Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T23:18:14.097Z Has data issue: false hasContentIssue false

Part V - Later Life and Interventions

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access
Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 591 - 742
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ahearn, E. P., Jamison, K. R., Steffens, D. C., et al. (2001). MRI correlates of suicide attempt history in unipolar depression. Biological Psychiatry, 50(4), 266270. https://doi.org/10.1016/S0006-3223(01)01098-8Google Scholar
Ajilore, O., Lamar, M., Leow, A., et al. (2014). Graph theory analysis of cortical-subcortical networks in late-life depression. American Journal of Geriatric Psychiatry, 22(2), 195206. https://doi.org/10.1016/j.jagp.2013.03.005CrossRefGoogle ScholarPubMed
Alexopoulos, G. S., & Areán, P. (2014). A model for streamlining psychotherapy in the RDoC era: The example of “Engage.Molecular Psychiatry, 19(1), 1419. https://doi.org/10.1038/mp.2013.150Google Scholar
Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., et al. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. Journal of Affective Disorders, 139(1), 5665. https://doi.org/10.1016/j.jad.2011.12.002Google Scholar
Alexopoulos, G. S., Kiosses, D. N., Klimstra, S., Kalayam, B., & Bruce, M. L. (2002). Clinical presentation of the “depression-executive dysfunction syndrome” of late life. American Journal of Geriatric Psychiatry, 10(1), 98106. https://doi.org/10.1097/00019442-200201000-00012Google Scholar
Alexopoulos, G. S., Meyers, B. S., Young, R. C., et al. (1997). Clinically defined vascular depression. American Journal of Psychiatry, 154, 562565. https://doi.org/10.1176/ajp.154.4.562Google ScholarPubMed
Alexopoulos, G. S., & Morimoto, S. S. (2011). The inflammation hypothesis in geriatric depression. International Journal of Geriatric Psychiatry, 26(11), 11091118. https://doi.org/10.1002/gps.2672Google Scholar
Alexopoulos, G. S., Raue, P., & Areán, P. (2003). Problem-solving therapy versus supportive therapy in geriatric major depression with executive dysfunction. American Journal of Geriatric Psychiatry, 11(1), 4652. https://doi.org/10.1097/00019442-200301000-00007CrossRefGoogle ScholarPubMed
Alexopoulos, G. S., Raue, P. J., Gunning, F., et al. (2016). “Engage” therapy: Behavioral activation and improvement of late-life major depression. American Journal of Geriatric Psychiatry, 24(4), 320326. https://doi.org/10.1016/j.jagp.2015.11.006CrossRefGoogle ScholarPubMed
Alexopoulos, G. S., Raue, P. J., Kiosses, D. N., et al. (2015). Comparing Engage with PST in late-life major depression: A preliminary report. American Journal of Geriatric Psychiatry, 23(5), 506513. https://doi.org/10.1016/j.jagp.2014.06.008Google Scholar
Alexopoulos, G. S., Wilkins, V., Marino, P., et al. (2013). Ecosystem focused therapy in post stroke depression: A preliminary study. International Journal of Geriatric Psychiatry, 27(10), 10531060. https://doi.org/10.1002/gps.2822CrossRefGoogle Scholar
Allan, C. L., Sexton, C. E., Kalu, U. G., et al. (2012). Does the Framingham Stroke Risk Profile predict white-matter changes in late-life depression? International Psychogeriatrics, 24(4), 524531. https://doi.org/10.1017/S1041610211002183Google Scholar
Ancelin, M.-L., Farré, A., Carrière, I., et al. (2015). C-reactive protein gene variants: Independent association with late-life depression and circulating protein levels. Translational Psychiatry, 5(1), e499. https://doi.org/10.1038/tp.2014.145Google Scholar
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97101. https://doi.org/10.1038/nature12486CrossRefGoogle ScholarPubMed
Anguera, J. A., Gunning, F. M., & Areán, P. A. (2017). Improving late life depression and cognitive control through the use of therapeutic video game technology: A proof-of-concept randomized trial. Depression and Anxiety, 34(6), 508517. https://doi.org/10.1002/da.22588CrossRefGoogle ScholarPubMed
Areán, P., Hegel, M., Vannoy, S., Fan, M.-Y., & Unuzter, J. (2008). Effectiveness of problem-solving therapy for older, primary care patients with depression: results from the IMPACT project. Gerontologist, 48(3), 311323. http://dx.doi.org/10.1093/geront/48.3.311Google Scholar
Areán, P. A., Raue, P., Mackin, R. S., et al. (2010). Problem-solving therapy and supportive therapy in older adults with major depression and executive dysfunction. American Journal of Psychiatry, 167(11), 13911398. https://doi.org/10.1176/appi.ajp.2010.09091327CrossRefGoogle ScholarPubMed
Bakker, N., Shahab, S., Giacobbe, P., et al. (2015). rTMS of the dorsomedial prefrontal cortex for major depression: Safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimulation, 8(2), 208215. https://doi.org/10.1016/j.brs.2014.11.002CrossRefGoogle ScholarPubMed
Belvederi Murri, M., Amore, M., Respino, M., & Alexopoulos, G. S. (2018a). The symptom network structure of depressive symptoms in late-life: Results from a European population study. Molecular Psychiatry. https://doi.org/10.1038/s41380-018-0232-0Google Scholar
Belvederi Murri, M., Ekkekakis, P., Menchetti, M., et al. (2018b). Physical exercise for late-life depression: Effects on symptom dimensions and time course. Journal of Affective Disorders, 230, 6570. https://doi.org/10.1016/j.jad.2018.01.004Google Scholar
Beutel, M. E., Brähler, E., Wiltink, J., et al. (2019). New onset of depression in aging women and men: Contributions of social, psychological, behavioral, and somatic predictors in the community. Psychological Medicine, 49(7), 11481155. https://doi.org/10.1017/S0033291718001848Google Scholar
Beyer, J. L., & Johnson, K. G. (2018). Advances in pharmacotherapy of late-life depression. Current Psychiatry Reports, 20(5), 34. https://doi.org/10.1007/s11920-018-0899-6Google Scholar
Bhalla, R. K., Butters, M. A., Mulsant, B. H., et al. (2006). Persistence of neuropsychologic deficits in the remitted state of late-life depression. American Journal of Geriatric Psychiatry, 14(5), 419427. https://doi.org/10.1097/01.JGP.0000203130.45421.69Google Scholar
Bohr, I. J., Kenny, E., Blamire, A., et al. (2013). Resting-state functional connectivity in late-life depression: Higher global connectivity and more long distance connections. Frontiers in Psychiatry, 3, 114. https://doi.org/10.3389/fpsyt.2012.00116CrossRefGoogle ScholarPubMed
Bremmer, M. A., Beekman, A. T. F., Deeg, D. J. H., et al. (2008). Inflammatory markers in late-life depression: Results from a population-based study. Journal of Affective Disorders, 106(3), 249255. https://doi.org/10.1016/j.jad.2007.07.002Google Scholar
Castro, V. M., Gallagher, P. J., Clements, C. C., et al. (2012). Incident user cohort study of risk for gastrointestinal bleed and stroke in individuals with major depressive disorder treated with antidepressants. BMJ Open, 2(2), 18. https://doi.org/10.1136/bmjopen-2011-000544Google Scholar
Catalan-Matamoros, D., Gomez-Conesa, A., Stubbs, B., & Vancampfort, D. (2018). Exercise improves depressive symptoms in older adults: An umbrella review of systematic reviews and meta-analyses. Psychiatry Research, 244(2016), 202209. https://doi.org/10.1016/j.psychres.2016.07.028Google Scholar
Chang, K. J., Hong, C. H., Roh, H. W., et al. (2018). A 12-week multi-domain lifestyle modification to reduce depressive symptoms in older adults: A preliminary report. Psychiatry Investigation, 15(3), 279284. https://doi.org/10.30773/pi.2017.08.10Google Scholar
Charlton, R. A., Lamar, M., Ajilore, O., & Kumar, A. (2013). Preliminary analysis of age of illness onset effects on symptom profiles in major depressive disorder. International Journal of Geriatric Psychiatry, 28(11), 11661174. https://doi.org/10.1002/gps.3939Google Scholar
Charlton, R. A., Lamar, M., Ajilore, O., & Kumar, A. (2014a). Associations between vascular risk and mood in euthymic older adults: Preliminary findings. American Journal of Geriatric Psychiatry, 22(9), 936945. https://doi.org/10.1016/j.jagp.2013.01.074Google Scholar
Charlton, R. A., Lamar, M., Zhang, A., et al. (2018). Associations between pro-inflammatory cytokines, learning, and memory in late-life depression and healthy aging. International Journal of Geriatric Psychiatry, 33(1), 104112. https://doi.org/10.1002/gps.4686CrossRefGoogle ScholarPubMed
Charlton, R. A., Lamar, M., Zhang, A., et al. (2014b). White-matter tract integrity in late-life depression: Associations with severity and cognition. Psychological Medicine, 44(7), 14271437. https://doi.org/10.1017/S0033291713001980Google Scholar
Charlton, R. A., Leow, A., Gadelkarim, J., et al. (2015). Brain connectivity in late-life depression and aging revealed by network analysis. American Journal of Geriatric Psychiatry, 23(6), 642650. https://doi.org/10.1016/j.jagp.2014.07.008Google Scholar
Chen, P. S., McQuoid, D. R., Payne, M. E., & Steffens, D. C. (2006). White matter and subcortical gray matter lesion volume changes and late-life depression outcome: A 4-year magnetic resonance imaging study. International Psychogeriatrics, 18(3), 445456. https://doi.org/10.1017/S1041610205002796Google Scholar
Coupland, C., Dhiman, P., Morriss, R., et al. (2011). Antidepressant use and risk of adverse outcomes in older people: Population based cohort study. BMJ, 343(7819), 115. https://doi.org/10.1136/bmj.d4551CrossRefGoogle ScholarPubMed
Diniz, B. S., Sibille, E., Ding, Y., et al. (2015). Plasma biosignature and brain pathology related to persistent cognitive impairment in late-life depression. Molecular Psychiatry, 20(5), 594601. https://doi.org/10.1038/mp.2014.76CrossRefGoogle ScholarPubMed
Dombrovski, A. Y., Siegle, G. J., Szanto, K., et al. (2012). The temptation of suicide: Striatal gray matter, discounting of delayed rewards, and suicide attempts in late-life depression. Psychological Medicine, 42(6), 12031215. https://doi.org/10.1017/S0033291711002133Google Scholar
Elderkin-Thompson, V., Mintz, J., Haroon, E., Lavretsky, H., & Kumar, A. (2007). Executive dysfunction and memory in older patients with major and minor depression. Archives of Clinical Neuropsychology, 22(2), 261270. https://doi.org/10.1016/j.acn.2007.01.021Google Scholar
Fabre, I., Galinowski, A., Oppenheim, C., et al. (2004). Antidepressant efficacy and cognitive effects of repetitive transcranial magnetic stimulation in vascular depression: An open trial. International Journal of Geriatric Psychiatry, 19(9), 833842. https://doi.org/10.1002/gps.1172CrossRefGoogle ScholarPubMed
Farioli-Vecchioli, S., Sacchetti, S., di Robilant, N. V., & Cutuli, D. (2018). The role of physical exercise and omega-3 fatty acids in depressive illness in the elderly. Current Neuropharmacology, 16(3), 308326. https://doi.org/10.2174/1570159X15666170912113852Google Scholar
Gellis, Z. D., & Bruce, M. L. (2010). Problem-solving therapy for subthreshold depression in home healthcare patients with cardiovascular disease. American Journal of Geriatric Psychiatry, 18(6), 464474. https://doi.org/10.1097/JGP.0b013e3181b21442Google Scholar
Gellis, Z. D., McGinty, J., Horowitz, A., Bruce, M. L., & Misener, E. (2007). Problem-solving therapy for late-life depression in home care: A randomized field trial. American Journal of Geriatric Psychiatry, 15(11), 968978. https://doi.org/10.1097/JGP.0b013e3180cc2bd7CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., Hoptman, M. J., Lim, K. O., et al. (2008). Macromolecular white matter abnormalities in geriatric depression: A magnetization transfer imaging study. American Journal of Geriatric Psychiatry, 16(4), 255262. https://doi.org/10.1097/JGP.0000300628.33669.03Google Scholar
Gunning-Dixon, F. M., Walton, M., Cheng, J., et al. (2010). MRI signal hyperintensities and treatment remission of geriatric depression. Journal of Affective Disorders, 126(3), 395401. https://doi.org/10.1016/j.jad.2010.04.004Google Scholar
Hegeman, A. J. M., Kok, R. M., Van der Mast, R. C., & Giltay, E. J. (2012). Phenomenology of depression in older compared with younger adults: Meta-analysis. British Journal of Psychiatry, 200(4), 275281. https://doi.org/10.1192/bjp.bp.111.095950Google Scholar
Hybels, C. F., Pieper, C. F., Payne, M. E., & Steffens, D. C. (2016). Late-life depression modifies the association between cerebral white matter hyperintensities and functional decline among older adults. American Journal of Geriatric Psychiatry, 24(1), 4249. https://doi.org/10.1016/j.jagp.2015.03.001Google Scholar
Ilieva, I. P., Alexopoulos, G. S., Dubin, M. J., et al. (2018). Age-related repetitive transcranial magnetic stimulation effects on executive function in depression: A systematic review. American Journal of Geriatric Psychiatry, 26(3), 334346. https://doi.org/10.1016/j.jagp.2017.09.002Google Scholar
Jeuring, H. W., Stek, M. L., Huisman, M., et al. (2018). A six-year prospective study of the prognosis and predictors in patients with late-life depression. American Journal of Geriatric Psychiatry, 26(9), 985997. https://doi.org/10.1016/j.jagp.2018.05.005Google Scholar
Jorge, R. E., Moser, D. J., Acion, L., & Robinson, R. G. (2008). Treatment of vascular depression using repetitive transcranial magnetic stimulation. Archives of General Psychiatry, 65(3), 268276. https://doi.org/10.1001/archgenpsychiatry.2007.45CrossRefGoogle ScholarPubMed
Kastner, M., Cardoso, R., Lai, Y., et al. (2018). Effectiveness of interventions for managing multiple high-burden chronic diseases in older adults: A systematic review and meta-analysis. Canadian Medical Association Journal, 190(34), 10041012. https://doi.org/10.1503/cmaj.171391Google Scholar
Kaster, T. S., Daskalakis, Z. J., Noda, Y., et al. (2018). Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: A prospective randomized controlled trial. Neuropsychopharmacology, 43, 22312238. https://doi.org/10.1038/s41386-018-0121-xGoogle Scholar
Kiosses, D. N., Areán, P. A., Teri, L., & Alexopoulos, G. S. (2010). Home-delivered problem adaptation therapy (PATH) for depressed, cognitively impaired, disabled elders: A preliminary study. American Journal of Geriatric Psychiatry, 18(11), 988998. https://doi.org/10.1097/JGP.0b013e3181d6947dGoogle Scholar
Kiosses, D. N., Ravdin, L. D., Gross, J. J., et al. (2015). Problem adaptation therapy for older adults with major depression and cognitive impairment: A randomized clinical trial. JAMA Psychiatry, 72(1), 2230. https://doi.org/10.1001/jamapsychiatry.2014.1305Google Scholar
Kohler, S., Thomas, A. J., Lloyd, A., et al. (2010). White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression. British Journal of Psychiatry, 196(2), 143149. https://doi.org/10.1192/bjp.bp.109.071399Google Scholar
Krishnan, K. R. R., Goli, V., Ellinwood, E. H., et al. (1988). Leukoencephalopathy in patients diagnosed as major depressive. Biological Psychiatry, 23, 519522. https://doi.org/10.1016/0006-3223(88)90025-XGoogle Scholar
Krishnan, K. R., Hays, J. C., & Blazer, D. G. (1997). MRI-defined vascular depression. American Journal of Psychiatry, 154(4), 497501. https://doi.org/10.1176/ajp.154.4.497Google Scholar
Krishnan, K. R. R., Taylor, W. D., McQuoid, D. R., et al. (2004). Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biological Psychiatry, 55(4), 390397. https://doi.org/10.1016/j.biopsych.2003.08.014Google Scholar
Kuceyeski, A., Navi, B. B., Kamel, H., et al. (2015). Exploring the brain’s structural connectome: A quantitative stroke lesion-dysfunction mapping study. Human Brain Mapping, 36, 21472160. https://doi.org/10.1002/hbm.22761Google Scholar
Lantrip, C., Gunning, F. M., Flashman, L., Roth, R. M., & Holtzheimer, P. E. (2017). Effects of transcranial magnetic stimulation on the cognitive control of emotion: Potential antidepressant mechanisms. Journal of ECT, 33, 7380. https://doi.org/10.1097/YCT.0000000000000386Google Scholar
Lassalle-Lagadec, S., Sibon, I., Dilharreguy, B., et al. (2012). Subacute default mode network dysfunction in the prediction of post-stroke depression severity. Radiology, 264(1), 218224. https://doi.org/10.1148/radiol.12111718Google Scholar
Li, C. T., Chen, M. H., Juan, C. H., et al. (2014). Efficacy of prefrontal theta-burst stimulation in refractory depression: A randomized sham-controlled study. Brain, 137(7), 20882098. https://doi.org/10.1093/brain/awu109Google Scholar
Lim, H. K., Jung, W. S., & Aizenstein, H. J. (2013). Aberrant topographical organization in gray matter structural network in late life depression: A graph theoretical analysis. International Psychogeriatrics/IPA, 25(12), 19291940. https://doi.org/10.1017/S104161021300149XCrossRefGoogle ScholarPubMed
Liston, C., Chen, A. C., Zebley, B. D., et al. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76(7), 517526. https://doi.org/10.1016/j.biopsych.2014.01.023Google Scholar
Manes, F., Jorge, R., Morcuende, M., et al. (2001). A controlled study of repetitive transcranial magnetic stimulation as a treatment of depression in the elderly. International Psychogeriatrics/IPA, 13(2), 225231. https://doi.org/10.1017/S1041610201007608Google Scholar
Manning, K. J., Alexopoulos, G. S., Banerjee, S., et al. (2015). Executive functioning complaints and escitalopram treatment response in late-life depression. American Journal of Geriatric Psychiatry, 23(5), 440445. https://doi.org/10.1016/j.jagp.2013.11.005CrossRefGoogle ScholarPubMed
Mazure, C. M., Maciejewski, P. K., Jacobs, S. C., & Bruce, M. L. (2002). Stressful life events interacting with cognitive/personality styles to predict late-onset major depression. American Journal of Geriatric Psychiatry, 10(3), 297304. https://doi.org/10.1097/00019442-200205000-00009Google Scholar
Morimoto, S. S., Gunning, F. M., Murphy, C. F., et al. (2011). Executive function and short-term remission of geriatric depression: The role of semantic strategy. American Journal of Geriatric Psychiatry, 19(2), 115122. https://doi.org/10.1097/JGP.0b013e3181e751c4Google Scholar
Morimoto, S. S., Gunning, F. M., Wexler, B. E., et al. (2016). Executive dysfunction predicts treatment response to neuroplasticity-based computerized cognitive remediation (nCCR-GD) in elderly patients with major depression. American Journal of Geriatric Psychiatry, 24(10), 816820. https://doi.org/10.1016/j.jagp.2016.06.010Google Scholar
Morimoto, S. S., Wexler, B. E., Liu, J., et al. (2014). Neuroplasticity-based computerized cognitive remediation for treatment-resistant geriatric depression. Nature Communications, 5, 17. https://doi.org/10.1038/ncomms5579Google Scholar
Moser, D. J., Jorge, R. E., Manes, F., et al. (2002). Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology, 58(8), 12881290. https://doi.org/10.1212/WNL.58.8.1288Google Scholar
Mosimann, U. P., Schmitt, W., Greenberg, B. D., et al. (2004). Repetitive transcranial magnetic stimulation: A putative add-on treatment for major depression in elderly patients. Psychiatry Research, 126(2), 123133. https://doi.org/10.1016/j.psychres.2003.10.006Google Scholar
Murphy, C. F., Gunning-Dixon, F. M., Hoptman, M. J., et al. (2007). White matter integrity predicts Stroop performance in patients with geriatric depression. Biological Psychiatry, 61(8), 10071010. https://doi.org/10.1016/j.biopsych.2006.07.028Google Scholar
Naarding, P., Tiemeier, H., Breteler, M. M. B., et al. (2007). Clinically defined vascular depression in the general population. Psychological Medicine, 37(3), 383392. https://doi.org/10.1017/S0033291706009196Google Scholar
Neviani, F., Murri, M. B., Mussi, C., et al. (2017). Physical exercise for late life depression: Effects on cognition. International Psychogeriatrics, 29(7), 11051112. https://doi.org/10.1017/S1041610217000576CrossRefGoogle ScholarPubMed
Paranthaman, R., Burns, A. S., Cruickshank, J. K., et al. (2012). Age at onset and vascular pathology in late-life depression. American Journal of Geriatric Psychiatry, 20(6), 524532. https://doi.org/10.1097/JGP.0b013e318227f85cGoogle Scholar
Park, J. E., Lee, J. Y., Kim, B. S., et al. (2015). Above-moderate physical activity reduces both incident and persistent late-life depression in rural Koreans. International Journal of Geriatric Psychiatry, 30(7), 766775. https://doi.org/10.1002/gps.4244Google Scholar
Pimontel, M. A., Reinlieb, M. E., Johnert, L. C., et al. (2013). The external validity of MRI‐defined vascular depression. International Journal of Geriatric Psychiatry, 28(11), 11891196. https://doi.org/10.1002/gps.3943Google Scholar
Pimontel, M. A., Rindskopf, D., Rutherford, B. R., et al. (2016). A meta-analysis of executive dysfunction and antidepressant treatment response in late-life depression. American Journal of Geriatric Psychiatry, 24(1), 3141. https://doi.org/10.1016/j.jagp.2015.05.010CrossRefGoogle ScholarPubMed
Puglisi, V., Bramanti, A., Lanza, G., et al. (2018). Impaired cerebral haemodynamics in vascular depression: Insights from transcranial doppler ultrasonography. Frontiers in Psychiatry, 9(316), 19. https://doi.org/10.3389/fpsyt.2018.00316CrossRefGoogle ScholarPubMed
Qiu, W. Q., Himali, J. J., Wolf, P. A., et al. (2017). Effects of white matter integrity and brain volumes on late life depression in the Framingham Heart Study. International Journal of Geriatric Psychiatry, 32, 214221. https://doi.org/10.1002/gps.4469Google Scholar
Reinlieb, M. E., Persaud, A., Singh, D., et al. (2014). Vascular depression: Overrepresented among African Americans? International Journal of Geriatric Psychiatry, 29, 470477. https://doi.org/10.1002/gps.4029Google Scholar
Sayar, G. H., Ozten, E., Tan, O., & Tarhan, N. (2013). Transcranial magnetic stimulation for treating depression in elderly patients. Neuropsychiatric Disease and Treatment, 9, 501504. https://doi.org/10.2147/NDT.S44241Google Scholar
Scott, R., & Paulson, D. (2018). Cerebrovascular burden and depressive symptomatology interrelate over 18 years: Support for the vascular depression hypothesis. International Journal of Geriatric Psychiatry, 33(1), 6674. https://doi.org/10.1002/gps.4674Google Scholar
Sexton, C. E., Mcdermott, L., Kalu, U. G., et al. (2012). Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression. Psychological Medicine, 42, 11951202. https://doi.org/10.1017/S0033291711002352Google Scholar
Sheline, Y. I., Price, J. L., Vaishnavi, S. N., et al. (2008). Regional white matter hyperintensity burden in automated segmentation distinguishes late-life depressed subjects from comparison subjects matched for vascular risk factors. American Journal of Psychiatry, 165(4), 524532. https://doi.org/10.1176/appi.ajp.2007.07010175Google Scholar
Shi, Y., Zeng, Y., Wu, L., et al. (2017). A study of the brain abnormalities of post-stroke depression in frontal lobe lesion. Scientific Reports, 7(1), 110. https://doi.org/10.1038/s41598-017-13681-wGoogle Scholar
Taragano, F. E., Bagnatti, P., & Allegri, R. F. (2005). A double-blind, randomized clinical trial to assess the augmentation with nimodipine of antidepressant therapy in the treatment of “vascular depression.International Psychogeriatrics, 17(3), 487498. https://doi.org/10.1017/S1041610205001493CrossRefGoogle ScholarPubMed
Taylor, W. D., MacFall, J. R., Steffens, D. C., et al. (2003a). Localization of age-associated white matter hyperintensities in late-life depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(3), 539544. https://doi.org/10.1016/S0278-5846(02)00358-5Google Scholar
Taylor, W. D., Steffens, D. C., MacFall, J., et al. (2003b). White matter hyperintensity progression and late-life depression outcomes. Archives of General Psychiatry, 60, 10901096. https://doi.org/10.1001/archpsyc.60.11.1090Google Scholar
Thomas, A. J., O’Brien, J. T., Davis, S., et al. (2002). Ischemic basis for deep white matter hyperintensities in major depression: A neuropathological study. Archives of General Psychiatry, 59(9), 785792. https://doi.org/10.1001/archpsyc.59.9.785Google Scholar
Underwood, M., Lamb, S. E., Eldridge, S., et al. (2013). Exercise for depression in elderly residents of care homes: A cluster-randomised controlled trial. Lancet, 382, 4149. https://doi.org/10.1016/S0140-6736(13)60649-2Google Scholar
Van den Kommer, T. N., Comijs, H. C., Aartsen, M. J., et al. (2013). Depression and cognition: How do they interrelate in old age? American Journal of Geriatric Psychiatry, 21(4), 398410. https://doi.org/10.1016/j.jagp.2012.12.015Google Scholar
Vicentini, J. E., Weiler, M., Almeida, S. R. M., et al. (2017). Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke. Brain Imaging and Behavior, 11(6), 15711580. https://doi.org/10.1007/s11682-016-9605-7Google Scholar
Victoria, L. W., Gunning, F. M., Bress, J. N., Jackson, D., & Alexopoulos, G. S. (2018). Reward learning impairment and avoidance and rumination responses at the end of Engage therapy of late-life depression. International Journal of Geriatric Psychiatry, 33(7), 948955. https://doi.org/10.1002/gps.4877Google Scholar
Wang, L., Leonards, C. O., Sterzer, P., & Ebinger, M. (2014). White matter lesions and depression: A systematic review and meta-analysis. Journal of Psychiatric Research, 56(1), 5664. https://doi.org/10.1016/j.jpsychires.2014.05.005Google Scholar
Wolf, P. A., D’Agostino, R. B., Belanger, A. J., & Kannel, W. B. (1991). Probability of stroke: A risk profile from the Framingham Study. Stroke, 22(3), 312318. https://doi.org/10.1161/01.STR.22.3.312Google Scholar
Zhang, A., Ajilore, O., Zhan, L., et al. (2013). White matter tract integrity of anterior limb of internal capsule in major depression and type 2 diabetes. Neuropsychopharmacology, 38(8), 14511459. https://doi.org/10.1038/npp.2013.41Google Scholar

