/JNEUROSCI.3446-08.2008Google Scholar
Tully, K., & Bolshakov, V. Y. (2010). Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Molecular Brain, 3(1), p. 15. https://doi.org/10.1186/1756-6606-3-15Google Scholar
Vijayashankar, N., & Brody, H. (1979). A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. Journal of Neuropathology and Experimental Neurology, 38(5), 490497. https://doi.org/10.1097/00005072-197909000-00004Google Scholar
Voss, B., Thienel, R., Reske, M., et al. (2012). Cholinergic blockade under working memory demands encountered by increased rehearsal strategies: Evidence from fMRI in healthy subjects. European Archives of Psychiatry and Clinical Neuroscience, 262(4), 329339. https://doi.org/10.1007/s00406-011-0267-6Google Scholar
Whitehouse, P. J., Price, D. L., Struble, R. G., et al. (1982). Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215(4537), 12371239. https://doi.org/10.1126/science.7058341Google Scholar
Wilson, R. S., Nag, S., Boyle, P. A., et al. (2013). Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology, 80(13), 12021208. https://doi.org/10.1212/WNL.0b013e3182897103Google Scholar
Wittmann, B. C., Schott, B. H., Guderian, S., et al. (2005). Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459467. https://doi.org/10.1016/j.neuron.2005.01.010Google Scholar
Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515525. https://doi.org/10.1016/j.tins.2011.06.006Google Scholar

References

Abdulrahman, H., Fletcher, P. C., Bullmore, E., & Morcom, A. M. (2017). Dopamine and memory dedifferentiation in aging. NeuroImage, 153, 211220. https://doi.org/10.1016/j.neuroimage.2015.03.031Google Scholar
Abercrombie, E. D., & Zigmond, M. J. (1989). Partial injury to central noradrenergic neurons: Reduction of tissue norepinephrine content is greater than reduction of extracellular norepinephrine measured by microdialysis. Journal of Neuroscience, 9(11), 40624067. https://doi.org/10.1523/JNEUROSCI.09-11-04062.1989Google Scholar
Acheson, A., & Zigmond, M. J. (1981). Short and long term changes in tyrosine hydroxylase activity in rat brain after subtotal destruction of central noradrenergic neurons. Journal of Neuroscience, 1(5), 493504. https://doi.org/10.1523/JNEUROSCI.01-05-00493.1981Google Scholar
Acheson, A. L., Zigmond, M. J., & Stricker, E. M. (1980). Compensatory increase in tyrosine hydroxylase activity in rat brain after intraventricular injections of 6-hydroxydopamine. Science, 207(4430), 537540. https://doi.org/10.1126/science.6101509Google Scholar
Adolfsson, R., Gottfries, C. G., Roos, B. E., & Winblad, B. (1979). Postmortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. Journal of Neural Transmission, 45(2), 81105. https://doi.org/10.1007/BF01250085Google Scholar
Alexandre, C., Andermann, M. L., & Scammell, T. E. (2013). Control of arousal by the orexin neurons. Current Opinion in Neurobiology, 23(5), 752759. https://doi.org/10.1016/j.conb.2013.04.008Google Scholar
Almela, M., Hidalgo, V., Villada, C., et al. (2011). Salivary alpha-amylase response to acute psychosocial stress: The impact of age. Biological Psychology, 87(3), 421429. https://doi.org/10.1016/j.biopsycho.2011.05.008Google Scholar
Arendt, T., Stieler, J. T., & Holzer, M. (2016). Tau and tauopathies. Brain Research Bulletin, 126, 238292. https://doi.org/10.1016/j.brainresbull.2016.08.018Google Scholar
Arranz, B., Blennow, K., Ekman, R., et al. (1996). Brain monoaminergic and neuropeptidergic variations in human aging. Journal of Neural Transmission, 103(1–2), 101115. https://doi.org/10.1007/BF01292620Google Scholar
Bäckman, L., Lindenberger, U., Li, S. C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience and Biobehavioral Reviews, 34(5), 670677. https://doi.org/10.1016/j.neubiorev.2009.12.008Google Scholar
