Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T18:09:17.607Z Has data issue: false hasContentIssue false

Chapter 1 - Systematics, Evolution, and Genetics of Bears

from Part I - Systematics, Ecology, and Behavior

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access

Summary

Molecular genetics are key to understanding current and historical relationships between isolated populations, including species’ colonizations during glacial–interglacial cycles, to determine viability of local populations, needs for habitat corridors, and other aspects of population management, especially where bears are harvested for sport, etc. As natural habitats shrink, some bear species will inevitably require high levels of management, perhaps combining captive and wild populations following the IUCN’s One Plan Approach. In this chapter we review the systematics of the Ursidae and its relationships with other Carnivora, the molecular phylogenetic of extant ursid species, the phylogeography of and morphological variation within each species, and the use of molecular genetics to monitor bear populations for management and conservation.

Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 3 - 20
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abella, J., Alba, D. M., Robles, J. M., et al. (2012). Kretzoiarctos gen. nov., the oldest member of the giant panda clade. PLoS ONE 7: e48985.Google Scholar
Abrams, J. F., Hoerig, L., Brozovic, R., et al. (2019). Shifting up a gear with iDNA: from mammal detection events to standardized surveys. Journal of Applied Ecology 56: 16371648. https://doi.org/10.1111/1365-2664.13411Google Scholar
Ameghino, F. (1902). L’age des formations sédimentaires de Patagonie. Anales de la Sociedad Científica Argentina 54: 220249.Google Scholar
Ameghino, F. (1903). L’age des formations sédimentaires de Patagonie. Buenos Aires: Imprimerie Coni Frères.Google Scholar
Anijalg, P., Ho, S. Y. W., Davison, J., et al. (2018). Large-scale migrations of brown bears in Eurasia and to North America during the Late Pleistocene. Journal of Biogeography 45: 394405. https://doi.org/10.1111/jbi.13126Google Scholar
Ashrafzadeh, M. R., Kaboli, M. & Naghavi, M. R. (2016). Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage. Mammalian Biology-Zeitschrift für Säugetierkunde 81(1): 19.Google Scholar
Bapteste, E., van Iersel, L., Janke, A., et al. (2013). Networks: expanding evolutionary thinking. Trends in Genetics 29: 439441.CrossRefGoogle ScholarPubMed
Barlow, A., Cahill, J. A., Hartmann, S., et al. (2018). Partial genomic survival of cave bears in living brown bears. Nature Ecology & Evolution 2: 15631570.Google Scholar
Barlow, A., Sheng, G. L., Lai, X. L., Hofreiter, M. & Paijmans, J. L. (2019). Once lost, twice found: combined analysis of ancient giant panda sequences characterises extinct clade. Journal of Biogeography 46: 251253.CrossRefGoogle Scholar
Barnes, G. L. (1999). The rise of civilization in East Asia: The archaeology of China, Korea and Japan. London: Thames & Hudson.Google Scholar
Barnes, I., Matheus, P., Shapiro, B., Jensen, D. & Cooper, A. (2002): Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295: 22672270.Google Scholar
Batsch, A. J. G. C. (1788). Versuch einer Anleitung, zur Kenntniß und Geschichte der Thiere und Mineralien, für akademische Vorlesungen entworfen, und mit den nöthigsten Abbildungen versehen. Jena: Akademische Buchhandlung.Google Scholar
Benazzo, A., Trucchi, E., Cahill, J. A., et al. (2017). Survival and divergence in a small group: the extraordinary genomic history of the endangered Apennine brown bear stragglers. Proceedings of the National Academy of Sciences 114: E9589E9597.Google Scholar
Berta, A., Sumich, J. L. & Kovacs, K. M. (2015). Marine mammals: Evolutionary biology. London: Academic Press.Google Scholar
Bidon, T., Janke, A., Fain, S. R., et al. (2014). Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages. Molecular Biology and Evolution 31: 13531363. https://doi.org/10.1093/molbev/msu109CrossRefGoogle Scholar
Bischof, R. & Swenson, J. E. (2012). Linking noninvasive genetic sampling and traditional monitoring to aid management of a trans‐border carnivore population. Ecological Applications 22(1): 361373.Google Scholar