References

Agnew-Blais, J. C., Wassertheil-Smoller, S., Kang, J. H., et al. (2015). Folate, vitamin B-6, and vitamin B-12 intake and mild cognitive impairment and probable dementia in the Women’s Health Initiative Memory Study. Journal of the Academy of Nutrition and Dietetics, 115(2), 231241. doi: 10.1016/j.jand.2014.07.006Google Scholar
Allès, B., Samieri, C., Feart, C., et al. (2012). Dietary patterns: A novel approach to examine the link between nutrition and cognitive function in older individuals. Nutrition Research Reviews, 25(2), 207222. doi: 10.1017/S0954422412000133CrossRefGoogle ScholarPubMed
Amadieu, C., Lefèvre-Arbogast, S., Delcourt, C., et al. (2017). Nutrient biomarker patterns and long-term risk of dementia in older adults. Alzheimer’s and Dementia, 13(10), 11251132. doi: 10.1016/j.jalz.2017.01.025Google Scholar
Andrieu, S., Guyonnet, S., Coley, N., et al. (2017). Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurology, 16(5), 377389. doi: 10.1016/S1474-4422(17)30040-6Google Scholar
Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., et al. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. Journal of Alzheimer’s Disease, 37(1), 147171. doi: 10.3233/JAD-130452Google Scholar
Atallah, N., Adjibade, M., Lelong, H., et al. (2018). How healthy lifestyle factors at midlife relate to healthy aging. Nutrients, 10(7), 854. doi: 10.3390/nu10070854Google Scholar
Berendsen, A. A., Kang, J. H., van de Rest, O., et al. (2017). The Dietary Approaches to Stop Hypertension diet, cognitive function, and cognitive decline in American older women. Journal of the American Medical Directors Association, 18(5), 427432. doi: 10.1016/j.jamda.2016.11.026Google Scholar
Boespflug, E. L., McNamara, R. K., Eliassen, J. C., Schidler, M. D., & Krikorian, R. (2016). Fish oil supplementation increases event-related posterior cingulate activation in older adults with subjective memory impairment. Journal of Nutrition, Health and Aging, 20(2), 161169. doi: 10.1007/s12603-015-0609-6Google Scholar
Brangier, A., Ferland, G., Rolland, Y., et al. (2018). Vitamin K antagonists and cognitive decline in older adults: A 24-month follow-up. Nutrients, 10(6), 666. doi: 10.3390/nu10060666Google Scholar
Bredesen, D. E. (2014). Reversal of cognitive decline: A novel therapeutic program. Aging (Albany NY), 6(9), 707717. doi: 10.18632/aging.100690CrossRefGoogle ScholarPubMed
Bredesen, D. E. (2017). The end of Alzheimer’s: The first program to prevent and reverse cognitive decline. New York: Penguin Random House.Google Scholar
Bredesen, D. E., Amos, E. C., Canick, J., et al. (2016). Reversal of cognitive decline in Alzheimer’s disease. Aging (Albany NY), 8(6), 12501258. doi: 10.18632/aging.100981Google Scholar
Burckhardt, M., Herke, M., Wustmann, T., et al. (2016). Omega‐3 fatty acids for the treatment of dementia. Cochrane Database of Systematic Reviews, 4, CD009002. doi: 10.1002/14651858.CD009002.pub3Google Scholar
Butler, M., Nelson, V. A., Davila, H., et al. (2018). Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: A systematic review. Annals of Internal Medicine, 168(1), 5262. doi: 10.7326/M17-1530Google Scholar
Cao, L., Tan, L., Wang, H. F., et al. (2016). Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Molecular Neurobiology, 53(9), 61446154. doi: 10.1007/s12035-015-9516-4Google Scholar
Cardoso, B. R., Cominetti, C., & Cozzolino, S. M. F. (2013). Importance and management of micronutrient deficiencies in patients with Alzheimer’s disease. Clinical Interventions in Aging, 8, 531542. doi: 10.2147/CIA.S27983Google Scholar
Chhetri, J. K., de Souto Barreto, P., Cantet, C., et al. (2018). Effects of a 3-year multi-domain intervention with or without Omega-3 supplementation on cognitive function in older subjects with increased CAIDE dementia scores. Journal of Alzheimer’s Disease, 64(1), 7178. doi: 10.3233/JAD-180209Google Scholar
Chiu, C. C., Su, K. P., Cheng, T. C., et al. (2008). The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: A preliminary randomized double-blind placebo-controlled study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(6), 15381544. doi: 10.1016/j.pnpbp.2008.05.015Google Scholar
Chouet, J., Ferland, G., Féart, C., et al. (2015). Dietary vitamin K intake is associated with cognition and behaviour among geriatric patients: The CLIP study. Nutrients, 7(8), 67396750. doi: 10.3390/nu7085306Google Scholar
Commenges, D., Scotet, V., Renaud, S., et al. (2000). Intake of flavonoids and risk of dementia. European Journal of Epidemiology, 16(4), 357363. doi: 10.1023/a:1007614613771Google Scholar
da Silva, S. L., Vellas, B., Elemans, S., et al. (2014). Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimer’s and Dementia, 10(4), 485502. doi: 10.1016/j.jalz.2013.05.1771Google Scholar
Devore, E. E., Grodstein, F., van Rooij, F. J., et al. (2010). Dietary antioxidants and long-term risk of dementia. Archives of Neurology, 67(7), 819825. doi: 10.1001/archneurol.2010.144CrossRefGoogle ScholarPubMed
Douaud, G., Refsum, H., de Jager, C. A., et al. (2013). Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proceedings of the National Academy of Sciences USA, 110(23), 95239528. doi: 10.1073/pnas.1301816110Google Scholar
Engelborghs, S., Gilles, C., Ivanoiu, A., & Vandewoude, M. (2014). Rationale and clinical data supporting nutritional intervention in Alzheimer’s disease. Acta Clinica Belgica, 69(1), 1724.CrossRefGoogle ScholarPubMed
Engelhart, M. J., Geerlings, M. I., Ruitenberg, A., et al. (2002). Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 287(24), 32233229. doi: 10.1179/0001551213Z.0000000006Google Scholar
Farina, N., Llewellyn, D., Isaac, M. G., & Tabet, N. (2017). Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database of Systematic Reviews, 1, CD002854. doi: 10.1002/14651858.CD002854.pub4Google Scholar
Feart, C., Helmer, C., Merle, B., et al. (2017). Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer’s disease in older adults. Alzheimer’s and Dementia,13(11),12071216. doi: 10.1016/j.jalz.2017.03.003Google Scholar
Feart, C., Letenneur, L., Helmer, C., et al. (2016). Plasma carotenoids are inversely associated with dementia risk in an elderly French cohort. Journals of Gerontology, Series A: Biomedical Sciences and Medical Sciences, 71(5), 683688. doi: 10.1093/gerona/glv135Google Scholar
Feart, C., Samieri, C., & Barberger-Gateau, P. (2015). Mediterranean diet and cognitive health: An update of available knowledge. Current Opinion in Clinical Nutrition and Metabolic Care, 18(1), 5162. doi: 10.1097/MCO.0000000000000131Google Scholar
Feart, C., Samieri, C., Rondeau, V., et al. (2009). Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA, 302(6), 638648. doi: 10.1001/jama.2009.1146Google Scholar
Fenech, M. F. (2010). Nutriomes and nutrient arrays – the key to personalised nutrition for DNA damage prevention and cancer growth control. Genome Integrity, 1(1), 11. doi: 10.1186/2041-9414-1-11CrossRefGoogle ScholarPubMed
Fenech, M. (2017). Vitamins associated with brain aging, mild cognitive impairment, and Alzheimer disease: Biomarkers, epidemiological and experimental evidence, plausible mechanisms, and knowledge gaps. Advances in Nutrition, 8(6), 958970. doi: 10.3945/an.117.015610Google Scholar
Ferrand, C., Féart, C., Martinent, G., et al. (2017). Dietary patterns in French home-living older adults: Results from the PRAUSE study. Archives of Gerontology and Geriatrics, 74, 8893. doi: 10.1016/j.archger.2017.01.015Google Scholar
Freund-Levi, Y., Eriksdotter-Jönhagen, M., Cederholm, T., et al. (2006). ω-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: A randomized double-blind trial. Archives of Neurology, 63(10), 14021408. doi: 10.1001/archneur.63.10.1402Google Scholar
Goodwill, A. M., & Szoeke, C. (2017). A systematic review and meta‐analysis of the effect of low vitamin D on cognition. Journal of the American Geriatrics Society, 65(10), 21612168. doi: 10.1111/jgs.15012Google Scholar
Hu, F. B. (2002). Dietary pattern analysis: A new direction in nutritional epidemiology. Current Opinion in Lipidology, 13(1), 39. doi: 10.1097/00041433-200202000-00002Google Scholar
Hughes, C. F., Ward, M., Tracey, F., et al. (2017). B-vitamin intake and biomarker status in relation to cognitive decline in healthy older adults in a 4-year follow-up study. Nutrients, 9(1), 53. doi: 10.3390/nu9010053Google Scholar
Jiang, X., Huang, J., Song, D., et al. (2017). Increased consumption of fruit and vegetables is related to a reduced risk of cognitive impairment and dementia: Meta-analysis. Frontiers in Aging Neuroscience, 9, 18. doi: 10.3389/fnagi.2017.00018CrossRefGoogle Scholar
Kado, D. M., Karlamangla, A. S., Huang, M. H., et al. (2005). Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. American Journal of Medicine, 118(2), 161167. doi: 10.1016/j.amjmed.2004.08.01Google Scholar
Kim, H., Kim, G., Jang, W., Kim, S. Y., & Chang, N. (2014). Association between intake of B vitamins and cognitive function in elderly Koreans with cognitive impairment. Nutrition Journal, 13(1), 118. doi: 10.1186/1475-2891-13-118Google Scholar
Lamport, D. J., Saunders, C., Butler, L. T., & Spencer, J. P. (2014). Fruits, vegetables, 100% juices, and cognitive function. Nutrition Reviews, 72(12), 774789. doi: 10.1111/nure.12149Google Scholar
Lee, A. T., Richards, M., Chan, W. C., et al. (2017). Lower risk of incident dementia among Chinese older adults having three servings of vegetables and two servings of fruits a day. Age and Ageing, 46(5), 773779. doi: 10.1093/ageing/afx018Google Scholar
Lee, L. K., Shahar, S., Chin, A. V., & Yusoff, N. A. M. (2013). Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology, 225(3), 605612. doi: 10.1007/s00213-012-2848-0Google Scholar
Lefèvre-Arbogast, S., Féart, C., Dartigues, J. F., et al. (2016). Dietary B vitamins and a 10-year risk of dementia in older persons. Nutrients, 8(12), 761. doi: 10.3390/nu8120761Google Scholar
Lourida, I., Soni, M., Thompson-Coon, J., et al. (2013). Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology, 24(4), 479489. doi: 10.1097/EDE.0b013e3182944410Google Scholar
Lu, Y., An, Y., Guo, J., et al. (2016). Dietary intake of nutrients and lifestyle affect the risk of mild cognitive impairment in the Chinese elderly population: A cross-sectional study. Frontiers in Behavioral Neuroscience, 10, 229. doi: 10.3389/fnbeh.2016.00229Google Scholar
Masana, M. F., Koyanagi, A., Haro, J. M., & Tyrovolas, S. (2017). n-3 Fatty acids, Mediterranean diet and cognitive function in normal aging: A systematic review. Experimental Gerontology, 91, 3950. doi: 10.1016/j.exger.2017.02.008Google Scholar
Mattson, M. P., & Shea, T. B. (2003). Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends in Neurosciences, 26(3), 137146. doi: 10.1016/S0166-2236(03)00032-8Google Scholar
McCleery, J., Abraham, R. P., Denton, D. A., et al. (2018). Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database of Systematic Reviews, 11, CD011905. doi.org/10.1002/14651858.CD011905.pub2Google Scholar
Merrill, D. A., Siddarth, P., Raji, C. A., et al. (2016). Modifiable risk factors and brain positron emission tomography measures of amyloid and tau in nondemented adults with memory complaints. American Journal of Geriatric Psychiatry, 24(9), 729737. doi: 10.1016/j.jagp.2016.05.007Google Scholar
Merrill, D. A., & Small, G. W. (2011). Prevention in psychiatry: Effects of healthy lifestyle on cognition. Psychiatric Clinics, 34(1), 249261. doi: 10.1016/j.psc.2010.11.009Google Scholar
Miller, J. W., Harvey, D. J., Beckett, L. A., et al. (2015). Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurology, 72(11), 12951303. doi: 10.1001/jamaneurol.2015.2115Google Scholar
Miller, M. G., Thangthaeng, N., Poulose, S. M., & Shukitt-Hale, B. (2017). Role of fruits, nuts, and vegetables in maintaining cognitive health. Experimental Gerontology, 94, 2428. doi: 10.1016/j.exger.2016.12.014Google Scholar
Mokry, L. E., Ross, S., Morris, J. A., et al. (2016). Genetically decreased vitamin D and risk of Alzheimer disease. Neurology, 87(24), 25672574. doi: 10.1212/WNL.0000000000003430CrossRefGoogle ScholarPubMed
Moore, E. M., Ames, D., Mander, A. G., et al. (2014). Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: Combined data from three cohorts. Journal of Alzheimer’s Disease, 39(3), 661668. doi: 10.3233/JAD-131265Google Scholar
Morris, M. C., Evans, D. A., Tangney, C. C., et al. (2005). Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. American Journal of Clinical Nutrition, 81(2), 508514. doi: 10.1093/ajcn.81.2.508Google Scholar
Morris, M. C., Tangney, C. C., Wang, Y., et al. (2015a). MIND diet slows cognitive decline with aging. Alzheimer’s and Dementia, 11(9), 10151022. doi: 10.1016/j.jalz.2015.04.011Google Scholar
Morris, M. C., Tangney, C. C., Wang, Y., et al. (2015b). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s and Dementia, 11(9), 10071014. doi: 10.1016/j.jalz.2014.11.009Google Scholar
Morris, M. S., Jacques, P. F., Rosenberg, I. H., & Selhub, J. (2007). Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. American Journal of Clinical Nutrition, 85(1), 193200. doi: 10.1093/ajcn/85.1.193CrossRefGoogle ScholarPubMed
Ngandu, T., Lehtisalo, J., Solomon, A., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 385(9984), 22552263. doi: 10.1016/S0140-6736(15)60461-5Google Scholar
Nooyens, A. C., Milder, I. E., Van Gelder, B. M., et al. (2015). Diet and cognitive decline at middle age: The role of antioxidants. British Journal of Nutrition, 113(9), 14101417. doi: 10.1017/S0007114515000720Google Scholar
Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurology, 13(8), 788794. doi: 10.1016/S1474-4422(14)70136-XGoogle Scholar
Otaegui-Arrazola, A., Amiano, P., Elbusto, A., Urdaneta, E., & Martínez-Lage, P. (2014). Diet, cognition, and Alzheimer’s disease: Food for thought. European Journal of Nutrition, 53(1), 123. doi: 10.1007/s00394-013-0561-3Google Scholar
Pelletier, A., Barul, C., Féart, C., et al. (2015). Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimer’s and Dementia, 11(9), 10231031. doi: 10.1016/j.jalz.2015.06.1888Google Scholar
Péneau, S., Galan, P., Jeandel, C., et al. (2011). Fruit and vegetable intake and cognitive function in the SU. VI. MAX 2 prospective study. American Journal of Clinical Nutrition, 94(5), 12951303. doi: 10.3945/ajcn.111.014712CrossRefGoogle ScholarPubMed
Petersson, S. D., & Philippou, E. (2016). Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Advances in Nutrition, 7(5), 889904. doi: 10.3945/an.116.012138CrossRefGoogle ScholarPubMed
Presse, N., Belleville, S., Gaudreau, P., et al. (2013). Vitamin K status and cognitive function in healthy older adults. Neurobiology of Aging, 34(12), 27772783. doi: 10.1016/j.neurobiolaging.2013.05.031Google Scholar
Presse, N., Shatenstein, B., Kergoat, M. J., & Ferland, G. (2008). Low vitamin K intakes in community-dwelling elders at an early stage of Alzheimer’s disease. Journal of the American Dietetic Association, 108(12), 20952099. doi: 10.1016/j.jada.2008.09.013Google Scholar
Raji, C. A., Erickson, K. I., Lopez, O. L., et al. (2014). Regular fish consumption and age-related brain gray matter loss. American Journal of Preventive Medicine, 47(4), 444451. doi: 10.1016/j.amepre.2014.05.037Google Scholar
Ramos, M. I., Allen, L. H., Mungas, D. M., et al. (2005). Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. American Journal of Clinical Nutrition, 82(6), 13461352. doi: 10.1093/ajcn/82.6.1346Google Scholar
Samieri, C., Maillard, P., Crivello, F., et al. (2012). Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology, 79(7), 642650. doi: 10.1212/WNL.0b013e318264e394Google Scholar
Scarmeas, N., Luchsinger, J. A., Schupf, N., et al. (2009). Physical activity, diet, and risk of Alzheimer disease. JAMA, 302(6), 627637. doi: 10.1001/jama.2009.1144Google Scholar
Scarmeas, N., Stern, Y., Tang, M. X., Mayeux, R., & Luchsinger, J. A. (2006). Mediterranean diet and risk for Alzheimer’s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 59(6), 912921. doi: 10.1002/ana.20854Google Scholar
Shakersain, B., Santoni, G., Larsson, S. C., et al. (2016). Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimer’s and Dementia, 12(2), 100109. doi: 10.1016/j.jalz.2015.08.002Google Scholar
Shatenstein, B., Kergoat, M. J., & Reid, I. (2007). Poor nutrient intakes during 1-year follow-up with community-dwelling older adults with early-stage Alzheimer dementia compared to cognitively intact matched controls. Journal of the American Dietetic Association, 107(12), 20912099. doi: 10.1016/j.jada.2007.09.008Google Scholar
Siervo, M., Arnold, R., Wells, J. C. K., et al. (2011). Intentional weight loss in overweight and obese individuals and cognitive function: A systematic review and meta‐analysis. Obesity Reviews, 12(11), 968983. doi: 10.1111/j.1467-789X.2011.00903.xGoogle Scholar
Smith, P. J., & Blumenthal, J. A. (2016). Dietary factors and cognitive decline. Journal of Prevention of Alzheimer’s Disease, 3(1), 5364. doi: 10.14283/jpad.2015.71Google Scholar
Sofi, F., Abbate, R., Gensini, G. F., & Casini, A. (2010). Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. American Journal of Clinical Nutrition, 92(5), 11891196. doi: 10.3945/ajcn.2010.29673Google Scholar
Solfrizzi, V., Custodero, C., Lozupone, M., et al. (2017). Relationships of dietary patterns, foods, and micro-and macronutrients with Alzheimer’s disease and late-life cognitive disorders: A systematic review. Journal of Alzheimer’s Disease, 59(3), 815849. doi: 10.3233/JAD-170248Google Scholar
Soutif-Veillon, A., Ferland, G., Rolland, Y., et al. (2016). Increased dietary vitamin K intake is associated with less severe subjective memory complaint among older adults. Maturitas, 93, 131136. doi: 10.1016/j.maturitas.2016.02.004Google Scholar
Tangney, C. C., Li, H., Wang, Y., et al. (2014). Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology, 83(16), 14101416. doi: 10.1212/WNL.0000000000000884Google Scholar
Tussing-Humphreys, L., Lamar, M., Blumenthal, J. A., et al. (2017). Building research in diet and cognition: The BRIDGE randomized controlled trial. Contemporary Clinical Trials, 59, 8797. doi: 10.1016/j.cct.2017.06.003Google Scholar
Van Dyk, K., & Sano, M. (2007). The impact of nutrition on cognition in the elderly. Neurochemical Research, 32(4–5), 893904. doi: 10.1007/s11064-006-9241-5CrossRefGoogle ScholarPubMed
Vogiatzoglou, A., Refsum, H., Johnston, C., et al. (2008). Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology, 71(11), 826832. doi: 10.1212/01.wnl.0000325581CrossRefGoogle ScholarPubMed
Willett, W. C., Sacks, F., Trichopoulou, A., et al. (1995). Mediterranean diet pyramid: A cultural model for healthy eating. American Journal of Clinical Nutrition, 61(6), 1402S1406S. doi: 10.1093/ajcn/61.6.1402SCrossRefGoogle ScholarPubMed
Witte, A. V., Fobker, M., Gellner, R., Knecht, S., & Flöel, A. (2009). Caloric restriction improves memory in elderly humans. Proceedings of the National Academy of Sciences USA, 106(4), 12551260. doi: 10.1073/pnas.0808587106Google Scholar