Birditt, K. S., Tighe, L. A., Nevitt, M. R., & Zarit, S. H. (2017). Daily social interactions and the biological stress response: Are there age differences in links between social interactions and alpha-amylase? Gerontologist, 6, 11141125. https://doi.org/10.1093/geront/gnx168Google Scholar
Birren, J. E. (1960). Behavioral theories of aging. In Shock, N. W. (Ed.), Aging: Some social and biological aspects. Washington: American Association for the Advancement of Science.Google Scholar
Birren, J. E., Cunningham, W. R., & Yamamoto, K. (1983). Psychology of adult development and aging. Annual Review of Psychology, 34(1), 543575. https://doi.org/10.1146/annurev.ps.34.020183.002551Google Scholar
Blouin, A. M., Fried, I., Wilson, C. L., et al. (2013). Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nature Communications, 4, p. 1547. https://doi.org/10.1038/ncomms2461Google Scholar
Boureau, Y. L., & Dayan, P. (2011). Opponency revisited: Competition and cooperation between dopamine and serotonin. Neuropsychopharmacology, 36(1), 7497. https://doi.org/10.1038/npp.2010.151Google Scholar
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960969. https://doi.org/10.1038/npp.2010.151Google Scholar
Brewerton, T. D., Putnam, K. T., Lewine, R. R. J., & Risch, S. C. (2018). Seasonality of cerebrospinal fluid monoamine metabolite concentrations and their associations with meteorological variables in humans. Journal of Psychiatric Research, 99, 7682. https://doi.org/10.1016/j.jpsychires.2018.01.004Google Scholar
Britt, D. M., & Day, G. S. (2016). Over-prescribed medications, under-appreciated risks: A review of the cognitive effects of anticholinergic medications in older adults. Missouri Medicine, 113(3), 207214.Google Scholar
Carlsson, A., & Winblad, B. (1976). Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. Journal of Neural Transmission, 38(3–4), 271276. https://doi.org/10.1007/BF01249444Google Scholar
Cason, A. M., Smith, R. J., Tahsili-Fahadan, P., et al. (2010). Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiology and Behavior, 100(5), 419428. https://doi.org/10.1016/j.physbeh.2010.03.009Google Scholar
Charles, S. T. (2010). Strength and vulnerability integration: A model of emotional well-being across adulthood. Psychological Bulletin, 136(6), 10681091. https://doi.org/10.1037/a0021232Google Scholar
Chiodo, L. A., Acheson, A. L., Zigmond, M. J., & Stricker, E. M. (1983). Subtotal destruction of central noradrenergic projections increases the firing rate of locus coeruleus cells. Brain Research, 264(1), 123126. https://doi.org/10.1016/0006-8993(83)91128-9Google Scholar
Cho, J. R., Treweek, J. B., Robinson, J. E., et al. (2017). Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron, 94(6), 12051219. https://doi.org/10.1016/j.neuron.2017.05.020Google Scholar
Cools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and dopamine: Unifying affective, activational, and decision functions. Neuropsychopharmacology, 36(1), 98113. https://doi.org/10.1038/npp.2010.121Google Scholar
Davies, P., & Maloney, A. (1976). Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 308(8000), p. 1403. https://doi.org/10.1016/s0140-6736(76)91936-xGoogle Scholar
Davis, K. L., Mohs, R. C., Marin, D., et al. (1999). Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA, 281(15), 14011406. https://doi.org/10.1001/jama.281.15.1401Google Scholar
Ding, Y. S., Singhal, T., Planeta‐Wilson, B., et al. (2010). PET imaging of the effects of age and cocaine on the norepinephrine transporter in the human brain using (S, S)‐[11C] O‐methylreboxetine and HRRT. Synapse, 64(1), 3038. https://doi.org/10.1002/syn.20696Google Scholar
Downs, J. L., Dunn, M. R., Borok, E., et al. (2007). Orexin neuronal changes in the locus coeruleus of the aging rhesus macaque. Neurobiology of Aging, 28(8), 12861295. https://doi.org/10.1016/j.neurobiolaging.2006.05.025Google Scholar