Bischof, R., Brøseth, H. & Gimenez, O. (2016). Wildlife in a politically divided world: insularism inflates estimates of brown bear abundance. Conservation Letters 9: 122130.CrossRefGoogle Scholar
de Bonis, L. (2013). Ursidae (Mammalia, Carnivora) from the Late Oligocene of the “Phosphorites du Quercy” (France) and a reappraisal of the genus Cephalogale Geoffroy, 1862. Geodiversitas 35: 787814.CrossRefGoogle Scholar
de Bonis, L., Abella, J., Merceron, G. & Begun, D. R. (2017). A new late Miocene ailuropodine (giant panda) from Rudabánya (north-central Hungary). Geobios 50: 413421.CrossRefGoogle Scholar
Bowdich, T. E. (1821). An analysis of the natural classifications of Mammalia, for the use of students and travellers. Paris: J. Smith.Google Scholar
Bryant, H. N. (1996). Explicitness, stability, and universality in the phylogenetic definition and usage of taxon names: a case study of the phylogenetic taxonomy of the Carnivora (Mammalia). Systematic Biology 45(2): 174189.CrossRefGoogle Scholar
Cahill, J. A., Green, R. E., Fulton, T. L., et al. (2013). Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genetics 9(3): e1003345.CrossRefGoogle ScholarPubMed
Cahill, J. A., Stirling, I., Kistler, L., et al. (2015). Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Molecular Ecology 24: 12051217.CrossRefGoogle ScholarPubMed
Cahill, J. A., Heintzman, P. D., Harris, K., et al. (2018). Genomic evidence of widespread admixture from polar bears into brown bears during the Last Ice Age. Molecular Biology and Evolution 35: 11201129.CrossRefGoogle ScholarPubMed
Campagna, L., Van Coeverden de Groot, P. J., Saunders, B. L., et al. (2013). Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales. Ecology and Evolution 3: 31523165.Google Scholar
Chen, Y.-Y., Zhu, Y., Wan, Q.-H., et al. (2013). Patterns of adaptive and neutral diversity identify the Xiaoxiangling Mountains as a refuge for the giant panda. PLoS ONE 8(7): e70229.CrossRefGoogle ScholarPubMed
Chorn, J. & Hoffmann, R. S. (1978). Ailuropoda melanoleuca. Mammalian Species 110: 16.Google Scholar
Çilingir, F. G., Akın Pekşen, Ç., Ambarlı, H., Beerli, P. & Bilgin, C. C. (2016). Exceptional maternal lineage diversity in brown bears (Ursus arctos) from Turkey. Zoological Journal of the Linnean Society 176: 463477.Google Scholar
Colangelo, P., Loy, A., Huber, D., et al. (2012). Cranial distinctiveness in the Apennine brown bear: genetic drift effect or ecophenotypic adaptation? Biological Journal of the Linnean Society 107: 1526.CrossRefGoogle Scholar
Corbet, G. B. & Hill, J. E. (1992). The mammals of the Indomalayan region: A systematic review. London: Natural History Museum Publications and Oxford: Oxford University Press.Google Scholar
Crompton, A. E., Obbard, M. E., Petersen, S. D. & Wilson, P. J. (2008). Population genetic structure in polar bears (Ursus maritimus) from Hudson Bay, Canada: implications of future climate change. Biological Conservation 141: 25282539.CrossRefGoogle Scholar
Cronin, M. A., Amstrup, S. C., Garner, G. W. & Vyse, E. R. (1991). Interspecific and intraspecific mitochondrial DNA variation in North American bears (Ursus). Canadian Journal of Zoology 69: 29852992.Google Scholar
Cuvier, F. (1825). Ours des Cordilères du Chili. In: Geoffroy-Saint-Hilaire, É. & Cuvier, F. (Eds.) Histoire naturelle des mammifères, avec des figures originales, coloriées, dessinées d’après des animaux vivans, pt. 3, vol. 5(5), 2 pp. Paris: A. Belin.Google Scholar
Cuvier, G. (1823). Des ossemens d’ours. In Recherches sur les ossemens fossiles, où l’on rétablit les caractères de plusieurs animaux dont les révolutions du globe ont détruit les espèces, vol. 4(3), pp. 311380. Paris: G. Dufour et E. d’Ocagne.Google Scholar
David, A. (1869). Voyage en Chine, troisième partie. Nouvelles archives du Muséum d’histoire naturelle de Paris 5: 313.Google Scholar
Davison, J., Ho, S. Y., Bray, S. C., et al. (2011). Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quaternary Science Reviews 30: 418430.CrossRefGoogle Scholar
De Barba, M., Miquel, C., Lobréaux, S., et al. (2017). High‐throughput microsatellite genotyping in ecology: Improved accuracy, efficiency, standardization and success with low‐quantity and degraded DNA. Molecular Ecology Resources 17: 492507.CrossRefGoogle ScholarPubMed
Doronina, L., Churakov, G., Shi, J., et al. (2015). Exploring massive incomplete lineage sorting in arctoids (Laurasiatheria, Carnivora). Molecular Biology and Evolution 32: 31943204.Google Scholar