References

Aloia, M. S., Ilniczky, N., Di Dio, P., et al. (2003). Neuropsychological changes and treatment compliance in older adults with sleep apnea. Journal of Psychosomatic Research, 54(1), 7176. doi: 10.1016/s0022-3999(02)00548-2Google Scholar
Alzheimer’s Association (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 14(3), 367429. doi: 10.1016/j.jalz.2015.02.003Google Scholar
Ancoli-Israel, S. (2000). Insomnia in the elderly: A review for the primary care practitioner. Sleep, 23(Suppl. 1), 2330.Google Scholar
Ancoli-Israel, S., Kripke, D. F., Klauber, M. R., et al. (1993). Natural history of sleep disordered breathing in community dwelling elderly. Sleep, 16(Suppl. 8), 2529. doi: 10.1093/sleep/16.suppl_8.s25Google Scholar
Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science, 18, 274284. doi: 10.1126/science.118.3062.273Google Scholar
Bauckneht, M., Chincarini, A., De Carli, F., et al. (2018). Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: A systematic review and meta-analysis. Sleep Medicine Reviews, 41, 266274. doi: 10.1016/j.smrv.2018.04.001Google Scholar
Benedict, C., Byberg, L., Cedernaes, J., et al. (2015). Self-reported sleep disturbance is associated with Alzheimer’s disease risk in men. Alzheimer’s and Dementia, 11(9), 10901097. doi: 10.1016/j.jalz.2014.08.104Google Scholar
Bliwise, D. L., Foley, D. J., Vitiello, M. V., et al. (2009). Nocturia and disturbed sleep in the elderly. Sleep Medicine, 10(5), 540548. doi: 10.1016/j.sleep.2008.04.002Google Scholar
Borbély, A. A., Daan, S., Wirz‐Justice, A., & Deboer, T. (2016). The two‐process model of sleep regulation: A reappraisal. Journal of Sleep Research, 25(2), 131143. doi: 10.1111/jsr.12371Google Scholar
Bubu, O. M., Brannick, M., Mortimer, J., et al. (2017). Sleep, cognitive impairment, and Alzheimer’s disease: A systematic review and meta-analysis. Sleep, 40(1), zsw032. doi: 10.1093/sleep/zsw032Google Scholar
Cardinali, D. P., Brusco, L. I., Liberczuk, C., & Furio, A. M. (2002). The use of melatonin in Alzheimer’s disease. Neuro Endocrinology Letters, 23(Suppl. 1), 2023.Google Scholar
Cassidy-Eagle, E., Siebern, A., Unti, L., Glassman, J., & O’Hara, R. (2018). Neuropsychological functioning in older adults with mild cognitive impairment and insomnia randomized to CBT-I or control group. Clinical Gerontologist, 41(2), 136144. doi: 10.1080/07317115.2017.1384777Google Scholar
Chen, D.-W., Wang, J., Zhang, L.-L., Wang, Y.-J., & Gao, C.-Y. (2018). Cerebrospinal fluid amyloid-β levels are increased in patients with insomnia. Journal of Alzheimer’s Disease, 61(2), 645651. doi: 10.3233/JAD-170032Google Scholar
Chiu, H. L., Chan, P. T., Chu, H., et al. (2017). Effectiveness of light therapy in cognitively impaired persons: A metaanalysis of randomized controlled trials. Journal of the American Geriatrics Society, 65(10), 22272234. doi: 10.1111/jgs.14990Google Scholar
Crowley, K. (2011). Sleep and sleep disorders in older adults. Neuropsychology Review, 21(1), 4153. doi: 10.1007/s11065-010-9154-6Google Scholar
Cuellar, N. G., Strumpf, N. E., & Ratcliffe, S. J. (2007). Symptoms of restless legs syndrome in older adults: Outcomes on sleep quality, sleepiness, fatigue, depression, and quality of life. Journal of the American Geriatrics Society, 55(9), 13871392. 10.1111/j.1532-5415.2007.01294.xGoogle Scholar
Dang-Vu, T. T., Schabus, M., Desseilles, M., et al. (2010). Functional neuroimaging insights into the physiology of human sleep. Sleep, 33(12), 15891603. doi: 10.1093/sleep/33.12.1589Google Scholar
Dement, W. C. (1998). The study of human sleep: A historical perspective. Thorax, 53(Suppl. 3), 27. doi: 10.1136/thx.53.2008.S2Google Scholar
Doody, R. S., Thomas, R. G., Farlow, M., et al. (2014). Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. New England Journal of Medicine, 370(4), 311321. doi: 10.1056/NEJMoa1312889Google Scholar
Dubé, J., Lafortune, M., Bedetti, C., et al. (2015). Cortical thinning explains changes in sleep slow waves during adulthood. Journal of Neuroscience, 35(20), 77957807. doi: 10.1523/JNEUROSCI.3956-14.2015Google Scholar
Duffy, J. F., Willson, H. J., Wang, W., & Czeisler, C. A. (2009). Healthy older adults better tolerate sleep deprivation than young adults: Increased tolerance of sleep deprivation with age. Journal of the American Geriatrics Society, 57(7), 12451251. doi: 10.1111/j.1532-5415.2009.02303.xGoogle Scholar
Emamian, F., Khazaie, H., Tahmasian, M., et al. (2016). The association between obstructive sleep apnea and Alzheimer’s disease: A meta-analysis perspective. Frontiers in Aging Neuroscience, 8, 78. doi: 10.3389/fnagi.2016.00078Google Scholar
Ferman, T. J., Boeve, B. F., Smith, G. E., et al. (1999). REM sleep behavior disorder and dementia: Cognitive differences when compared with AD. Neurology, 52(5), 951951. doi: 10.1212/WNL.52.5.951Google Scholar
Fogel, S. M., Albouy, G., Vien, C., et al. (2014). fMRI and sleep correlates of the age-related impairment in motor memory consolidation: Age-related sleep-dependent impaired memory. Human Brain Mapping, 35(8), 36253645. doi: 10.1002/hbm.22426Google Scholar
Furio, A. M., Brusco, L. I., & Cardinali, D. P. (2007). Possible therapeutic value of melatonin in mild cognitive impairment: A retrospective study. Journal of Pineal Research, 43(4), 404409. doi: 10.1111/j.1600-079X.2007.00491.xGoogle Scholar
Gerrard, J. L., Burke, S. N., McNaughton, B. L., & Barnes, C. A. (2008). Sequence reactivation in the hippocampus is impaired in aged rats. Journal of Neuroscience, 28(31), 78837890. doi: 10.1523/JNEUROSCI.1265-08.2008Google Scholar
Gilbert, S. S., Burgess, H. J., Kennaway, D. J., & Dawson, D. (2000). Attenuation of sleep propensity, core hypothermia, and peripheral heat loss after temazepam tolerance. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 279(6), R19801987. doi: 10.1152/ajpregu.2000.279.6.R1980Google Scholar
Goldstein-Piekarski, A. N., O’Hora, K., Buchanan, A., et al. (2018). The effects of CBT-I on cognitive functioning in individuals with insomnia and mild cognitive impairment. Sleep, 41(Suppl. 1), A154A155. doi: 10.1093/sleep/zsy061.405Google Scholar
Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 17781783. doi: 10.1212/WNL.0b013e31828726f5Google Scholar
Herings, R. M., Stricker, B. H., de Boer, A., Bakker, A., & Sturmans, F. (1995). Benzodiazepines and the risk of falling leading to femur fractures: Dosage more important than elimination half-life. Archives of Internal Medicine, 155(16), 18011807. doi: 10.1001/archinte.1995.00430160149015Google Scholar
Jessen, N. A., Munk, A. S. F., Lundgaard, I., & Nedergaard, M. (2015). The glymphatic system: A beginner’s guide. Neurochemical Research, 40(12), 25832599. doi: 10.1007/s11064-015-1581-6Google Scholar
Jouvet, M. (1965). Paradoxical sleep – A study of its nature and mechanisms. Progress in Brain Research, 18, 2062. doi: 10.1016/S0079-6123(08)63582-7Google Scholar
Ju, Y. E. S., Ooms, S. J., Sutphen, C., et al. (2017). Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain, 140(8), 21042111. doi: 10.1093/brain/awx148Google Scholar
Kyle, S. D., Sexton, C. E., Feige, B., et al. (2017). Sleep and cognitive performance: Cross-sectional associations in the UK Biobank. Sleep Medicine, 38, 8591. doi: 10.1016/j.sleep.2017.07.001Google Scholar
Lee, H. B., Ramsey, C. M., Spira, A. P., et al. (2014). Comparison of cognitive functioning among individuals with treated restless legs syndrome (RLS), untreated RLS, and no RLS. Journal of Neuropsychiatry and Clinical Neurosciences, 26(1), 8791. doi: 10.1176/appi.neuropsych.12120394Google Scholar
Liu, Y. R., Fan, D. Q., Gui, W. J., et al. (2018). Sleep-related brain atrophy and disrupted functional connectivity in older adults. Behavioural Brain Research, 347, 292299. doi: 10.1016/j.bbr.2018.03.032Google Scholar
Mander, B. A., Marks, S. M., Vogel, J. W., et al. (2015). β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nature Neuroscience, 18(7), 10511057. doi: 10.1038/nn.3324Google Scholar
McCall, W. V. (2004). Sleep in the elderly: Burden, diagnosis, and treatment. Primary Care Companion to the Journal of Clinical Psychiatry, 6(1), 920. doi: 10.4088/pcc.v06n0104Google Scholar
McCurry, S. M., Pike, K. C., Vitiello, M. V., et al. (2011). Increasing walking and bright light exposure to improve sleep in community-dwelling persons with Alzheimer’s disease: Results of a randomized, controlled trial. Journal of the American Geriatrics Society, 59(8), 13931402. doi: 10.1111/j.1532-5415.2011.03519.xGoogle Scholar
Milner, C. E., & Cote, K. A. (2008). A dose-response investigation of the benefits of napping in healthy young, middle-aged and older adults. Sleep and Biological Rhythms, 6(1), 215. doi: 10.1111/j.1479-8425.2007.00328.xGoogle Scholar
Montplaisir, J., Boucher, S., Poirier, G., et al. (1997). Clinical, polysomnographic, and genetic characteristics of restless legs syndrome: A study of 133 patients diagnosed with new standard criteria. Movement Disorders, 12(1), 6165. doi: 10.1002/mds.870120111CrossRefGoogle ScholarPubMed
Murphy, M. P., & LeVine, H. (2010). Alzheimer’s disease and the amyloid-β peptide. Journal of Alzheimer’s Disease, 19(1), 311323. doi: 10.3233/JAD-2010-1221Google Scholar
National Sleep Foundation (2003). Summary findings of the 2003 Sleep in America Poll. http://sleepfoundation.org/sites/default/files/2003SleepPollExecSumm.pdfGoogle Scholar
Ohayon, M. M., Carskadon, M. A., Guilleminault, C., & Vitiello, M. V. (2004). Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep, 27(7), 12551273. doi: 10.1093/sleep/27.7.1255Google Scholar
Pasula, E. Y., Brown, G. G., McKenna, B. S., et al. (2018). Effects of sleep deprivation on component processes of working memory in younger and older adults. Sleep, 41(3), zsx213. doi: 10.1093/sleep/zsx213Google Scholar
Pearson, V., Allen, R., Dean, T., et al. (2006). Cognitive deficits associated with restless legs syndrome (RLS). Sleep Medicine, 7(1), 2530. doi: 10.1016/j.sleep.2005.05.006Google Scholar
Peigneux, P., Laureys, S., Fuchs, S., et al. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535545. doi: 10.1016/j.neuron.2004.10.007Google Scholar
Postuma, R. B., Gagnon, J.-F., Bertrand, J.-A., Genier Marchand, D., & Montplaisir, J. Y. (2015). Parkinson risk in idiopathic REM sleep behavior disorder: Preparing for neuroprotective trials. Neurology, 84(11), 11041113. doi: 10.1212/WNL.0000000000001364Google Scholar
Rasch, B., & Born, J. (2013). About sleep’s role in memory. Physiological Reviews, 93(2), 681766. doi: 10.1152/physrev.00032.2012Google Scholar
Rasch, B., Buchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 14261429. doi: 10.1126/science.1138581Google Scholar
Rechtschaffen, A., Bergmann, B. M., Everson, C. A., Kushida, C. A., & Gilliland, M. A. (1989). Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep, 12(1), 6887. doi: 10.1093/sleep/12.1.68Google Scholar
Rhalimi, M., Helou, R., & Jaecker, P. (2009). Medication use and increased risk of falls in hospitalized elderly patients: A retrospective, case-control study. Drugs and Aging, 26(10), 847852. doi: 10.2165/11317610-000000000-00000Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. doi: 10.1037/0033-295x.103.3.403Google Scholar
Schwarz, J. F. A., Åkerstedt, T., Lindberg, E., et al. (2017). Age affects sleep microstructure more than sleep macrostructure. Journal of Sleep Research, 26(3), 277287. doi: 10.1111/jsr.12478Google Scholar
Scullin, M. K. (2013). Sleep, memory, and aging: The link between slow-wave sleep and episodic memory changes from younger to older adults. Psychology and Aging, 28(1), 105114. doi: 10.1037/a0028830Google Scholar
Scullin, M. K. (2017). Do older adults need sleep? A review of neuroimaging, sleep, and aging studies. Current Sleep Medicine Reports, 3(3), 204214. doi: 10.1007/s40675-017-0086-zGoogle Scholar
Scullin, M. K. (2019). The eight hour sleep challenge during final exams week. Teaching of Psychology, 46(1), 5563. doi: 10.1177/0098628318816142Google Scholar
Scullin, M. K., & Bliwise, D. L. (2015). Sleep, cognition, and normal aging: Integrating a half century of multidisciplinary research. Perspectives on Psychological Science, 10(1), 97137. doi: 10.1177/1745691614556680Google Scholar
Scullin, M. K., Fairley, J., Decker, M. J., & Bliwise, D. L. (2017). The effects of an afternoon nap on episodic memory in young and older adults. Sleep, 40(5), zsx035. doi: 10.1093/sleep/zsx035Google Scholar
Scullin, M. K., Fairley, J., Trotti, L., et al. (2015). Sleep correlates of trait executive function and memory in Parkinson’s disease. Journal of Parkinson’s Disease, 5(1), 4954. doi: 10.3233/JPD-140475Google Scholar
Scullin, M. K., Le, D. T., & Shelton, J. T. (2017). Healthy heart, healthy brain: Hypertension affects cognitive functioning in older age. Translational Issues in Psychological Science, 3(4), 328337. doi: 10.1037/tps0000131Google Scholar
Scullin, M. K., Trotti, L. M., Wilson, A. G., Greer, S. A., & Bliwise, D. L. (2012). Nocturnal sleep enhances working memory training in Parkinson’s disease but not Lewy body dementia. Brain, 135(9), 27892797. doi: 10.1093/brain/aws192Google Scholar
Sharma, R. A., Varga, A. W., Bubu, O. M., et al. (2018). Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study. American Journal of Respiratory and Critical Care Medicine, 197(7), 933943. doi: 10.1164/rccm.201704-0704OCGoogle Scholar