Eisdorfer, C. (1968). Arousal and performance: Experiments in verbal learning and a tentative theory. In Talland, G. A. (Ed.), Human Aging and Behavior (pp. 189216). Cambridge, MA: Academic Press.Google Scholar
Elman, J. A., Panizzon, M. S., Hagler, D. J. Jr., et al. (2017). Task-evoked pupil dilation and BOLD variance as indicators of locus coeruleus dysfunction. Cortex, 97, 6069. https://doi.org/10.1016/j.cortex.2017.09.025Google Scholar
Elrod, R., Peskind, E. R., DiGiacomo, L., et al. (1997). Effects of Alzheimer’s disease severity on cerebrospinal fluid norepinephrine concentration. American Journal of Psychiatry, 154(1), 2530. https://doi.org/10.1176/ajp.154.1.25Google Scholar
El‐Sedeek, M., Korish, A., & Deef, M. (2010). Plasma orexin‐A levels in postmenopausal women: Possible interaction with estrogen and correlation with cardiovascular risk status. BJOG: An International Journal of Obstetrics and Gynaecology, 117(4), 488492. https://doi.org/10.1111/j.1471-0528.2009.02474.xGoogle Scholar
Fagius, J., & Wallin, B. G. (1993). Long-term variability and reproducibility of resting human muscle nerve sympathetic activity at rest, as reassessed after a decade. Clinical Autonomic Research, 3(3), 201205. https://doi.org/10.1007/BF01826234Google Scholar
Falk, J. L., & Kline, D. W. (1978). Stimulus persistence in CFF: Overarousal or underactivation? Experimental Aging Research, 4(2), 109123. https://psycnet.apa.org/doi/10.1080/03610737808257134Google Scholar
Fearnley, J. M., & Lees, A. J. (1991). Aging and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114, 22832301. https://doi.org/10.1093/brain/114.5.2283Google Scholar
Fritschy, J. M., & Grzanna, R. (1992). Restoration of ascending noradrenergic projections by residual locus coeruleus neurons: Compensatory response to neurotoxin‐induced cell death in the adult rat brain. Journal of Comparative Neurology, 321(3), 421441. https://doi.org/10.1002/cne.903210309Google Scholar
Fronczek, R., van Geest, S., Frölich, M., et al. (2012). Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiology of Aging, 33(8), 16421650. https://doi.org/10.1016/j.neurobiolaging.2011.03.014Google Scholar
Gabelle, A., Jaussent, I., Hirtz, C., et al. (2017). Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiology of Aging, 53, 5966. https://doi.org/10.1016/j.neurobiolaging.2017.01.011Google Scholar
Gannon, M., & Wang, Q. (2018). Complex noradrenergic dysfunction in Alzheimer’s disease: Low norepinephrine input is not always to blame. Brain Research, 1702(1), 1216. https://doi.org/10.1016/j.brainres.2018.01.001Google Scholar
Gilmor, M. L., Erickson, J. D., Varoqui, H., et al. (1999). Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. Journal of Comparative Neurology, 411(4), 693704. https://doi.org/10.1002/(SICI)1096-9861(19990906)411:4<693::AID-CNE13>3.0.CO;2-DGoogle Scholar
Gottfries, C. G., Gottfries, I., Johansson, B., et al. (1971). Acid monoamine metabolites in human cerebrospinal fluid and their relations to age and sex. Neuropharmacology, 10(6), 665672. https://doi.org/10.1016/0028-3908(71)90081-5Google Scholar
Gray, S. L., Anderson, M. L., Dublin, S., et al. (2015). Cumulative use of strong anticholinergics and incident dementia: A prospective cohort study. JAMA Internal Medicine, 175(3), 401407. https://doi.org/10.1001/jamainternmed.2014.7663Google Scholar
Grothe, M., Heinsen, H., & Teipel, S. J. (2012). Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biological Psychiatry, 71(9), 805813. https://doi.org/10.1016/j.biopsych.2011.06.019Google Scholar
Haas, H., & Panula, P. (2003). The role of histamine and the tuberomamillary nucleus in the nervous system. Nature Reviews Neuroscience, 4(2), 121130. https://doi.org/10.1038/nrn1034Google Scholar