Draheim, H. M., Moore, J. A., Fortin, M. J. & Scribner, K. T. (2018). Beyond the snapshot: landscape genetic analysis of time series data reveal responses of American black bears to landscape change. Evolutionary Applications 11: 12191230.Google Scholar
Dunbar, M. R., Cunningham, M. W., Wooding, J. B. & Roth, R. P. (1996). Cryptorchidism and delayed testicular descent in Florida black bears. Journal of Wildlife Diseases 32: 661664.CrossRefGoogle ScholarPubMed
Durner, G. M., Laidre, K. L. & York, G. S. (Eds.) (2018). Polar bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 7–11 June 2016, Anchorage, Alaska. Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Dutta, T., Sharma, S., Maldonado, J. E., Panwar, H. S. & Seidensticker, J. (2015). Genetic variation, structure, and gene flow in a sloth bear (Melursus ursinus) meta-population in the Satpura-Maikal landscape of Central India. PLoS ONE 10(5): e0123384.Google Scholar
Edwards, C. J., Suchard, M. A, Lemey, P., et al. (2011). Ancient hybridization and an Irish origin for the modern polar bear matriline. Current Biology 21(15): 18.Google Scholar
Eizirik, E., Murphy, W. J., Koepfli, K. P., et al. (2010). Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 56: 4963.Google Scholar
Ellegren, H., Primmer, C. R. & Sheldon, B. C. (1995). Microsatellite evolution: directionality or bias? Nature Genetics 11: 360362.Google Scholar
Ellerman, J. R. & Morrison-Scott, T. C. S. (1951). Checklist of Palaearctic and Indian mammals 1758–1946. London: Trustees of the British Museum.Google Scholar
Erdbrink, D. P. (1953): A review of fossil and recent bears of the Old World with remarks on their phylogeny based on their dentition, 2 vols. Deventer, the Netherlands: Jan de Lange.Google Scholar
Ersmark, E., Baryshnikov, G., Higham, T., et al. (2019). Genetic turnovers and northern survival during the last glacial maximum in European brown bears. Ecology and Evolution 9: 59815905. https://doi.org/10.1002/ece3.5172Google Scholar
Flower, W. H. (1869). On the value of the characters of the base of the cranium in the classification of the order Carnivora, and on the systematic position of Bassaris and other disputed forms. Proceedings of the Zoological Society of London 37(1): 437.Google Scholar
Frosch, C., Dutsov, A., Zlatanova, D., et al. (2014). Noninvasive genetic assessment of brown bear population structure in Bulgarian mountain regions. Mammalian Biology 79: 268276.Google Scholar
Galbreath, G. J., Hunt, M., Clements, T. & Waits, L. P. (2008). An apparent hybrid wild bear from Cambodia. Ursus 19: 8586.Google Scholar
García‐Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42: 85119.Google Scholar
García-Vázquez, A., Pinto Llona, A. C. & Grandal-d’Anglade, A. (2017). Post-glacial colonization of Western Europe brown bears from a cryptic Atlantic refugium out of the Iberian Peninsula. Historical Biology XX: 113.Google Scholar
Gervais, P. (1855). Histoire naturelle des mammifères avec l’indication de leurs moeurs et de leurs rapports avec les arts, le commerce et l’agriculture. Paris: L. Curmer.CrossRefGoogle Scholar
Ginsburg, L. & Morales, J. (1998). Les Hemicyoninae (Ursidae, Carnivora, Mammalia) et les formes apparentées du Miocène inférieur et moyen d’Europe occidentale. Annales de Paléontologie 84: 71123.Google Scholar
Goswami, A. (2010). Introduction to Carnivora. In Goswami, A. & Friscia, A. (Eds.), Carnivoran evolution. New views on phylogeny, form and function, pp. 124. Cambridge: Cambridge University Press.Google Scholar
Graves, T., Chandler, R. B., Royle, J. A., Beier, P. & Kendall, K. C. (2014). Estimating landscape resistance to dispersal. Landscape Ecology 29: 12011211.Google Scholar
Grevé, C. (1894). Die geographische Verbreitung der jetzt lebenden Raubthiere. Kaiserlich Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher. Nova Acta 63(1): 7280.Google Scholar
Hailer, F., Kutschera, V. E., Hallström, B. M., et al. (2012). Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science 336(6079): 344347.Google Scholar
Hall, E. R. (1981): The mammals of North America, Vol. II (2nd edn.). New York, NY: John Wiley.Google Scholar