Shokri-Kojori, E., Wang, G.-J., Wiers, C. E., et al. (2018). β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proceedings of the National Academy of Sciences USA, 115(17), 44834488. doi: 10.1073/pnas.1721694115Google Scholar
Smith, M. T., Perlis, M. L., Park, A., et al. (2002). Comparative meta-analysis of pharmacotherapy and behavior therapy for persistent insomnia. American Journal of Psychiatry, 159(1), 511. doi: 10.1176/appi.ajp.159.1.5Google Scholar
Spira, A. P., Gonzalez, C. E., Venkatraman, V. K., et al. (2016). Sleep duration and subsequent cortical thinning in cognitively normal older adults. Sleep, 39(5), 11211128. doi: 10.5665/sleep.5768Google Scholar
Staresina, B. P., Bergmann, T. O., Bonnefond, M., et al. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18, 16791686. doi: 10.1038/nn.4119Google Scholar
Thomas, M., Sing, H., Belenky, G., et al. (2000). Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. Journal of Sleep Research, 9(4), 335352. doi: 10.1046/j.1365-2869.2000.00225.xGoogle Scholar
Troussière, A. C., Monaca Charley, C., Salleron, J., et al. (2014). Treatment of sleep apnoea syndrome decreases cognitive decline in patients with Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 85(12), 14051408. doi: 10.1136/jnnp-2013-307544Google Scholar
Wallace, A., & Bucks, R. S. (2013). Memory and obstructive sleep apnea: A meta-analysis. Sleep, 36(2), 203220. doi: 10.5665/sleep.2374Google Scholar
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676679. doi: 10.1126/science.8036517Google Scholar
Wu, J. C., Gillin, J. C., Buchsbaum, M. S., et al. (2006). Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology, 31(12), 27832792. doi: 10.1038/sj.npp.1301166Google Scholar
Xie, L., Kang, H., Xu, Q., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342(6156), 373377. doi: 10.1126/science.1241224Google Scholar

References

Barnes, D. E., Blackwell, T., Stone, K. L., et al. (2008). Cognition in older women: The importance of daytime movement. Journal of the American Geriatrics Society, 56(9), 16581664. http://dx.doi.org/10.1111/j.1532-5415.2008.01841.xGoogle Scholar
Bennett, D. A., Schneider, J. A., Buchman, A. S., et al. (2005). The Rush Memory and Aging Project: Study design and baseline characteristics of the study cohort. Neuroepidemiology, 25(4), 163175. http://dx.doi.org/10.1159/000087446Google Scholar
Boucard, G. K., Albinet, C. T., Bugaiska, A., et al. (2012). Impact of physical activity on executive functions in aging: A selective effect on inhibition among old adults. Journal of Sport and Exercise Psychology, 34(6), 808827. http://dx.doi.org/10.1123/jsep.34.6.808Google Scholar
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers and Dementia, 3(3), 186191. http://dx.doi.org/10.1016/j.jalz.2007.04.381Google Scholar
Brown, B. M., Peiffer, J., Sohrabi, H. R., et al. (2012). Intense physical activity is associated with cognitive performance in the elderly. Translational Psychiatry, 2(11), e191. http://dx.doi.org/10.1038/tp.2012.118Google Scholar
Buchman, A., Boyle, P., Yu, L., et al. (2012). Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology, 78(17), 13231329. http://dx.doi.org/10.1212/WNL.0b013e3182535d35Google Scholar
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126131.Google Scholar
Cavalcante, B. R., Germano-Soares, A. H., Gerage, A. M., et al. (2018). Association between physical activity and walking capacity with cognitive function in peripheral artery disease patients. European Journal of Vascular and Endovascular Surgery, 55(5), 672678. http://dx.doi.org/10.1016/j.ejvs.2018.02.010Google Scholar
Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125130. http://dx.doi.org/10.1111/1467-9280.t01-1-01430CrossRefGoogle ScholarPubMed
Doody, R. S., Raman, R., Farlow, M., et al. (2013). A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New England Journal of Medicine, 369(4), 341350. http://dx.doi.org/10.1056/NEJMoa1210951Google Scholar
Doody, R. S., Thomas, R. G., Farlow, M., et al. (2014). Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. New England Journal of Medicine, 370(4), 311321. http://dx.doi.org/10.1056/NEJMoa1312889Google Scholar
Erickson, K., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43(1), 2224. http://dx.doi.org/10.1136/bjsm.2008.052498Google Scholar
Freedson, P., Bowles, H. R., Troiano, R., & Haskell, W. (2012). Assessment of physical activity using wearable monitors: Recommendations for monitor calibration and use in the field. Medicine and Science in Sports and Exercise, 44(Suppl. 1), 14. http://dx.doi.org/10.1249/MSS.0b013e3182399b7eGoogle Scholar
Freedson, P., Melanson, E., & Sirard, J. (1998). Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and Science in Sports and Exercise, 30(5), 777781. http://dx.doi.org/10.1097/00005768-199805000-00021Google Scholar
Freedson, P., Pober, D., & Janz, K. F. (2005). Calibration of accelerometer output for children. Medicine and Science in Sports and Exercise, 37(Suppl. 11), 523530. http://dx.doi.org/10.1249/01.mss.0000185658.28284.baGoogle Scholar
Goh, J. O., An, Y., & Resnick, S. M. (2012). Differential trajectories of age-related changes in components of executive and memory processes. Psychology of Aging, 27(3), 707719. http://dx.doi.org/10.1037/a0026715Google Scholar
Gregory, S. M., Parker, B., & Thompson, P. D. (2012). Physical activity, cognitive function, and brain health: What is the role of exercise training in the prevention of dementia? Brain Sciences, 2(4), 684708. http://dx.doi.org/10.3390/brainsci2040684Google Scholar
Halloway, S., Wilbur, J., Schoeny, M. E., & Barnes, L. L. (2017). The relation between physical activity and cognitive change in older Latinos. Biological Research for Nursing, 19(5), 538548. http://dx.doi.org/10.1177/1099800417715115Google Scholar
Hayes, S. M., Alosco, M. L., Hayes, J. P., et al. (2015). Physical activity is positively associated with episodic memory in aging. Journal of the International Neuropsychological Society, 21(10), 780790. http://dx.doi.org/10.1017/S1355617715000910Google Scholar
Hayes, S. M., Forman, D. E., & Verfaellie, M. (2016). Cardiorespiratory fitness is associated with cognitive performance in older but not younger adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 71(3), 474482. http://dx.doi.org/10.1093/geronb/gbu167Google Scholar
Hayes, S. M., Hayes, J. P., Williams, V. J., Liu, H., & Verfaellie, M. (2017). FMRI activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults. Cortex, 91, 208220. http://dx.doi.org/10.1016/j.cortex.2017.01.002Google Scholar
Hayes, S. M., Salat, D. H., Forman, D. E., Sperling, R. A., & Verfaellie, M. (2015). Cardiorespiratory fitness is associated with white matter integrity in aging. Annals of Clinical Translational Neurology, 2(6), 688698. http://dx.doi.org/10.1002/acn3.204Google Scholar
Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 17781783. http://dx.doi.org/10.1212/WNL.0b013e31828726f5Google Scholar
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 5865. http://dx.doi.org/10.1038/nrn2298Google Scholar
John, D., & Freedson, P. (2012). ActiGraph and Actical physical activity monitors: A peek under the hood. Medicine and Science in Sports and Exercise, 44(1 Suppl. 1), 8689. http://dx.doi.org/10.1249/MSS.0b013e3182399f5eGoogle Scholar
John, D., Liu, S., Sasaki, J. E., et al. (2011). Calibrating a novel multi-sensor physical activity measurement system. Physiological Measurement, 32(9), 14731489. http://dx.doi.org/10.1088/0967-3334/32/9/009Google Scholar
Johnson, L. G., Butson, M. L., Polman, R. C., et al. (2016). Light physical activity is positively associated with cognitive performance in older community dwelling adults. Journal of Science and Medicine in Sport, 19(11), 877882. http://dx.doi.org/10.1016/j.jsams.2016.02.002Google Scholar
Kerr, J., Marshall, S. J., Patterson, R. E., et al. (2013). Objectively measured physical activity is related to cognitive function in older adults. Journal of the American Geriatrics Society, 61(11), 19271931. http://dx.doi.org/10.1111/jgs.12524Google Scholar
Kramer, A. F., & Colcombe, S. (2018). Fitness effects on the cognitive function of older adults: A meta-analytic study – revisited. Perspectives on Psychological Science, 13(2), 213217. http://dx.doi.org/10.1177/1745691617707316Google Scholar
Lamb, S. E., Sheehan, B., Atherton, N., et al. (2018). Dementia and physical activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: Randomised controlled trial. BMJ, 361, k1675. http://dx.doi.org/10.1136/bmj.k1675Google Scholar
Makizako, H., Liu-Ambrose, T., Shimada, H., et al. (2015). Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. Journals of Gerontology, Series A: Biomedical Sciences and Medical Sciences, 70(4), 480486. http://dx.doi.org/10.1093/gerona/glu136Google Scholar
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. http://dx.doi.org/10.1111/j.1532-5415.2005.53221.xGoogle Scholar
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 11701187. http://dx.doi.org/10.1037/0278-7393.26.5.1170Google Scholar
Norton, S., Matthews, F. E., & Brayne, C. (2013). A commentary on studies presenting projections of the future prevalence of dementia. BMC Public Health, 13, 1. http://dx.doi.org/10.1186/1471-2458-13-1Google Scholar
Prince, S. A., Adamo, K. B., Hamel, M. E., et al. (2008). A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 5, 56. http://dx.doi.org/10.1186/1479-5868-5-56Google Scholar
Rzewnicki, R., Vanden Auweele, Y., & De Bourdeaudhuij, I. (2003). Addressing overreporting on the International Physical Activity Questionnaire (IPAQ) telephone survey with a population sample. Public Health Nutrition, 6(3), 299305. http://dx.doi.org/10.1079/PHN2002427Google Scholar
Salloway, S., Sperling, R., Fox, N. C., et al. (2014). Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. New England Journal of Medicine, 370(4), 322333. http://dx.doi.org/10.1056/NEJMoa1304839Google Scholar
Shepard, R. J. (2003). Limits to the measurement of habitual physical activity by questionnaires. British Journal of Sports Medicine, 37, 197206. https://doi.org/10.1136/bjsm.37.3.197Google Scholar
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., et al. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239252. http://dx.doi.org/10.1097/PSY.0b013e3181d14633Google Scholar
Stubbs, B., Chen, L. J., Chang, C. Y., Sun, W. J., & Ku, P. W. (2017). Accelerometer-assessed light physical activity is protective of future cognitive ability: A longitudinal study among community dwelling older adults. Experimental Gerontology, 91, 104109. http://dx.doi.org/10.1016/j.exger.2017.03.003Google Scholar
Trost, S. G., Pate, R. R., Freedson, P. S., Sallis, J. F., & Taylor, W. C. (2000). Using objective physical activity measures with youth: How many days of monitoring are needed? Medicine and Science in Sports and Exercise, 32(2), 426431. http://dx.doi.org/10.1097/00005768-200002000-00025Google Scholar
Umegaki, H., Makino, T., Uemura, K., et al. (2018). Objectively measured physical activity and cognitive function in urban‐dwelling older adults. Geriatrics and Gerontology International, 18(6), 922928. http://dx.doi.org/10.1111/ggi.13284Google Scholar
Vance, D. E., Wadley, V. G., Ball, K. K., Roenker, D. L., & Rizzo, M. (2005). The effects of physical activity and sedentary behavior on cognitive health in older adults. Journal of Aging and Physical Activity, 13(3), 294313. http://dx.doi.org/10.1123/japa.13.3.294Google Scholar
Vásquez, E., Strizich, G., Isasi, C. R., et al. (2017). Is there a relationship between accelerometer-assessed physical activity and sedentary behavior and cognitive function in US Hispanic/Latino adults? The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Preventive Medicine, 103, 4348. http://dx.doi.org/10.1016/j.ypmed.2017.07.024Google Scholar
Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011). Exercise, brain, and cognition across the life span. Journal of Applied Physiology, 111(5), 15051513. http://dx.doi.org/10.1152/japplphysiol.00210.2011Google Scholar
Wang, R., Blackburn, G., Desai, M., et al. (2017). Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2(1), 104106. http://dx.doi.org/10.1001/jamacardio.2016.3340Google Scholar
Wilbur, J., Marquez, D. X., Fogg, L., et al. (2012). The relationship between physical activity and cognition in older Latinos. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 67(5), 525534. http://dx.doi.org/10.1093/geronb/gbr137Google Scholar
Wilckens, K. A., Erickson, K. I., & Wheeler, M. E. (2018). Physical activity and cognition: A mediating role of efficient sleep. Behavioral Sleep Medicine, 16(6), 569586. http://dx.doi.org/10.1080/15402002.2016.1253013Google Scholar
Williams, V. J., Hayes, J. P., Forman, D. E., et al. (2017). Cardiorespiratory fitness is differentially associated with cortical thickness in young and older adults. NeuroImage, 146, 10841092. http://dx.doi.org/10.1016/j.neuroimage.2016.10.033Google Scholar
Zhu, W., Howard, V. J., Wadley, V. G., et al. (2015). Association between objectively measured physical activity and cognitive function in older adults – the reasons for geographic and racial differences in stroke study. Journal of the American Geriatrics Society, 63(12), 24472454. http://dx.doi.org/10.1111/jgs.13829Google Scholar
Zhu, W., Wadley, V. G., Howard, V. J., et al. (2017). Objectively measured physical activity and cognitive function in older adults. Medicine and Science in Sports and Exercise, 49(1), 4753. http://dx.doi.org/10.1249/MSS.0000000000001079Google Scholar