Hart, E., & Charkoudian, N. (2014). Sympathetic neural regulation of blood pressure: Influences of sex and aging. Physiology, 29(1), 815. https://doi.org/10.1152/physiol.00031.2013Google Scholar
Higuchi, M., Yanai, K., Okamura, N., et al. (2000). Histamine H1 receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience, 99(4), 721729. https://doi.org/10.1016/s0306-4522(00)00230-xGoogle Scholar
Hoogendijk, W. J., Feenstra, M. G., Botterblom, M. H., et al. (1999). Increased activity of surviving locus ceruleus neurons in Alzheimer’s disease. Annals of Neurology, 45(1), 8291. https://doi.org/10.1002/1531-8249(199901)45:1<82::AID-ART14>3.0.CO;2-TGoogle Scholar
Hunt, N. J., Rodriguez, M. L., Waters, K. A., & Machaalani, R. (2015). Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiology of Aging, 36(1), 292300. https://doi.org/10.1016/j.neurobiolaging.2014.08.010Google Scholar
Iqbal, K., Liu, F., & Gong, C.-X. (2016). Tau and neurodegenerative disease: The story so far. Nature Reviews Neurology, 12(1), 1527. https://doi.org/10.1038/nrneurol.2015.225Google Scholar
Javier Meana, J., Barturen, F., Asier Garro, M., et al. (1992). Decreased density of presynaptic α2‐adrenoceptors in postmortem brains of patients with Alzheimer’s disease. Journal of Neurochemistry, 58(5), 18961904. https://doi.org/10.1038/nrneurol.2015.225Google Scholar
Jogeshwar, M., Lao, P. J., Betthauser, T. J., et al. (2018). Human brain imaging of nicotinic acetylcholine α4β2* receptors using [18F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways. Journal of Comparative Neurology, 526(1), 8095. https://doi.org/10.1002/cne.24320Google Scholar
Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2015). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89, 114. https://doi.org/10.1016/j.neuron.2015.11.028Google Scholar
Kalaria, R., & Andorn, A. (1991). Adrenergic receptors in aging and Alzheimer’s disease: Decreased α2-receptors demonstrated by [3H] p-aminoclonidine binding in prefrontal cortex. Neurobiology of Aging, 12(2), 131136. https://doi.org/10.1016/0197-4580(91)90051-KGoogle Scholar
Kalaria, R., Andorn, A., Tabaton, M., et al. (1989). Adrenergic receptors in aging and Alzheimer’s disease: Increased β2‐receptors in prefrontal cortex and hippocampus. Journal of Neurochemistry, 53(6), 17721781. https://doi.org/10.1111/j.1471-4159.1989.tb09242.xGoogle Scholar
Karrer, T. M., Josef, A. K., Mata, R., et al. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis. Neurobiology of Aging, 57, 3646. https://doi.org/10.1016/j.neurobiolaging.2017.05.006Google Scholar
Kish, S. J., Shannak, K., Rajput, A., Deck, J. H., & Hornykiewicz, O. (1992). Aging produces a specific pattern of striatal dopamine loss: Implications for the etiology of idiopathic Parkinson’s disease. Journal of Neurochemistry, 58(2), 642648. https://doi.org/10.1111/j.1471-4159.1992.tb09766.xGoogle Scholar
Klinkenberg, I., Sambeth, A., & Blokland, A. (2011). Acetylcholine and attention. Behavioural Brain Research, 221(2), 430442. https://doi.org/10.1016/j.bbr.2010.11.033Google Scholar
Koss, M. C. (1986). Pupillary dilation as an index of central nervous system α2-adrenoceptor activation. Journal of Pharmacological Methods, 15(1), 119. https://doi.org/10.1016/0160-5402(86)90002-1Google Scholar
Lavi, S., Nevo, O., Thaler, I., et al. (2007). Effect of aging on the cardiovascular regulatory systems in healthy women. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 292(2), R788R793. https://doi.org/10.1152/ajpregu.00352.2006Google Scholar
Lee, T.-H., Greening, S. G., Ueno, T., et al. (2018). Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nature Human Behaviour, 2(5), 356366. https://dx.doi.org/10.1038%2Fs41562-018-0344-1Google Scholar
Lemstra, A. W., Eikelenboom, P., & van Gool, W. A. (2003). The cholinergic deficiency syndrome and its therapeutic implications. Gerontology, 49(1), 5560. https://doi.org/10.1159/000066508Google Scholar
Li, S.-C., & Rieckmann, A. (2014). Neuromodulation and aging: Implications of aging neuronal gain control on cognition. Current Opinion in Neurobiology, 29, 148158. https://doi.org/10.1016/j.conb.2014.07.009Google Scholar
Liguori, C., Nuccetelli, M., Izzi, F., et al. (2016). Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer’s disease. Neurobiology of Aging, 40, 120126. https://doi.org/10.1016/j.neurobiolaging.2016.01.007Google Scholar
Lipsitz, L. A., Mietus, J., Moody, G. B., & Goldberger, A. L. (1990). Spectral characteristics of heart rate variability before and during postural tilt. Relations to aging and risk of syncope. Circulation, 81(6), 18031810. https://doi.org/10.1161/01.cir.81.6.1803Google Scholar
Ma, S., Hangya, B., Leonard, C. S., Wisden, W., & Gundlach, A. L. (2018). Dual-transmitter systems regulating arousal, attention, learning and memory. Neuroscience and Biobehavioral Reviews, 85, 2133. https://doi.org/10.1016/j.neubiorev.2017.07.009Google Scholar
Mather, M. (in press). The locus coeruleus-norepinephrine system role in cognition and how it changes with aging. In Poeppel, D., Mangun, G., & Gazzaniga, M. (Eds.), The cognitive neurosciences. Cambridge, MA: MIT Press.Google Scholar
Mather, M., & Harley, C. W. (2016). The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends in Cognitive Sciences, 20, 214226. https://doi.org/10.1016/j.tics.2016.01.001Google Scholar
Matsumura, T., Nakayama, M., Nomura, A., et al. (2002). Age-related changes in plasma orexin-A concentrations. Experimental Gerontology, 37(8), 11271130. https://doi.org/10.1016/s0531-5565(02)00092-xGoogle Scholar
McEwen, B. S. (2004). Protection and damage from acute and chronic stress – allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032, 17. https://doi.org/10.1196/annals.1314.001Google Scholar
McGeer, P. L., McGeer, E. G., & Suzuki, J. S. (1977). Aging and extrapyramidal function. Archives of Neurology, 34(1), 3335. http://dx.doi.org/10.1001/archneur.1977.00500130053010Google Scholar
Meltzer, C. C., Smith, G., DeKosky, S. T., et al. (1998). Serotonin in aging, late-life depression, and Alzheimer’s disease: The emerging role of functional imaging. Neuropsychopharmacology, 18(6), 407430. https://doi.org/10.1016/S0893-133X(97)00194-2Google Scholar
Motawaj, M., Peoc’h, K., Callebert, J., & Arrang, J.-M. (2010). CSF levels of the histamine metabolite tele-methylhistamine are only slightly decreased in Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(3), 861871. https://doi.org/10.3233/JAD-2010-100381Google Scholar
Mouton, P. R., Pakkenberg, B., Gundersen, H. J., & Price, D. L. (1994). Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. Journal of Chemical Neuroanatomy, 7(3), 185190. https://doi.org/10.1016/0891-0618(94)90028-0Google Scholar
Nater, U. M., Hoppmann, C. A., & Scott, S. B. (2013). Diurnal profiles of salivary cortisol and alpha-amylase change across the adult lifespan: Evidence from repeated daily life assessments. Psychoneuroendocrinology, 38(12), 31673171. https://doi.org/10.1016/j.psyneuen.2013.09.008Google Scholar
Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34(4), 486496. https://doi.org/10.1016/j.psyneuen.2009.01.014Google Scholar
Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology, 191(3), 507520. https://doi.org/10.1007/s00213-006-0502-4Google Scholar
Nixon, J. P., Mavanji, V., Butterick, T. A., et al. (2015). Sleep disorders, obesity, and aging: The role of orexin. Ageing Research Reviews, 20, 6373. https://doi.org/10.1016/j.arr.2014.11.001Google Scholar