References

Agarwal, S., Driscoll, J. C., Gabaix, X., & Laibson, D. (2009). The age of reason: Financial decisions over the lifecycle with implications for regulation. Brookings Papers on Economic Activity, 2, 51117.Google Scholar
Amer, T., Anderson, J. A. E., Campbell, K. L., Hasher, L., & Grady, C. L. (2016). Age differences in the neural correlates of distraction regulation: A network interaction approach. NeuroImage, 139, 231239. doi: 10.1016/j.neuroimage.2016.06.036Google Scholar
Anderson, S., White-Schwoch, T., Choi, H. J., & Kraus, N. (2014). Partial maintenance of auditory-based cognitive training benefits in older adults. Neuropsychologia, 62, 286296. doi: 10.1016/j.neuropsychologia.2014.07.034Google Scholar
Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences USA, 110(11), 43574362. doi: 10.1073/pnas.1213555110Google Scholar
Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924935. doi: 10.1016/j.neuron.2007.10.038Google Scholar
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97101. doi: 10.1038/nature12486Google Scholar
Au, J., Sheehan, E., Tsai, N., et al. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin and Review, 22(2), 366377. doi: 10.3758/s13423-014-0699-xGoogle Scholar
Ball, K., Berch, D. B., Helmers, K. F., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA, 288(18), 22712281. doi: 10.1001/jama.288.18.2271Google Scholar
Berry, A. S., Zanto, T. P., Clapp, W. C., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS One, 5(7), e11537. doi: 10.1371/journal.pone.0011537Google Scholar
Berry, A. S., Zanto, T. P., Rutman, A. M., Clapp, W. C., & Gazzaley, A. (2009). Practice-related improvement in working memory is modulated by changes in processing external interference. Journal of Neurophysiology, 102, 17791789. doi: 10.1152/jn.00179.2009Google Scholar
Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434454. doi: 10.1007/s41465-017-0044-1Google Scholar
Boldrini, M., Fulmore, C. A., Tartt, A. N., et al. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22(4), 589599 e5. doi: 10.1016/j.stem.2018.03.015Google Scholar
Bower, J. D., & Andersen, G. J. (2012). Aging, perceptual learning, and changes in efficiency of motion processing. Vision Research, 61, 144156. doi: 10.1016/j.visres.2011.07.016Google Scholar
Bower, J. D., Watanabe, T., & Andersen, G. J. (2013). Perceptual learning and aging: Improved performance for low-contrast motion discrimination. Frontiers in Psychology, 4, 66. doi: 10.3389/fpsyg.2013.00066Google Scholar
Boyke, J., Driemeyer, J., Gaser, C., Buchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28(28), 70317035. doi: 10.1523/JNEUROSCI.0742-08.2008Google Scholar
Burgess, G. C., Gray, J. R., Conway, A. R., & Braver, T. S. (2011). Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. Journal of Experimental Psychology: General, 140(4), 674692. doi: 10.1037/a0024695Google Scholar
Cashdollar, N., Fukuda, K., Bocklage, A., et al. (2013). Prolonged disengagement from attentional capture in normal aging. Psychology of Aging, 28(1), 7786. doi: 10.1037/a0029899Google Scholar
Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences USA, 111(46), E4997E5006. doi: 10.1073/pnas.1415122111Google Scholar
Chein, J. M., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Research: Cognitive Brain Research, 25(3), 607623. doi: 10.1016/j.cogbrainres.2005.08.013Google Scholar
Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cerebral Cortex, 11(8), 761772. doi: 10.1093/cercor/11.8.761Google Scholar
Clapp, W. C., Rubens, M. T., & Gazzaley, A. (2010). Mechanisms of working memory disruption by external interference. Cerebral Cortex, 20(4), 859872. doi: 10.1093/cercor/bhp150Google Scholar
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 89888999. doi: 10.1523/JNEUROSCI.0536-12.2012Google Scholar
Coley, N., Ngandu, T., Lehtisalo, J., et al. (2019). Adherence to multidomain interventions for dementia prevention: Data from the FINGER and MAPT trials. Alzheimer’s and Dementia, 15(6), 729741. doi: 10.1016/j.jalz.2019.03.005Google Scholar
Daffner, K. R., Zhuravleva, T. Y., Sun, X., et al. (2012). Does modulation of selective attention to features reflect enhancement or suppression of neural activity? Biological Psychology, 89(2), 398407. doi: 10.1016/j.biopsycho.2011.12.002Google Scholar
Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 15101512. doi: 10.1126/science.1155466Google Scholar
Daneman, M., & Hannon, B. (2007). What do working memory span tasks really measure? In Logie, R. H., Osaka, N., & D’Esposito, M. (Eds.), The cognitive neuroscience of working memory (pp. 2142). Oxford: Oxford University Press.Google Scholar
DeLoss, D. J., Watanabe, T., & Andersen, G. J. (2015). Improving vision among older adults: Behavioral training to improve sight. Psychological Science, 26(4), 456466. doi: 10.1177/0956797614567510Google Scholar
Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T., & Valdes, E. G. (2018). Systematic review and meta-analyses of useful field of view cognitive training. Neuroscience and Biobehavioral Reviews, 84, 7291. doi: 10.1016/j.neubiorev.2017.11.004Google Scholar
Edwards, J. D., Ross, L. A., Ackerman, M. L., et al. (2008). Longitudinal predictors of driving cessation among older adults from the ACTIVE clinical trial. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 63(1), P6P12. doi: 10.1093/geronb/63.1.P6Google Scholar
Edwards, J. D., Xu, H., Clark, D. O., et al. (2017). Speed of processing training results in lower risk of dementia. Alzheimer’s and Dementia (NY), 3(4), 603611. doi: 10.1016/j.trci.2017.09.002Google Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 16671676. doi: 10.1016/j.neuroimage.2010.05.041Google Scholar
Ferreira, L. K., Regina, A. C., Kovacevic, N., et al. (2016). Aging effects on whole-brain functional connectivity in adults free of cognitive and psychiatric disorders. Cerebral Cortex, 26(9), 38513865. doi: 10.1093/cercor/bhv190Google Scholar
Fornito, A., Harrison, B. J., Zalesky, A., & Simons, J. S. (2012). Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proceedings of the National Academy of Sciences USA, 109(31), 1278812793. doi: 10.1073/pnas.1204185109Google Scholar
Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., & Greenwood, P. M. (2016). Placebo effects in cognitive training. Proceedings of the National Academy of Sciences USA, 113(27), 74707474. doi: 10.1073/pnas.1601243113Google Scholar
Fox, M. D., Snyder, A. Z., Vincent, J. L., et al. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences USA, 102(27), 96739678. doi: 10.1073/pnas.0504136102Google Scholar
Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin and Review, 17(5), 673679. doi: 10.3758/17.5.673Google Scholar
Gazzaley, A., Clapp, W., Kelley, J., et al. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences USA, 105(35), 1312213126. doi: 10.1073/pnas.0806074105Google Scholar
Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 12981300. doi: 10.1038/nn1543Google Scholar
Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 19871999. doi: 10.1093/cercor/bhu012Google Scholar
Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677696. doi: 10.1016/j.neuron.2007.05.019Google Scholar
Goh, J. O., An, Y., & Resnick, S. M. (2012). Differential trajectories of age-related changes in components of executive and memory processes. Psychology and Aging, 27(3), 707719. doi: 10.1037/a0026715Google Scholar
Golland, Y., Golland, P., Bentin, S., & Malach, R. (2008). Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia, 46(2), 540553. doi: 10.1016/j.neuropsychologia.2007.10.003Google Scholar
Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 24(1), 79132. doi: 10.1016/S0160-2896(97)90014-3Google Scholar
Grady, C. L., & Craik, F. I. (2000). Changes in memory processing with age. Current Opinion in Neurobiology, 10(2), 224231. doi: 10.1016/S0959-4388(00)00073-8Google Scholar
Grady, C. L., Maisog, J. M., Horwitz, B., et al. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. Journal of Neuroscience, 14, 14501462. doi: 10.1523/JNEUROSCI.14-03-01450.1994Google Scholar
Grady, C. L., Sarraf, S., Saverino, C., & Campbell, K. (2016). Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiology of Aging, 41, 159172. doi: 10.1016/j.neurobiolaging.2016.02.020Google Scholar
Greenwood, P. M. (2007). Functional plasticity in cognitive aging: Review and hypothesis. Neuropsychology, 21(6), 657673. doi: 10.1037/0894-4105.21.6.657Google Scholar
Greenwood, P. M., & Parasuraman, R. (1999). Scale of attentional focus in visual search. Perception and Psychophysics, 61, 837859. doi: 10.3758/BF03206901Google Scholar
Greenwood, P. M., & Parasuraman, R. (2004). The scaling of spatial attention in visual search and its modification in healthy aging. Perception and Psychophysics, 66, 322. doi: 10.3758/BF03194857Google Scholar
Greenwood, P. M., & Parasuraman, R. (2016). The mechanisms of far transfer from cognitive training: Review and hypothesis. Neuropsychology, 30(6), 742755. doi: 10.1037/neu0000235Google Scholar
Greenwood, P. M., Parasuraman, R., & Alexander, G. E. (1997). Controlling the focus of spatial attention during visual search: Effects of advanced aging and Alzheimer disease. Neuropsychology, 11(1), 312. doi.org/10.1037/0894-4105.11.1.3Google Scholar
Hasher, L., Stoltzfus, E. R., Zacks, R. T., & Rypma, B. (1991). Age and inhibition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(1), 163169. doi: 10.1037//0278-7393.17.1.163Google Scholar
Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356388. doi: 10.1037/0096-3445.108.3.356Google Scholar
Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences USA, 95, 781788. doi: 10.1073/pnas.95.3.781Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences USA, 105(19), 68296833. doi: 10.1073/pnas.0801268105Google Scholar
Jobe, J. B., Smith, D. M., Ball, K., et al. (2001). ACTIVE: A cognitive intervention trial to promote independence in older adults. Controlled Clinical Trials, 22(4), 453479. doi: 10.1016/S0197-2456(01)00139-8Google Scholar
Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 20272037. doi: 10.1177/0956797614548725Google Scholar
Kelly, A. M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 10891102. doi: 10.1093/cercor/bhi005Google Scholar
Kelly, M. E., Loughrey, D., Lawlor, B. A., et al. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 15, 2843. doi: 10.1016/j.arr.2014.02.004Google Scholar
Kraus, N., Bradlow, A. R., Cheatham, M. A., et al. (2000). Consequences of neural asynchrony: A case of auditory neuropathy. Journal of the Association for Research in Otolaryngology, 1(1), 3345. doi: 10.1007/s101620010004Google Scholar
Kristjansson, A., & Nakayama, K. (2002). The attentional blink in space and time. Vision Research, 42(17), 20392050. doi: 10.1016/S0042-6989(02)00129-3Google Scholar
Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology, 86(1), 148161. doi: 10.1037/0022-3514.86.1.148Google Scholar
Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist, 9(3), 179186. doi: 10.1093/geront/9.3_Part_1.179Google Scholar
Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences USA, 106(41), 1755817563. doi: 10.1073/pnas.0902455106Google Scholar
Li, X., Allen, P. A., Lien, M. C., & Yamamoto, N. (2017). Practice makes it better: A psychophysical study of visual perceptual learning and its transfer effects on aging. Psychology and Aging, 32(1), 1627. doi: 10.1037/pag0000145Google Scholar
Livingston, G., Sommerlad, A., Orgeta, V., et al. (2017). Dementia prevention, intervention, and care. Lancet, 390(10113), 26732734. doi: 10.1016/S0140-6736(17)31363-6Google Scholar
Luck, S. J., Hillyard, S. A., Mouloua, M., et al. (1994). Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. Journal of Experimental Psychology: Human Perception and Performance, 20, 887904. doi: 10.1037//0096-1523.20.4.887Google Scholar
Madden, D. J., Whiting, W. L., Cabeza, R., & Huettel, S. A. (2004). Age-related preservation of top-down attentional guidance during visual search. Psychology and Aging, 19(2), 304309. doi: 10.1037/0882-7974.19.2.304Google Scholar
Mahncke, H. W., Connor, B. B., Appelman, J., et al. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proceedings of the National Academy of Sciences USA, 103(33), 1252312528. doi: 10.1073/pnas.0605194103Google Scholar
McNab, F., Varrone, A., Farde, L., et al. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323(5915), 800802. 10.1126/science.1166102Google Scholar
Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270291. doi: 10.1037/a0028228Google Scholar
MetLife (2011). The MetLife Study of Elder Financial Abuse: Crimes of Occasion, Desperation, and Predation against America’s Elders. National Committee for the Prevention of Elder Abuse, and Virginia Tech. ltcombudsman.org/uploads/files/issues/mmi-elder-financial-abuse.pdfGoogle Scholar
Mishra, J., de Villers-Sidani, E., Merzenich, M., & Gazzaley, A. (2014). Adaptive training diminishes distractibility in aging across species. Neuron, 84(5), 10911103. doi: 10.1016/j.neuron.2014.10.034Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., et al. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100. doi: 10.1006/cogp.1999.0734Google Scholar
Mukai, I., Kim, D., Fukunaga, M., et al. (2007). Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. Journal of Neuroscience, 27(42), 1140111411. doi: 10.1523/JNEUROSCI.3002-07.2007Google Scholar
Ngandu, T., Lehtisalo, J., Solomon, A., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 385(9984), 22552263. doi: 10.1016/S0140-6736(15)60461-5Google Scholar
Nigbur, R., Ivanova, G., & Sturmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 21852194. doi: 10.1016/j.clinph.2011.03.030Google Scholar
NIH US (2018). US Study to Protect Brain Health through Lifestyle Intervention to Reduce Risk (POINTER). https://clinicaltrials.gov/ct2/show/NCT03688126Google Scholar
Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurology, 13(8), 788794. doi: 10.1016/S1474-4422(14)70136-XGoogle Scholar
Sadaghiani, S., Poline, J. B., Kleinschmidt, A., & D’Esposito, M. (2015). Ongoing dynamics in large-scale functional connectivity predict perception. Proceedings of the National Academy of Sciences USA, 112(27), 84638468. doi: 10.1073/pnas.1420687112Google Scholar
Salminen, T., Kuhn, S., Frensch, P. A., & Schubert, T. (2016). Transfer after dual n-back training depends on striatal activation change. Journal of Neuroscience, 36(39), 1019810213. doi: 10.1523/JNEUROSCI.2305-15.2016Google Scholar
Sawaki, R., & Luck, S. J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin and Review, 20(2), 296301. doi: 10.3758/s13423-012-0353-4Google Scholar
Schoups, A., Vogels, R., Qian, N., & Orban, G. (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412(6846), 549553. doi: 10.1038/35087601Google Scholar
Smith, G. E., Housen, P., Yaffe, K., et al. (2009). A cognitive training program based on principles of brain plasticity: Results from the Improvement in Memory with Plasticity-Based Adaptive Cognitive Training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594603. doi: 10.1111/j.1532-5415.2008.02167.xGoogle Scholar
Söderqvist, S., & Bergman Nutley, S. (2017). Are measures of transfer effects missing the target? Journal of Cognitive Enhancement, 1(4), 508512. doi: 10.1007/s41465-017-0048-xGoogle Scholar
Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin and Review, 24(4), 10771096. doi: 10.3758/s13423-016-1217-0Google Scholar
Stine-Morrow, E. A., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology and Aging, 23(4), 778786. doi: 10.1037/a0014341Google Scholar
Strenziok, M., Parasuraman, R., Clarke, E., et al. (2014). Neurocognitive enhancement in older adults: Comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. NeuroImage, 85, 10271039. doi: 10.1016/j.neuroimage.2013.07.069Google Scholar
Suzuki, M., & Gottlieb, J. (2013). Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nature Neuroscience, 16(1), 98104. doi: 10.1038/nn.3282Google Scholar
Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799806. doi: 10.1037//0096-1523.20.4.799Google Scholar
Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain networks. Molecular Psychiatry, 17(5), 471, 549–458. doi: 10.1038/mp.2011.81Google Scholar
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500503. doi: 10.1038/nature04171Google Scholar
Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150159. doi: 10.1177/1073858413494269Google Scholar
Waris, O., Soveri, A., & Laine, M. (2015). Transfer after working memory updating training. PLoS One, 10(9), e0138734. doi: 10.1371/journal.pone.0138734Google Scholar
Whitton, J. P., Hancock, K. E., Shannon, J. M., & Polley, D. B. (2017). Audiomotor perceptual training enhances speech intelligibility in background noise. Current Biology, 27(21), 32373247.e6. doi: 10.1016/j.cub.2017.09.014Google Scholar
Wiley, J., Jarosz, A. F., Cushen, P. J., & Colflesh, G. J. (2011). New rule use drives the relation between working memory capacity and Raven’s Advanced Progressive Matrices. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(1), 256263. doi: 10.1037/a0021613Google Scholar

References

Anguera, J., Boccanfuso, J., Rintoul, J., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501, 97101. http://doi.org/10.1038/nature12486Google Scholar
Arnett, J. J. (2000). Emerging adulthood: A theory of development from the late teens through the twenties. American Psychologist, 55(5), 469480. http://doi.org/10.1037//0003-066X.55.5.469Google Scholar
Ball, K., Berch, D. B., Helmers, K. F., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA, 288(18), 22712281. http://doi.org/10.1001/jama.288.18.2271Google Scholar
Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life span theory in developmental psychology. In Lerner, R. M. & Damon, W. (Eds.), Handbook of child psychology: Theoretical models of human development (pp. 569664). Hoboken, NJ: Wiley.Google Scholar
Bielak, A. A. M. (2010). How can we not “lose it” if we still don’t understand how to “use it”? Unanswered questions about the influence of activity participation on cognitive performance in older age – A mini-review. Gerontology, 56, 507519. http://doi.org/10.1159/000264918Google Scholar
Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445454. http://doi.org/10.1177/1745691613491271Google Scholar
Bugos, J. A., Perlstein, W. M., McCrae, C. S., Brophy, T. S., & Bedenbaugh, P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging and Mental Health, 11(4), 464471. http://doi.org/10.1080/13607860601086504Google Scholar
Bures, V., Cech, P., Mikulecká, J., Ponce, D., & Kuca, K. (2016). The effect of cognitive training on the subjective perception of well-being in older adults. PeerJ, 4, e2785. http://doi.org/10.7717/peerj.2785Google Scholar
Cacioppo, J. T., & Hawkley, L. C. (2009). Perceived social isolation and cognition. Trends in Cognitive Sciences, 13(10), 447454. http://doi.org/10.1016/j.tics.2009.06.005Google Scholar
Carlson, M. C., Parisi, J. M., Xia, J., et al. (2012). Lifestyle activities and memory: Variety may be the spice of life. The women’s health and aging study II. Journal of the International Neuropsychological Society, 18(2), 286294. http://doi.org/10.1017/S135561771100169XGoogle Scholar
Carlson, M. C., Saczynski, J. S., Rebok, G. W., et al. (2008). Exploring the effects of an “everyday” activity program on executive function and memory in older adults: Experience Corps®. Gerontologist, 48, 793801. http://doi.org/10.1093/geront/48.6.793Google Scholar
Chan, M. Y., Haber, S., Drew, L. M., & Park, D. C. (2016). Training older adults to use tablet computers: Does it enhance cognitive functioning? Gerontologist, 56(3), 475484. http://doi.org/10.1093/geront/gnu057Google Scholar
Charness, N., & Boot, W. R. (2009). Aging and information technology use: Potential and barriers. Current Directions in Psychological Science, 18(5), 253258. https://doi.org/10.1111/j.1467-8721.2009.01647.xGoogle Scholar
Clark, D. O., Xu, H., Unverzagt, F. W., & Hendrie, H. (2016). Does targeted cognitive training reduce educational disparities in cognitive function among cognitively normal older adults? International Journal of Geriatric Psychiatry, 31(7), 809817. https://doi.org/10.1002/gps.4395Google Scholar
Czaja, S. J., & Sharit, J. (2003). Practically relevant research: Capturing real world tasks, environments, and outcomes. Gerontologist, 43 (Suppl. 1), 918. https://doi.org/10.1093/geront/43.suppl_1.9Google Scholar
Darling-Hammond, L., Wilhoit, G., & Pittenger, L. (2014). Accountability for college and career readiness: Developing a new paradigm. Education Policy Analysis Archives, 22(86), 134. http://dx.doi.org/10.14507/epaa.v22n86.2014Google Scholar
Depp, C. A., & Jeste, D. V. (2006). Definitions and predictors of successful aging: A comprehensive review of larger quantitative studies. American Journal of Geriatric Psychiatry, 14, 620. http://doi.org/10.1097/01.jgp.0000192501.03069.bcGoogle Scholar
Deveau, J., Jaeggi, S. M., Zordan, V., Phung, C., & Seitz, A. R. (2015). How to build better memory training games. Frontiers in Systems Neuroscience, 8, 243. https://doi.org/10.3389/fnsys.2014.00243Google Scholar
Dodge, H. H., Du, Y., Saxton, J. A., & Ganguli, M. (2006). Cognitive domains and trajectories of functional independence in non-demented elderly. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 61(12), 13301337. https://doi.org/10.1093/gerona/61.12.1330Google Scholar
Ennis, G. E., Hess, T. M., & Smith, B. T. (2013). The impact of age and motivation on cognitive effort: Implications for cognitive engagement in older adulthood. Psychology and Aging, 28, 495504. http://doi.org/10.1037/a0031255Google Scholar
Fried, L. P., Carlson, M. C., McGill, S., et al. (2013). Experience Corps: A dual trial to promote the health of older adults and children’s academic success. Contemporary Clinical Trials, 36, 113. http://doi.org/10.1016/j.cct.2013.05.003Google Scholar
Goldberg, J., & Kiernan, M. (2004). Innovative techniques to address retention in a behavioral weight-loss trial. Health Education Research, 20(4), 439447. https://doi.org/10.1093/her/cyg139Google Scholar
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491505. http://doi.org/10.1038/nrn3256Google Scholar
Hastings, E. C., & West, R. L. (2009). The relative success of a self-help and a group-based memory training program for older adults. Psychology and Aging, 24, 586594. http://doi.org/10.1037/a0016951Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9(1), 165. http://doi.org/10.1111/j.1539-6053.2009.01034.xGoogle Scholar
Hertzog, C., & Nesselroade, J. R. (2003). Assessing psychological change in adulthood: An overview of methodological issues. Psychology and Aging, 18(4), 639657. http://doi.org/10.1037/0882-7974.18.4.639Google Scholar
Hess, T. M., (2014). Selective engagement of cognitive resources: Motivational influences on older adults’ cognitive functioning. Perspectives on Psychological Science, 9, 388407. http://doi.org/10.1177/1745691614527465Google Scholar
Hess, T. M., Growney, C. M., O’Brien, E. L., Neupert, S. D., & Sherwood, A. (2018). The role of cognitive costs, attitudes about aging, and intrinsic motivation in predicting engagement in everyday activities. Psychology and Aging, 33(6), 953964. https://doi.org/10.1037/pag0000289Google Scholar
Hopkins, C. D., Roster, C. A., & Wood, C. M. (2006). Making the transition to retirement: Appraisals, post-transition lifestyle, and changes in consumption patterns. Journal of Consumer Marketing, 23(2), 8799. https://doi.org/10.1108/07363760610655023Google Scholar
Hughes, T. F. (2010). Promotion of cognitive health through cognitive activity in the aging population. Aging and Health, 6(1), 111121. http://doi.org/10.2217/ahe.09.89Google Scholar
Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2), 245263. http://doi.org/10.1037/0882-7974.14.2.245Google Scholar
Ihle, A., Oris, M., Fagot, D., et al. (2015). The association of leisure activities in middle adulthood with cognitive performance in old age: The moderating role of educational level. Gerontology, 61(6), 543550. http://doi.org/10.1159/000381311Google Scholar
Jackson, J. J., Hill, P. L., Payne, B. R., et al. (2012). Can an old dog learn (and want to experience) new tricks? Cognitive training increases openness to experience in older adults. Psychology and Aging, 27(2), 286292. http://doi.org/10.1037/a0025918Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences USA, 105, 68296833. http://doi.org/10.1073/pnas.0801268105Google Scholar
Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory and Cognition, 42, 464480. http://doi.org/10.1073/pnas.0801268105Google Scholar
Karbach, J., Konen, T., & Spengler, M. (2017). Who benefits the most? Individual differences in the transfer of executive control training across the life span. Journal of Cognitive Enhancement, 1, 394405. http://doi.org/10.1007/s41465-017-0054-zGoogle Scholar
Karp, A., Paillard-Borg, S., Wang, H. X., et al. (2006). Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dementia and Geriatric Cognitive Disorders, 21(2), 6573. http://doi.org/10.1159/000089919Google Scholar
Katz, B., Jaeggi, S., Buschkuehl, M., Stegman, A., & Shah, P. (2014). Differential effect of motivational features on training improvements in school-based cognitive training. Frontiers in Human Neuroscience, 8, 242. http://doi.org/10.3389/fnhum.2014.00242Google Scholar
Katz, B., Jones, M. R., Shah, P., Buschkuehl, M., & Jaeggi, S. M. (2016). Individual differences and motivational effects in cognitive training research. In Strobach, T. & Karbach, J. (Eds.), Cognitive training: An overview of features and applications (pp. 157166). Berlin: Springer.Google Scholar
Kim, S., McMaster, M., Torres, S., et al. (2018). Protocol for a pragmatic randomized controlled trial of Body Brain Life – General Practice and a lifestyle modification programme to decrease dementia risk exposure in a primary care setting. BMJ Open, 8, e019329. http://doi.org/10.1136/bmjopen-2017-019329Google Scholar
Kramer, A. F., Bherer, L., Colcombe, S. J., Dong, W., & Greenough, W. T. (2004). Environmental influences on cognitive and brain plasticity during aging. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 59(9), M940M957. http://doi.org/10.1093/gerona/59.9.M940Google Scholar
Lachman, M. E., Andreoletti, C., & Pearman, A. (2006). Memory control beliefs: How are they related to age, strategy use, and memory improvement? Social Cognition, 24, 359385. http://doi.org/10.1521/soco.2006.24.3.359Google Scholar
Lachman, M. E., Lipsitz, L., Lubben, J., Castaneda-Sceppa, C., & Jette, A. M. (2018). When adults don’t exercise: Behavioral strategies to increase physical activity in sedentary middle-aged and older adults. Innovation in Aging, 2(1), 112. http://doi.org/10.1093/geroni/igy007Google Scholar
Langbaum, J. B., Rebok, G. W., Bandeen-Roche, K., & Carlson, M. C. (2009). Predicting memory training response patterns: Results from ACTIVE. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 64, 1423. http://dx.doi.org/10.1093/geronb/gbn026Google Scholar
Leanos, S., Coons, J., Rebok, G. W., Ozer, D. J., & Wu, R. (2019). Development of the Broad Learning Adult Questionnaire (BLAQ). International Journal of Aging and Human Development, 88(3), 286311. http://doi.org/10.1177/0091415018784695Google Scholar
Leanos, S., Kurum, E., Strickland-Hughes, C., Ditta, A., Nguyen, G., Felix, M., Yum, H., Rebok, G. W., & Wu, R. (2019). The impact of learning multiple real-world skills on cognitive abilities and functional independence in healthy older adults. Journals of Gerontology: Series B Psychological Sciences, gbz084. http://doi.org/10.1093/geronb/gbz084Google Scholar
Levkoff, S., & Sanchez, H. (2003). Lessons learned about minority recruitment and retention from the Centers on Minority Aging and Health Promotion. Gerontologist, 43, 826. http://doi.org/10.1093/geront/43.1.18Google Scholar
Levy, B. R., Ferrucci, L., Zonderman, A. B., Slade, M. D., Troncoso, J., & Resnick, S. M. (2016). A culture–brain link: Negative age stereotypes predict Alzheimer’s-disease biomarkers. Psychology and Aging, 31(1), 8288. http://doi.org/10.1037/pag0000062Google Scholar
Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation: A 35-year odyssey. American Psychologist, 57(9), 705717. http://doi.org/10.1037//0003-066X.57.9.705Google Scholar
Mani, A., Mullainathan, S., Shafir, E., & Zhao, J. (2013). Poverty impedes cognitive function. Science, 341(6149), 976980. http://doi.org/10.1126/science.1238041Google Scholar
McGillivray, S., Murayama, K., & Castel, A. D. (2015). Thirst for knowledge: The effects of curiosity and interest in memory in younger and older adults. Psychology and Aging, 30(4), 835841. http://doi.org/10.1037/a0039801Google Scholar
Michie, S., & Abraham, C. (2004). Interventions to change health behaviours: Evidence-based or evidence-inspired? Psychology and Health, 19(1), 2949. http://doi.org/10.1080/0887044031000141199Google Scholar
Michie, S., Johnston, M., Francis, J., Hardeman, W., & Eccles, M. (2008). From theory to intervention: Mapping theoretically derived behavioural determinants to behavior change techniques. Applied Psychology: An International Review, 57, 660680. http://doi.org/10.1111/j.1464-0597.2008.00341.xGoogle Scholar
Michie, S., van Stralen, M. M., & West, R. (2011). The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6, 42. http://doi.org/10.1186/1748-5908-6-42Google Scholar
Middleton, K. R., Anton, S. D., & Perri, M. G. (2013). Long-term adherence to health behavior change. American Journal of Lifestyle Medicine, 7(6), 395404. http://doi.org/10.1177/1559827613488867Google Scholar
Nguyen, C., Leanos, S., Natsuaki, M. N., Rebok, G. W., & Wu, R. (2018). Adaptation via learning new skills as a means to long-term functional independence in older adulthood: Insights from emerging adulthood. Gerontologist. October 12 [Epub ahead of print]. http://doi.org/10.1093/geront/gny128Google Scholar
Noice, T., Noice, H., & Kramer, A. F. (2014). Participatory arts for older adults: A review of benefits and challenges. Gerontologist, 54(5), 741753. http://doi.org/10.1093/geront/gnt138Google Scholar
Noom, M. J., Dekovic, M., & Meeus, W. (2001). Conceptual analysis and measurement of adolescent autonomy. Journal of Youth and Adolescence, 30, 577595. http://doi.org/10.1023/A:1010400721676Google Scholar
Parisi, J. M., Gross., A. L., Marsiske, M., Willis, S. L., & Rebok, G. W. (2017). Control beliefs and cognition over a 10-year period: Findings from the ACTIVE trial. Psychology and Aging, 32(1), 6975. http://doi.org/10.1037/pag0000147Google Scholar
Park, D. C., Gutchess, A., Meade, M., & Stine-Morrow, E. (2007). Improving cognitive function in older adults: Nontraditional approaches. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62, 4552. http://doi.org/10.1093/geronb/62.special_issue_1.45Google Scholar
Park, D. C., Lodi-Smith, J., Drew, L. M., et al. (2014). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25(1), 103112. http://doi.org/10.1177/0956797613499592Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. http://dx.doi.org/10.1146/annurev.psych.59.103006.093656Google Scholar
Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30(6), 730748. http://doi.org/10.1016/j.neubiorev.2006.07.001Google Scholar
Rebok, G. W., Ball, K., Guey, L. T., et al. (2014). Ten-year effects of the ACTIVE cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62(1), 1624. http://doi.org/10.1111/jgs.12607Google Scholar
Rebok, G. W., Carlson, M. C., Barron, J. S., et al. (2011). Experience Corps®: A civic engagement-based public health intervention in the public schools. In Hartman-Stein, P. E. & La Rue, A. (Eds.), Enhancing cognitive fitness in adults: A guide to the use and development of community-based programs (pp. 469487). New York: Springer.Google Scholar
Rebok, G. W., Langbaum, J. B. S., Jones, R. N., et al. (2013). Memory training in the ACTIVE study: How much is needed and who benefits? Journal of Aging and Health, 25, 21S42S. http://doi.org/10.1177/0898264312461937Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. http://doi.org/10.1007/s11065-014-9270-9Google Scholar
Robertson, D. A., King-Kallimanis, B. L., & Kenny, R. A. (2016). Negative perceptions of aging predict longitudinal decline in cognitive function. Psychology and Aging, 31, 7181. http://doi.org/10.1037/pag0000061Google Scholar
Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65(9), 760769. http://doi.org/10.1016/j.biopsych.2008.11.028Google Scholar
Rowe, J. W., & Kahn, R. L. (1997). Successful aging. Gerontologist, 37(4), 433440. http://doi.org/10.1093/geront/37.4.433Google Scholar
Salthouse, T. A. (2006). Mental exercise and mental aging. Evaluating the validity of the “use it or lose it” hypothesis. Perspectives on Psychological Science, 1(1), 6887. http://doi.org/10.1111/j.1745-6916.2006.00005.xGoogle Scholar
Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628654. http://doi.org/10.1037/a0027473Google Scholar
Simons, D. J., Boot, W. R., Charness, N., et al. (2016).Do “brain-training” programs work? Psychological Science in Public Interest, 17(3), 103186. http://doi.org/10.1177/1529100616661983Google Scholar
Stephan, Y., Fouquereau, E., & Fernandez, A. (2008). The relation between self-determination and retirement satisfaction among active retired individuals. International Journal of Aging and Human Development, 66(4), 329345. http://doi.org/10.2190/AG.66.4.dGoogle Scholar
Stine-Morrow, E. A. L., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology and Aging, 23(4), 778786. http://doi.org/10.1037/a0014341Google Scholar
Stine-Morrow, E. A. L., Payne, B. R., Roberts, B. W., et al. (2014). Training versus engagement as paths to cognitive enrichment with aging. Psychology and Aging, 29(4), 891906. http://doi.org/10.1037/a0038244Google Scholar
Thøgersen-Ntoumani, C., & Ntoumanis, N. (2006). The role of self-determined motivation in the understanding of exercise-related behaviours, cognitions, and physical self-evaluations. Journal of Sports Science, 24(4), 393404. http://doi.org/10.1080/02640410500131670Google Scholar
Torres, W. J., & Beier, M. E. (2018). Adult development in the wild: The determinants of autonomous learning in a Massive Open Online Course. Learning and Individual Differences, 65, 207217. https://doi.org/10.1016/j.lindif.2018.06.003Google Scholar
Tzuang, M., Owusu, J., Spira, A. P., Albert, M. S., & Rebok, G. W. (2018). Cognitive training for ethnic minority older adults in the US: A review. Gerontologist, 58(5), e311e324. http://doi.org/10.1093/geront/gnw260Google Scholar
van der Bij, A. K., Laurant, M. G., & Wensing, M. (2002). Effectiveness of physical activity interventions for older adults: A review. American Journal of Preventive Medicine, 22, 120133. http://doi.org/10.1016/S0749-3797(01)00413-5Google Scholar
Willis, S. L., & Caskie, G. I. L. (2013). Reasoning training in the ACTIVE study: How much is needed and who benefits? Journal of Aging and Health, 25 (Suppl. 8), 4364. http://doi.org/10.1177/0898264313503987Google Scholar
Willis, S. L., & Schaie, K. W. (1986). Training the elderly on the ability factors of spatial orientation and inductive reasoning. Psychology and Aging, 1(3), 239247. http://doi.org/10.1037/0882-7974.1.3.239Google Scholar
Wilson, R. S., Scherr, P. A., Schneider, J. A., Tang, Y., & Bennett, D. A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69(20), 19111920. http://doi.org/10.1212/01.wnl.0000271087.67782.cbGoogle Scholar
Wolfgang, M. E., & Dowling, W. D. (1981). Differences in motivation of adult and younger undergraduates. Journal of Higher Education, 52(6), 640648. http://doi.org/10.1080/00221546.1981.11778136Google Scholar
Wu, R., Rebok, G. W., & Lin, F. V. (2017). A novel theoretical life course framework for triggering cognitive development across the lifespan. Human Development, 59(6), 342365. http://doi.org/10.1159/000458720Google Scholar
Wu, R., & Strickland-Hughes, C. (2019). Adaptation for growth as a common goal throughout the lifespan: Why and how. Psychology of Learning and Motivation, 71, 387-414. http://doi.org/10.1016/bs.plm.2019.07.005Google Scholar
Zhao, X., Xu, Y., Fu, J., & Maes, J. H. R. (2018). Are training and transfer effects of working memory updating training modulated by achievement motivation? Memory and Cognition, 46, 398409. http://doi.org/10.3758/s13421-017-0773-5Google Scholar
Zinke, K., Zeintl, M., Rose, N. S., et al. (2014). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology, 50, 304315. http://doi.org/10.1037/a0032982Google Scholar