Ohm, T., Busch, C., & Bohl, J. (1997). Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiology of Aging, 18(4), 393399. https://doi.org/10.1016/s0197-4580(97)00034-1Google Scholar
Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H., & Tomlinson, B. E. (1977). Neurotransmitter enzyme abnormalities in senile dementia: Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. Journal of the Neurological Sciences, 34(2), 247265. https://doi.org/10.1016/0022-510x(77)90073-9Google Scholar
Peskind, E. R., Wingerson, D., Murray, S., et al. (1995). Effects of Alzheimer’s disease and normal aging on cerebrospinal fluid norepinephrine responses to yohimbine and clonidine. Archives of General Psychiatry, 52(9), 774782. https://doi.org/10.1001/archpsyc.1995.03950210068012Google Scholar
Pfaff, D. W. (2006). Brain arousal and information theory. Cambridge, MA: Harvard University Press.Google Scholar
Prell, G. D., Khandelwal, J. K., Burns, R. S., LeWitt, P. A., & Green, J. P. (1990). Influence of age and gender on the levels of histamine metabolites and pros-methylimidazoleacetic acid in human cerebrospinal fluid. Archives of Gerontology and Geriatrics, 11(1), 8595. https://doi.org/10.1016/0167-4943(90)90059-FGoogle Scholar
Rapoport, S. I., Schapiro, M. B., & May, C. (2004). Reduced brain delivery of homovanillic acid to cerebrospinal fluid during human aging. Archives of Neurology, 61(11), 17211724. https://doi.org/10.1001/archneur.61.11.1721Google Scholar
Raskind, M. A., Peskind, E. R., Holmes, C., & Goldstein, D. S. (1999). Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer’s disease. Biological Psychiatry, 46(6), 756765. https://doi.org/10.1016/s0006-3223(99)00008-6Google Scholar
Raskind, M. A., Peskind, E. R., Veith, R. C., et al. (1988). Increased plasma and cerebrospinal fluid norepinephrine in older men: Differential suppression by clonidine. Journal of Clinical Endocrinology and Metabolism, 66(2), 438443. https://doi.org/10.1210/jcem-66-2-438Google Scholar
Robinson, D. S. (1975). Changes in monoamine oxidase and monoamines with human development and aging. In Thorbecke, G. J. (Ed.), Biology of Aging and Development (pp. 203212). Boston, MA: Springer US.Google Scholar
Rodríguez, J. J., Noristani, H. N., & Verkhratsky, A. (2012). The serotonergic system in ageing and Alzheimer’s disease. Progress in Neurobiology, 99(1), 1541. https://doi.org/10.1016/j.pneurobio.2012.06.010Google Scholar
Satpute, A. B., Kragel, P. A., Barrett, L. F., Wager, T. D., & Bianciardi, M. (2018). Deconstructing arousal into wakeful, autonomic and affective varieties. Neuroscience Letters, 693, 1928. https://doi.org/10.1016/j.neulet.2018.01.042Google Scholar
Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221(2), 555563. https://doi.org/10.1016/j.bbr.2010.11.058Google Scholar
Seals, D. R., & Esler, M. D. (2000). Human ageing and the sympathoadrenal system. Journal of Physiology, 528(3), 407417. https://dx.doi.org/10.1111%2Fj.1469-7793.2000.00407.xGoogle Scholar
Spector, R., Snodgrass, S. R., & Johanson, C. E. (2015). A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Experimental Neurology, 273, 5768. https://doi.org/10.1016/j.expneurol.2015.07.027Google Scholar
Strahler, J., Berndt, C., Kirschbaum, C., & Rohleder, N. (2010). Aging diurnal rhythms and chronic stress: Distinct alteration of diurnal rhythmicity of salivary α-amylase and cortisol. Biological Psychology, 84(2), 248256. https://doi.org/10.1016/j.biopsycho.2010.01.019Google Scholar
Szot, P., Leverenz, J. B., Peskind, E. R., et al. (2000). Tyrosine hydroxylase and norepinephrine transporter mRNA expression in the locus coeruleus in Alzheimer’s disease. Molecular Brain Research, 84(1), 135140. https://doi.org/10.1016/S0169-328X(00)00168-6Google Scholar