References

Agmon, M., Belza, B., Nguyen, H. Q., Logsdon, R. G., & Kelly, V. E. (2014). A systematic review of interventions conducted in clinical or community settings to improve dual-task postural control in older adults. Clinical Interventions in Aging, 9, 477492. https://doi.org/10.2147/CIA.S54978Google Scholar
Al-Yahya, E., Dawes, H., Smith, L., et al. (2011). Cognitive motor interference when walking: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 715728. https://doi.org/10.1016/j.neubiorev.2010.08.008Google Scholar
Allali, G., Ayers, E. I., & Verghese, J. (2016). Motoric cognitive risk syndrome subtypes and cognitive profiles. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 71(3), 378384. https://doi.org/10.1093/gerona/glv092Google Scholar
Atkinson, H. H., Rosano, C., Simonsick, E. M., et al. (2007). Cognitive function, gait speed decline, and comorbidities: The health, aging and body composition study. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 62(8), 844850. https://doi.org/10.1093/gerona/62.8.844Google Scholar
Bandinelli, S., Pozzi, M., Lauretani, F., et al. (2006). Adding challenge to performance-based tests of walking: The Walking InCHIANTI Toolkit (WIT). American Journal of Physical Medicine and Rehabilitation, 85(12), 986991. https://doi.org/10.1097/01.phm.0000233210.69400.d4Google Scholar
Blazer, D. G., Yaffe, K., & Liverman, C. T. (Eds.) (2015). Cognitive aging: Progress in understanding and opportunities for action. Washington: The National Academies Press.Google Scholar
Blondell, S. J., Hammersley-Mather, R., & Veerman, J. L. (2014). Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health, 14(510). https://doi.org/10.1186/1471-2458-14-510Google Scholar
Buracchio, T., Dodge, H. H., Howieson, D., Wasserman, D., & Kaye, J. (2010). The trajectory of gait speed preceding mild cognitive impairment. Archives of Neurology, 67(8), 980986. https://doi.org/10.1001/archneurol.2010.159Google Scholar
Camicioli, R., Howieson, D., Oken, B, Sexton, G., & Kaye, J. (1998). Motor slowing precedes cognitive impairment in the oldest old. Neurology, 50(5), 14961498. https://doi.org/10.1212/WNL.50.5.1496Google Scholar
Centers for Disease Control and Prevention (2017). Healthy brain initiative. www.cdc.gov/aging/healthybrain/index.htmGoogle Scholar
Chertkow, H., Feldman, H. H., Jacova, C., & Massoud, F. (2013). Definitions of dementia and predementia states in Alzheimer’s disease and vascular cognitive impairment: Consensus from the Canadian conference on diagnosis of dementia. Alzheimer’s Research and Therapy, 5(Suppl. 1), S2. https://doi.org/10.1186/alzrt198Google Scholar
Chhetri, J. K., Chan, P., Vellas, B., & Cesari, M. (2017). Motoric cognitive risk syndrome: Predictor of dementia and age-related negative outcomes. Frontiers in Medicine, 4, 166. https://doi.org/10.3389/fmed.2017.00166Google Scholar
Cohen, J. A., Verghese, J., & Zwerling, J. L. (2016). Cognition and gait in older people. Maturitas, 93, 7377. https://doi.org/10.1016/j.maturitas.2016.05.005Google Scholar
de Andrade, L. P., Gobbi, L. T. B., Coelho, F. G. M., et al. (2013). Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer’s disease: A controlled trial. Journal of the American Geriatrics Society, 61(11), 19191926. https://doi.org/10.1111/jgs.12531Google Scholar
de Melo Borges, S., Radanovic, M., & Forlenza, O. V. (2012). Dual tasking and functional mobility in Alzheimer’s disease, mild cognitive impairment and normal aging: Correlation with executive function. Alzheimer’s and Dementia, 8(4), P131. https://doi.org/10.1016/j.jalz.2012.05.348Google Scholar
de Melo Borges, S., Radanovic, M., & Forlenza, O. V. (2015). Functional mobility in a divided attention task in older adults with cognitive impairment. Journal of Motor Behavior, 47(5), 378385. https://doi.org/10.1080/00222895.2014.998331Google Scholar
de Melo Borges, S., Radanovic, M., & Forlenza, O. V. (2018). Correlation between functional mobility and cognitive performance in older adults with cognitive impairment. Aging, Neuropsychology, and Cognition, 25(1), 2332. https://doi.org/10.1080/13825585.2016.1258035Google Scholar
Demnitz, N., Esser, P., Dawes, H., et al. (2016). A systematic review and meta-analysis of cross-sectional studies examining the relationship between mobility and cognition in healthy older adults. Gait and Posture, 50, 164174. https://doi.org/10.1016/j.gaitpost.2016.08.028Google Scholar
Demnitz, N., Zsoldos, E., Mahmood, A., et al. (2017). Associations between mobility, cognition, and brain structure in healthy older adults. Frontiers in Aging Neuroscience, 9, 155. https://doi.org/10.3389/fnagi.2017.00155Google Scholar
Forte, R., Boreham, C. A. G., Leite, J. C., et al. (2013). Enhancing cognitive functioning in the elderly: Multicomponent vs resistance training. Clinical Interventions in Aging, 2013(8), 1927. https://doi.org/10.2147/CIA.S36514Google Scholar
Fritz, N., Cheek, F., & Nichols-Larsen, D. (2015). Motor-cognitive dual-task training in neurologic disorders: A systematic review. Journal of Neurologic Physical Therapy, 39(3), 142153. https://doi.org/10.1097/NPT.0000000000000090Google Scholar
Gandolfi, M., Geroin, C., Picelli, A., Smania, N., & Bartolo, M. (2018). Assessment of balance disorders. In Sandrini, G., Smania, N., Homberg, V., Pedrocchi, A., & Saltuari, L. (Eds.), Advanced technologies for the rehabilitation of gait and balance disorders (pp. 4768). Cham, Switzerland: Springer.Google Scholar
Global Council on Brain Health (2016). The brain-body connection: GCBH recommendations on physical activity and brain health. https://doi.org/10.26419/pia.00013.001Google Scholar
Hackett, R. A., Davies-Kershaw, H., Cadar, D., Orrell, M., & Steptoe, A. (2018). Walking speed, cognitive function, and dementia risk in the English longitudinal study of ageing. Journal of the American Geriatrics Society, 66(9), 16701675. https://doi.org/10.1111/jgs.15312Google Scholar
Harada, C. N., Natelson Love, M. C., & Triebel, K. L. (2013). Normal cognitive aging. Clinics in Geriatric Medicine, 29(4), 737752. https://doi.org/10.1016/j.cger.2013.07.002Google Scholar
Härlein, J., Dassen, T., Halfens, R. J. G., & Heinze, C. (2009). Fall risk factors in older people with dementia or cognitive impairment: A systematic review. Journal of Advanced Nursing, 65(5), 922933. https://doi.org/10.1111/j.1365-2648.2008.04950.xGoogle Scholar
Hausdorff, J. M., Schweiger, A., Herman, T., Yogev-Seligmann, G., & Giladi, N. (2008). Dual-task decrements in gait: Contributing factors among healthy older adults. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 63(12), 13351343. https://doi.org/10.1093/gerona/63.12.1335Google Scholar
Hausdorff, J. M., Yogev, G., Springer, S., Simon, E. Y., & Giladi, N. (2005). Walking is more like catching than tapping: Gait in the elderly as a complex task. Experimental Brain Research, 164(4), 541548. https://doi.org/10.1007/s00221-005-2280-3Google Scholar
Hollman, J. H., Kovash, F. M., Kubik, J. J., & Linbo, R. A. (2006). Age-related differences in spatio-temporal markers of gait stability during dual task walking. Gait and Posture, 26(1), 113119. https://doi.org/10.1016/j.gaitpost.2006.08.005Google Scholar
Holtzer, R., Verghese, J., Xue, X., & Lipton, R. B. (2006). Cognitive processes related to gait velocity: Results from the Einstein aging study. Neuropsychology, 20(2), 215223. https://doi.org/10.1037/0894-4105.20.2.215Google Scholar
Inzitari, M., Baldereschi, M., Di Carlo, A., et al. (2007). Impaired attention predicts motor performance decline in older community-dwellers with normal baseline mobility: Results from the Italian longitudinal study on aging (ILSA). Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 62(8), 837843. https://doi.org/10.1093/gerona/62.8.837Google Scholar
Jehu, D., Paquet, N., & Lajoie, Y. (2017). Balance and mobility training with or without concurrent cognitive training does not improve posture, but improve reaction time in healthy older adults. Gait and Posture, 52, 227232. https://doi.org/10.1016/j.gaitpost.2016.12.006Google Scholar
Kao, C. C., Chiu, H. L., Liu, D., et al. (2018). Effect of interactive cognitive motor training on gait and balance among older adults: A randomized controlled trial. International Journal of Nursing Studies, 82, 121128. https://doi.org/10.1016/J.IJNURSTU.2018.03.015Google Scholar
Knopman, D. S., & Petersen, R. C. (2014). Mild cognitive impairment and mild dementia: A clinical perspective. Mayo Clinic Proceedings, 89(10), 14521459. https://doi.org/10.1016/j.mayocp.2014.06.019Google Scholar
Laatar, R., Kachouri, H., Borji, R., Rebai, H., & Sahli, S. (2018). Combined physical-cognitive training enhances postural performances during daily life tasks in older adults. Experimental Gerontology, 107, 9197. https://doi.org/10.1016/J.EXGER.2017.09.004Google Scholar
Lee, Y., Kim, J. H, Lee, K. J., Han, G., & Kim, J. L. (2006). Association of cognitive status with functional limitation and disability in older adults. Aging Clinical and Experimental Research, 17(1), 2028. https://doi.org/10.1007/BF03337716Google Scholar
Maquet, D., Lekeu, F., Warzee, E., et al. (2010). Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer’s disease: Simple versus dual task: A preliminary report. Clinical Physiology and Functional Imaging, 30(1), 5156. https://doi.org/10.1111/j.1475-097X.2009.00903.xGoogle Scholar
Marquis, S., Moore, M. M., Howieson, D. B., et al. (2002). Independent predictors of cognitive decline in healthy elderly persons. Neurology, 58(4), 601606. https://doi.org/10.1001/archneur.59.4.601Google Scholar
McGuire, L. C., Ford, E. S., & Ajani, U. A. (2006). Cognitive functioning as a predictor of functional disability in later life. American Journal of Geriatric Psychiatry, 14(1), 3642. https://doi.org/10.1097/01.JGP.0000192502.10692.D6Google Scholar
Mielke, M. M., Roberts, R. O., Savica, R., et al. (2012). Assessing the temporal relationship between cognition and gait: Slow gait predicts cognitive decline in the Mayo Clinic study of aging. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 68(8), 929937. https://doi.org/10.1093/gerona/gls256Google Scholar
Montero-Odasso, M., Almeida, Q. J., Bherer, L., et al. (2018). Consensus on shared measures of mobility and cognition: From the Canadian Consortium on Neurodegeneration in Aging (CCNA). Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 74(6), 897909. https://doi.org/10.1093/gerona/gly148Google Scholar
Montero-Odasso, M., Bherer, L., Studenski, S., et al. (2015). Mobility and cognition in seniors. Report from the 2008 Institute of Aging (CIHR) mobility and cognition workshop. Canadian Geriatrics Journal, 18(3), 159167. https://doi.org/10.5770/cgj.18.188Google Scholar
Montero-Odasso, M., Islam, A., Anton-Rodrigo, I., et al. (2015). Cognition predicts frailty status: Results from the “Gait & Brain Study.Gerontologist, 55(S2), 570. https://doi.org/10.1093/geront/gnv281.04Google Scholar
Montero-Odasso, M., & Speechley, M. (2018). Falls in cognitively impaired older adults: Implications for risk assessment and prevention. Journal of the American Geriatrics Society, 66(2), 367375. https://doi.org/10.1111/jgs.15219Google Scholar
Montero-Odasso, M., Verghese, J., Beauchet, O., & Hausdorrf, J. M. (2012). Gait and cognition: A complementary approach to understanding brain function and the risk of falling. Journal of the American Geriatrics Society, 60(11), 21272136. https://doi.org/10.1111/j.1532-5415.2012.04209.xGoogle Scholar
Morris, R., Lord, S., Bunce, J., Burn, D., & Rochester, L. (2016). Gait and cognition: Mapping the global and discrete relationships in ageing and neurodegenerative disease. Neuroscience and Behavioral Reviews, 64, 326345. https://doi.org/10.1016/j.neubiorev.2016.02.012Google Scholar
Musich, S., Wang, S. S., Ruiz, J., Hawkins, K., & Wicker, E. (2018). The impact of mobility limitations on health outcomes among older adults. Geriatric Nursing, 39(2), 162169. https://doi.org/10.1016/j.gerinurse.2017.08.002Google Scholar
Nardone, A., & Turcato, A. M. (2018). An overview of the physiology and pathophysiology of postural control. In Sandrini, G., Homberg, V., Saltuari, L., Smania, N., & Pedrocchi, A. (Eds.), Advanced technologies for the rehabilitation of gait and balance disorders (pp. 328). Cham, Switzerland: Springer International Publishing.Google Scholar
National Institute on Aging (2017). What is mild cognitive impairment? www.nia.nih.gov/health/what-mild-cognitive-impairmentGoogle Scholar
Panzer, V. P., Wakefield, D. B., Hall, C. B., & Wolfson, L. I. (2011). Mobility assessment: Sensitivity and specificity of measurement sets in older adults. Archives of Physical Medicine and Rehabilitation, 92(6), 905912. https://doi.org/10.1016/j.apmr.2011.01.004Google Scholar
Persad, C. C., Jones, J. L., Ashton-Miller, J. A., Alexander, N. B., & Giordani, B. (2008). Executive function and gait in older adults with cognitive impairment. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 63(12), 13501355. https://doi.org/10.1093/gerona/63.12.1350Google Scholar
Powell, L. E., & Myers, A. M. (1995). The Activities-Specific Balance Confidence (ABC) Scale. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 50(1), M28M34. https://doi.org/10.1093/gerona/50A.1.M28Google Scholar
Rankin, J. K., Woollacott, M. H., Shumway-Cook, A., & Brown, L. A. (2000). Cognitive influence on postural stability: A neuromuscular analysis in young and older adults. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 55(3), M112M119. https://doi.org/10.1093/gerona/55.3.M112Google Scholar
Rantakokko, M., Portegijs, E., Viljanen, A., Iwarsson, S., & Rantanen, T. (2013). Life-space mobility and quality of life in community-dwelling older people. Journal of the American Geriatrics Society, 61(10), 18301832. https://doi.org/10.1111/jgs.12473Google Scholar
Ross, L. A., Schmidt, E. L., & Ball, K. (2013). Interventions to maintain mobility: What works? Accident Analysis and Prevention, 61, 167196. https://doi.org/10.1016/j.aap.2012.09.027Google Scholar
Royall, D. R., Palmer, R., Chiodo, L. K., & Polk, M. J. (2004). Declining executive control in normal aging predicts change in functional status: the Freedom House Study. Journal of the American Geriatrics Society, 52(3), 346352. https://doi.org/10.1111/j.1532-5415.2004.52104.xGoogle Scholar
Salzman, B. (2010). Gait and balance disorders in older adults. American Family Physician, 82(1), 6168. www.aafp.org/afp/2010/0701/p61.htmlGoogle Scholar
Satariano, W. A., Guralnik, J. M., Jackson, R. J., et al. (2012). Mobility and aging: New directions for public health action. American Journal of Public Health, 102(8), 15081515. https://doi.org/10.2105/AJPH.2011.300631Google Scholar
Sherrington, C., Whitney, J. C., Lord, S. R., et al. (2008). Effective exercise for the prevention of falls: A systematic review and meta-analysis. Journal of the American Geriatrics Society, 56(12), 22342243. https://doi.org/10.1111/j.1532-5415.2008.02014.xGoogle Scholar
Shumway-Cook, A., & Woollacott, M. (2000). Attentional demands and postural control: The effect of sensory context. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 55(1), M10M16. https://doi.org/10.1093/gerona/55.1.M10Google Scholar
Smith-Ray, R. L., Hughes, S. L., Prohaska, T. R., et al. (2013). Impact of cognitive training on balance and gait in older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 70(3), 357366. https://doi.org/10.1093/geronb/gbt097Google Scholar
Springer, S., Giladi, N., Peretz, C., et al. (2006). Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Movement Disorders, 21(7), 950957. https://doi.org/10.1002/mds.20848Google Scholar
Srygley, J. M., Mirelman, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2009). When does walking alter thinking? Age and task related findings. Brain Research, 1253, 9299. https://doi.org/10.1016/j.brainres.2008.11.067Google Scholar
Steinmetz, J., & Federspiel, C. (2014). The effects of cognitive training on gait speed and stride variability in older adults: Findings from a pilot study. Aging Clinical and Experimental Research, 26(6), 635643. https://doi.org/10.1007/s40520-014-0228-9Google Scholar
Sudarsky, L. (2001). Neurologic disorders of gait. Current Neurology and Neuroscience Reports, 1(4), 350356. https://doi.org/10.1007/s11910-001-0089-4Google Scholar
Valkanova, V., & Ebmeier, K. P. (2017). What can gait tell us about dementia? Review of epidemiological and neuropsychological evidence. Gait and Posture, 53, 215223. https://doi.org/10.1016/j.gaitpost.2017.01.024Google Scholar
Verbrugge, L. M., & Jette, A. M. (1994). The disablement process. Social Science and Medicine, 38(1), 114. https://doi.org/10.1016/0277-9536(94)90294-1Google Scholar
Verghese, J., Lipton, R. B., Hall, C. B., et al. (2002). Abnormality of gait as a predictor of non-Alzheimer’s dementia. New England Journal of Medicine, 347(22), 17611768. https://doi.org/10.1056/NEJMoa020441Google Scholar
Verghese, J., Mahoney, J., Ambrose, A. F., Wang, C., & Holtzer, R. (2010). Effect of cognitive remediation on gait in sedentary seniors. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 65(12), 13381343. http://dx.doi.org/10.1093/gerona/glq127Google Scholar
Verghese, J., Wang, C., Lipton, R. B., Holtzer, R., & Xue, X. (2007). Quantitative gait dysfunction and risk of cognitive decline and dementia. Journal of Neurology, Neuroscience, and Psychiatry, 78, 929935. http://doi.org/10.1136/jnnp.2006.106914Google Scholar
Verghese, J., Wang, C., Lipton, R. B., Holtzer, R. (2013). Motoric cognitive risk syndrome and the risk of dementia. (2013). Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 68(4), 412418. https://doi.org/10.1093/gerona/gls191Google Scholar
Waite, L. M., Grayson, D. A., Piguest, O., et al. (2005). Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. Journal of the Neurological Sciences, 229, 8993. https://doi.org/10.1016/j.jns.2004.11.009Google Scholar
Webber, S. C., Porter, M. M., & Menec, V. H. (2010). Mobility in older adults: A comprehensive framework. Gerontologist, 50(4), 443450. https://doi.org/10.1093/geront/gnq013Google Scholar
Wollesen, B., Voelcker-Rehage, C., Regenbrecht, T., & Mattes, K. (2016). Influence of a visual–verbal Stroop test on standing and walking performance of older adults. Neuroscience, 318(24), 166177. https://doi.org/10.1016/j.neuroscience.2016.01.031Google Scholar
Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait and Posture, 16(1), 114. https://doi.org/10.1016/S0966-6362(01)00156-4Google Scholar
Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders, 23(3), 329342. https://doi.org/10.1002/mds.21720Google Scholar

References

Anderson, M. (2015). Technology device ownership. Washington: Pew Research Center.Google Scholar
Anderson, M., & Perrin, A. (2017). Tech adoption climbs among older adults. Washington: Pew Research Center.Google Scholar
Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 27872805. https://doi.org/10.1016/j.comnet.2010.05.010Google Scholar
Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging: The model of selective optimization with compensation. In Baltes, P. B. & Baltes, M. M. (Eds.), Successful aging: Perspectives from the behavioral sciences (pp. 134). New York: Cambridge University Press.Google Scholar
Berkowsky, R. W., Sharit, J., & Czaja, S. J. (2018). Factors predicting decisions about technology adoption among older adults. Innovation in Aging, 1(3), 112. https://doi.org/10.1093/geroni/igy002Google Scholar
Blackman, S., Matlo, C., Bobrovitskiy, C., et al. (2016). Ambient assisted living technologies for aging well: A scoping review. Journal of Intelligent Systems, 25(1), 5569. https://doi.org/10.1515/jisys-2014-0136Google Scholar
Blocker, K. A., Insel, K. C., Lee, J. K., et al. (2018). User insights for design of an antihypertensive medication management application. In Proceedings of the Human Factors and Ergonomics Society 62nd Annual Meeting (pp. 10771081). Santa Monica, CA: Human Factors and Ergonomics Society.Google Scholar
Brooke, J. (1996). SUS – A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 47.Google Scholar
Chen, K., & Chan, A. H. S. (2014). Gerontechnology acceptance by elderly Hong Kong Chinese: A senior technology acceptance model (STAM). Ergonomics, 57(5), 635652. https://doi.org/10.1080/00140139.2014.895855Google Scholar
Chin, J., Moeller, D. D., Johnson, J., et al. (2018). A multi-faceted approach to promote comprehension of online health information among older adults. Gerontologist, 58, 686695. https://doi.org/10.1093/geront/gnw254Google Scholar
Confente, I., & Vigolo, V. (2018). Online travel behaviour across cohorts: The impact of social influences and attitude on hotel booking intention. International Journal of Tourism Research, 20(5), 660670. https://doi.org/10.1002/jtr.2214Google Scholar
Consel, C. (2018). Assistive computing: A human-centered approach to developing computing support for cognition. In ICSE-SEIS’18: 40th International Conference on Software Engineering: Software Track (pp. 2332). New York: ACM.Google Scholar
Consel, C., Dupuy, L., & Sauzéon, H. (2017, July). HomeAssist: An assisted living platform for aging in place based on an interdisciplinary approach. In International Conference on Applied Human Factors and Ergonomics (pp. 129140). Cham, Switzerland: Springer.Google Scholar
Cornejo, R., Favela, J., & Tentori, M. (2010). Ambient displays for integrating older adults into social networking sites. In International Conference on Collaboration and Technology (pp. 321336). Berlin: Springer.Google Scholar
Cotten, S. R., Yost, E., Berkowsky, R. W., Winstead, V., & Anderson, W. A. (2016). Designing technology training for older adults in continuing care retirement communities. Boca Raton, FL: CRC Press.Google Scholar
Craik, F. I. M. (1986). A functional account of age differences in memory. In Klix, F. & Hagendorf, H. (Eds.), Human memory and cognitive capabilities, mechanisms, and performances (pp. 409422). Amsterdam: Elsevier Science.Google Scholar
Czaja, S. J., Boot, W. R., Charness, N., & Rogers, W. A. (2019). Designing for older adults: Principles and creative human factors approaches, 3rd ed. Boca Raton, FL: CRC PressGoogle Scholar
Czaja, S. J., Boot, W. R., Charness, N., Rogers, W. A., & Sharit, J. (2017).Improving social support for older adults through technology: Findings from the PRISM randomized controlled trial. Gerontologist, 58(3), 467477. https://doi.org/10.1093/geront/gnw249Google Scholar
Czaja, S. J., Boot, W. R., Charness, N., et al. (2015). The Personalized Reminder Information and Social Management System (PRISM) trial: Rationale, methods and baseline characteristics. Contemporary Clinical Trials, 40, 3546. https://doi.org/10.1016/j.cct.2014.11.004Google Scholar
Czaja, S. J., Charness, N., Fisk, A. D., et al. (2006). Factors predicting the use of technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychology and Aging, 21(2), 333352. https://doi.org/10.1037/0882-7974.21.2.333Google Scholar
Dijkstra, K., Charness, N., Yordon, R., & Fox, M. (2009). Changes in physiological and self-reported stress in younger and older adults after exposure to a stressful task. Aging, Neuropsychology and Cognition, 16, 338356. https://doi.org/10.1080/13825580902773859Google Scholar
Dupuy, L., Consel, C., & Sauzéon, H. (2016). Self determination-based design to achieve acceptance of assisted living technologies for older adults. Computers in Human Behavior, 65, 508521. https://doi.org/10.1016/j.chb.2016.07.042Google Scholar
Durick, J., Robertson, T., Brereton, M., Vetere, F., & Nansen, B. (2013). Dispelling ageing myths in technology design. In Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration (pp. 467476). New York: ACM.Google Scholar
Fasola, J., & Matarić, M. J. (2013). A socially assistive robot exercise coach for the elderly. Journal of Human-Robot Interaction, 2(2), 332. https://doi.org/10.5898/JHRI.2.2.FasolaGoogle Scholar
Grindrod, K. A., Li, M., & Gates, A. (2014). Evaluating user perceptions of mobile medication management applications with older adults: A usability study. JMIR mHealth and uHealth, 2(1), e11. https://doi.org/10.2196/mhealth.3048Google Scholar
Huber, L. L., Shankar, K., Caine, K., et al. (2013). How in-home technologies mediate caregiving relationships in later life. International Journal of Human-Computer Interaction, 29(7), 441455. https://doi.org/10.1080/10447318.2012.715990Google Scholar
Khosla, R., Chu, M. T., & Nguyen, K. (2013). Enhancing emotional well being of elderly using assistive social robots in Australia. In Proceedings of the 2013 International Conference on Biometrics and Kansei Engineering (ICBAKE) (pp. 4146). New York: IEEE.Google Scholar
Lee, Y., Lee, J., & Hwang, Y. (2015). Relating motivation to information and communication technology acceptance: Self-determination theory perspective. Computers in Human Behavior, 51, 418428. https://doi.org/10.1016/j.chb.2015.05.021Google Scholar
Lindenberger, U., Lövdén, M., Schellenbach, M., Li, S. C., & Krüger, A. (2008). Psychological principles of successful aging technologies: A mini-review. Gerontology, 54(1), 5968. https://doi.org/10.1159/000116114Google Scholar
Lindley, S. E. (2012). Shades of lightweight: Supporting cross-generational communication through home messaging. Universal Access in the Information Society, 11(1), 3143. https://doi.org/10.1007/s10209-011-0231-2Google Scholar
Ludden, G. D., van Rompay, T. J., Kelders, S. M., & van Gemert-Pijnen, J. E. (2015). How to increase reach and adherence of web-based interventions: A design research viewpoint. Journal of Medical Internet Research, 17(7), e172. https://doi.org/10.2196/jmir.4201Google Scholar
Martinson, M., & Berridge, C. (2015). Successful aging and its discontents: A systematic review of social gerontology literature. Gerontologist, 55, 5157. https://doi.org/10.1093/geront/gnu037Google Scholar
Matarić, M. J., & Scassellati, B. (2016). Socially assistive robotics. In Springer handbook of robotics (pp. 19731994). Cham, Switzerland: Springer.Google Scholar
McGlynn, S. A., Koon, L. M., Blocker, K. A., Shishegar, N., & Rogers, W. A. (2018). Investigating the potential of digital home assistants to promote physical activity and social engagement for older adults. Presented at the Cognitive Aging Conference (CAC), Atlanta, GA, May.Google Scholar
McMahon, S. K., Lewis, B., Oakes, M., et al. (2016). Older adults’ experiences using a commercially available monitor to self-track their physical activity. JMIR mHealth and uHealth, 4(2), e35. https://doi.org/10.2196/mhealth.5120Google Scholar
Mercer, K., Giangregorio, L., Schneider, E., et al. (2016). Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: A mixed-methods evaluation. JMIR mHealth and uHealth, 4(1), e7. https://doi.org/10.2196/mhealth.4225Google Scholar
Mitzner, T. L., Boron, J. B., Fausset, C. B., et al. (2010). Older adults talk technology: Technology usage and attitudes. Computers in Human Behavior, 26(6), 17101721. https://doi.org/10.1016/j.chb.2010.06.020Google Scholar
Mitzner, T. L., Sanford, J. A., & Rogers, W. A. (2018). Closing the capacity-ability gap: Using technology to support aging with disability. Innovation in Aging, 2(1), 18. https://doi.org/10.1093/geroni/igy008Google Scholar
Mitzner, T. L., Stuck, R., Hartley, J. Q., Beer, J. M., & Rogers, W. A. (2017). Acceptance of televideo technology by adults aging with a mobility impairment for health and wellness interventions. Journal of Rehabilitation and Assistive Technologies Engineering, 4, 12. https://doi.org/10.1177/2055668317692755Google Scholar
Morrow, D. G., & Rogers, W. A. (2008). Environmental support: An integrative framework. Human Factors, 50, 589613. https://doi.org/10.1518/001872008X312251Google Scholar
Neves, B. B., Franz, R. L., Munteanu, C., Baecker, R., & Ngo, M. (2015). My hand doesn’t listen to me!: Adoption and evaluation of a communication technology for the “oldest old.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 15931602). New York: ACM.Google Scholar
Preusse, K. C., Mitzner, T. L., Fausset, C. B., & Rogers, W. A. (2017). Older adults’ acceptance of activity trackers. Journal of Applied Gerontology, 36(2), 127155. https://doi.org/10.1177/0733464815624151Google Scholar
Quan-Haase, A., Mo, G. Y., & Wellman, B. (2017). Connected seniors: How older adults in East York exchange social support online and offline. Information, Communication and Society, 20(7), 967983. https://doi.org/10.1080/1369118X.2017.1305428Google Scholar
Rashidi, P., & Mihailidis, A. (2013). A survey on ambient-assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics, 17(3), 579590. https://doi.org/10.1109/JBHI.2012.2234129Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychological Review, 24, 355370. https://doi.org/10.1007/s11065-014-9270-9Google Scholar
Rowan, J., & Mynatt, E. D. (2005). Digital family portrait field trial: Support for aging in place. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 521530). New York: ACM.Google Scholar
Rowe, J. W., & Kahn, R. L. (1987). Human aging: Usual and successful. Science, 237(4811), 143149. https://doi.org/10.1145/1054972.1055044Google Scholar
Rowe, J. W., & Kahn, R. L. (2015). Successful aging 2.0: Conceptual expansions for the 21st century. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 70(4), 593596. https://doi.org/10.1093/geronb/gbv025Google Scholar
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 6878. https://doi.org/10.1037/0003-066X.55.1.68Google Scholar
Seligman, M. E. (2011). Flourish: A visionary new understanding of happiness and well-being. Policy, 27(3), 6061.Google Scholar
Shen, Z., & Wu, Y. (2016). Investigation of practical use of humanoid robots in elderly care centres. In Proceedings of the Fourth International Conference on Human Agent Interaction (pp. 6366). New York: ACM.Google Scholar
Shibata, T., & Wada, K. (2011). Robot therapy: A new approach for mental healthcare of the elderly – A mini-review. Gerontology, 57(4), 378386. https://doi.org/10.1159/000319015Google Scholar
Smarr, C.-A., Mitzner, T. L., Beer, J. M., et al. (2014). Domestic robots for older adults: Attitudes, preferences, and potential. International Journal of Social Robotics, 6(2), 229247. https://doi.org/10.1007/s12369-013-0220-0Google Scholar
Smith, A., & Anderson, M. (2017). Automation in everyday life. Washington: Pew Research Center.Google Scholar
Souders, D. J., Boot, W. R., Blocker, K., et al. (2017). Evidence for narrow transfer after short-term cognitive training in older adults. Frontiers in Aging Neuroscience, 9, 41. https://doi.org/10.3389/fnagi.2017.00041Google Scholar
Stahl, B. C. (2011). What does the future hold? A critical view of emerging information and communication technologies and their social consequences. In Chiasson, M., Henfridsson, O., Karsten, H., & DeGross, J. I. (Eds.), Researching the future in information systems (pp. 5976). Berlin: Springer.Google Scholar
Stern, I. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11(11), 10061012. https://doi.org/10.1016/S1474-4422(12)70191-6Google Scholar
Stuck, R. E., Chong, A. W., Mitzner, T. L., & Rogers, W. A. (2017). Medication management apps: Usable by older adults? In Proceedings of the Human Factors and Ergonomics Society 61st Annual Meeting (pp. 11411144). Santa Monica, CA: Human Factors and Ergonomics Society.Google Scholar
Stuck, R. E., & Rogers, W. A. (2018). Older adults’ perceptions of supporting factors of trust in a robot care provider. Journal of Robotics, 2018, 111. https://doi.org/10.1155/2018/6519713Google Scholar
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157178. https://doi.org/10.2307/41410412Google Scholar
Ware, J. E., Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30(6), 473483. https://doi.org/10.1097/00005650-199206000-00002Google Scholar
Ziefle, M., Rocker, C., & Holzinger, A. (2011). Medical technology in smart homes: Exploring the user’s perspective on privacy, intimacy and trust. In 2011 IEEE 35th Annual Computer Software and Applications Conference Workshops (COMPSACW) (pp. 410415). New York: IEEE.Google Scholar

References

Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., & Greenwood, P. M. (2016). Placebo effects in cognitive training. Proceedings of the National Academy of Sciences USA, 113(27), 74707474. https://doi.org/10.1073/pnas.1601243113Google Scholar
Foster, J. L., Harrison, T. L., Hicks, K. L., et al. (2017). Do the effects of working memory training depend on baseline ability level? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(11), 16771689. http://dx.doi.org.ezproxy.library.tufts.edu/10.1037/xlm0000426Google Scholar
Giraudeau, C., & Bailly, N. (2019). Intergenerational programs: What can school-age children and older people expect from them? A systematic review. European Journal of Ageing, 16(3), 363376. https://doi.org/10.1007/s10433-018-00497-4Google Scholar
Hall, S. S. (2003). The quest for a smart pill. Scientific American, 289(3), 5465.Google Scholar
Kessler, E.-M., & Staudinger, U. M. (2007). Intergenerational potential: Effects of social interaction between older adults and adolescents. Psychology and Aging, 22(4), 690704. https://doi.org/10.1037/0882-7974.22.4.690Google Scholar
Lilienfeld, S. O., Lynn, S. J., Ruscio, J., & Beyerstein, B. L. (2010). 50 great myths of popular psychology: Shattering widespread misconceptions about human behavior. Chichester, UK: Wiley-Blackwell.Google Scholar
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154160. https://doi.org/10.1136/bjsports-2016–096587Google Scholar
Redick, T. S. (2019). The hype cycle of working memory training. Current Directions in Psychological Science, 28(5), 423429. https://doi.org/10.1177/0963721419848668Google Scholar
Sakurai, R., Ishii, K., Sakuma, N., et al. (2018). Preventive effects of an intergenerational program on age-related hippocampal atrophy in older adults: The REPRINTS study. International Journal of Geriatric Psychiatry, 33(2), e264e272. https://doi.org/10.1002/gps.4785Google Scholar
Simons, D. J., Boot, W. R., Charness, N., et al. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103186. https://doi.org/10.1177/1529100616661983Google Scholar
Suzuki, H., Kuraoka, M., Yasunaga, M., et al. (2014). Cognitive intervention through a training program for picture book reading in community-dwelling older adults: A randomized controlled trial. BMC Geriatrics, 14(1). https://doi.org/10.1186/1471-2318-14-122Google Scholar
Tang, W., Kannaley, K., Friedman, D. B., et al. (2017). Concern about developing Alzheimer’s disease or dementia and intention to be screened: An analysis of national survey data. Archives of Gerontology and Geriatrics, 71, 4349. https://doi.org/10.1016/j.archger.2017.02.013Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×