Szot, P., White, S. S., Greenup, J. L., et al. (2006). Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. Journal of Neuroscience, 26(2), 467478. https://doi.org/10.1523/JNEUROSCI.4265-05.2006Google Scholar
Takagi, H., Morishima, Y., Matsuyama, T., et al. (1986). Histaminergic axons in the neostriatum and cerebral cortex of the rat: A correlated light and electron microscopic immunocytochemical study using histidine decarboxylase as a marker. Brain Research, 364(1), 114123. https://doi.org/10.1016/0006-8993(86)90992-3Google Scholar
Theofilas, P., Ehrenberg, A. J., Dunlop, S., et al. (2017). Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: A stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimer’s and Dementia, 13(3), 236246. https://doi.org/10.1016/j.jalz.2016.06.2362Google Scholar
Tyree, S. M., & de Lecea, L. (2017). Optogenetic investigation of arousal circuits. International Journal of Molecular Sciences, 18(8), 1773. https://doi.org/10.3390/ijms18081773Google Scholar
Ursin, R. (2002). Serotonin and sleep. Sleep Medicine Reviews, 6(1), 5567. https://doi.org/10.1053/smrv.2001.0174Google Scholar
Volkow, N. D., Wise, R. A., & Baler, R. (2017). The dopamine motive system: Implications for drug and food addiction. Nature Reviews Neuroscience, 18, 741752. https://doi.org/10.1038/nrn.2017.130Google Scholar
Wada, H., Inagaki, N., Yamatodani, A., & Watanabe, T. (1991). Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends in Neurosciences, 14(9), 415418. https://doi.org/10.1016/0166-2236(91)90034-rGoogle Scholar
Weinshenker, D. (2018). Long road to ruin: Noradrenergic dysfunction in neurodegenerative disease. Trends in Neurosciences, 41(4), 211223. https://doi.org/10.1016/j.tins.2018.01.010.Google Scholar
White, M., Courtemanche, M., Stewart, D. J., et al. (1997). Age-and gender-related changes in endothelin and catecholamine release, and in autonomic balance in response to head-up tilt. Clinical Science, 93(4), 309316. http://doi.org/10.1042/cs0930309Google Scholar
Whitehouse, P. J., Price, D. L., Struble, R. G., et al. (1982). Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215(4537), 12371239. https://doi.org/10.1126/science.7058341Google Scholar
Winblad, B., Hardy, J., Bäckman, L., & Nilsson, L. G. (1985). Memory function and brain biochemistry in normal aging and in senile dementia. Annals of the New York Academy of Sciences, 444(1), 255268. https://doi.org/10.1111/j.1749-6632.1985.tb37595.xGoogle Scholar
Wisor, J. P. (2018). Dopamine and wakefulness: Pharmacology, genetics, and circuitry. In Handbook of experimental psychology (pp. 115). Berlin: Springer.Google Scholar
Yanai, K., Watanabe, T., Meguro, K., et al. (1992). Age-dependent decrease in histamine H1 receptor in human brains revealed by PET. NeuroReport, 3(5), 433436. https://doi.org/10.1097/00001756-199205000-00014Google Scholar
Yo, Y., Nagano, M., Nagano, N., et al. (1994). Effects of age and hypertension on autonomic nervous regulation during passive head-up tilt. Hypertension, 23(Suppl.I), 8286. https://doi.org/10.1161/01.hyp.23.1_suppl.i82Google Scholar
Yoon, H. S., Hattori, K., Ogawa, S., et al. (2017). Relationships of cerebrospinal fluid monoamine metabolite levels with clinical variables in major depressive disorder. Journal of Clinical Psychiatry, 78(8), e947e956. https://doi.org/10.4088/JCP.16m11144Google Scholar
Yu, X., Ye, Z., Houston, C. M., et al. (2015). Wakefulness is governed by GABA and histamine cotransmission. Neuron, 87(1), 164178. https://doi.org/10.1016/j.neuron.2015.06.003Google Scholar

References

Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. https://dx.doi.org/10.1146/annurev.psych.59.103006.093656Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology review, 24(3), 355370. https://dx.doi.org/10.1007/s11065-014-9270-9Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×