Hassanin, A. (2015). The role of Pleistocene glaciations in shaping the evolution of polar and brown bears. Evidence from a critical review of mitochondrial and nuclear genome analyses. Comptes rendus biologies 338: 494501.CrossRefGoogle Scholar
Hendey, Q. B. (1980). Agriotherium (Mammalia, Ursidae) from Langebaanweg, South Africa, and relationships of the genus. Annals of the South African Museum 81: 1109.Google Scholar
Hirata, D., Mano, T., Abramov, A. V., et al. (2017). Paternal phylogeographic structure of the brown bear (Ursus arctos) in northeastern Asia and the effect of male-mediated gene flow to insular populations. Zoological Letters 3(1): 21.Google Scholar
Hofreiter, M., Serre, D., Rohland, N., et al. (2004). Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences 101: 12,96312,968.Google Scholar
Hu, Y., Qi, D., Wang, H. & Wei, F. (2010a). Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica 138: 12971306.Google Scholar
Hu, Y., Zhan, X., Qi, D. & Wei, F. (2010b). Spatial genetic structure and dispersal of giant pandas on a mountain-range scale. Conservation Genetics 11: 21452155.Google Scholar
Hunt, R. M. Jr. (1974). The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. Journal of Morphology 143(1): 2175.Google Scholar
Hunt, R. M. Jr. (1977). Basicranial anatomy of Cynelos Jourdan (Mammalia: Carnivora), an Aquitanian amphicyonid from the Allier Basin, France. Journal of Paleontology 51(4): 826843.Google Scholar
Hunt, R. M. Jr. (1998). Ursidae. In Janis, C. M., Scott, K. M. & Jacobs, L. L. (Eds.), Evolution of Tertiary mammals of North America, pp. 174189. Cambridge: Cambridge University Press.Google Scholar
Hwang, D.-S., Ki, J.-S., Jeong, D.-H., et al. (2008). A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). Mitochondrial DNA 19: 418429.Google Scholar
Kadariya, R., Shimozuru, M., Maldonado, J. E., Moustafa, M. A. M., Sashika, M. & Tsubota, T. (2018). High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area, Nepal. PLoS ONE, 13(12): e0207662.Google Scholar
Kamath, P. L., Haroldson, M. A., Luikart, G., et al. (2015). Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears. Molecular Ecology 24: 55075521.Google Scholar
Kendall, K. C., Stetz, J. B., Boulanger, J., et al. (2009). Demography and genetic structure of a recovering grizzly bear population. The Journal of Wildlife Management 73(1): 316.Google Scholar
Kim, Y. K., Hong, Y. J., Min, M. S., et al. (2011). Genetic status of Asiatic black bear (Ursus thibetanus) reintroduced into South Korea based on mitochondrial DNA and microsatellite loci analysis. Journal of Heredity 102: 165174.Google Scholar
Kitchener, A. C., Breitenmoser-Würsten, Ch., Eizirik, E., et al. (2017). A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News Special Issue 11: 180.Google Scholar
Koepfli, K.-P., Dragoo, J. W. & Wang, X. (2017). The evolutionary history and molecular systematics of the Musteloidea. In: Macdonald, D. W., Newman, C. & Harrington, L. A. (Eds.), Biology and conservation of the musteloids, pp. 92128. Oxford: Oxford University Press.Google Scholar
Kopatz, A., Eiken, H. G., Schregel, J., et al. (2017). Genetic substructure and admixture as important factors in linkage disequilibrium‐based estimation of effective number of breeders in recovering wildlife populations. Ecology and Evolution 7: 10,72110,732.Google Scholar
Koretsky, I. A., Barnes, L. G. & Rahmat, S. J. (2016). Re-evaluation of morphological characters questions current views of pinniped origins. Vestnik Zoologii 50: 327354.Google Scholar
Krause, J., Unger, T., Nocon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8(1): 220.Google Scholar
Kretzoi, M. (1943). Kochitis centennii n. g. n. sp. az egeresi felső oligocénből [in Hungarian]/Kochitis centenii n.g. n.sp., ein altertümlicher Creodonte aus dem Oberoligozän Siebenbürgens [in German]. Földtani Közlöny 73: 1017 [Hungarian] / 190–195 [German].Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487.Google Scholar
Kurtén, B. & Anderson, E. (1980). Pleistocene mammals of North America. New York, NY: Columbia University Press.Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2014). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution 31: 20042017.Google Scholar
Kutschera, V. E., Frosch, C., Janke, A., et al. (2016). High genetic variability of vagrant polar bears illustrates importance of population connectivity in fragmented sea ice habitats. Animal Conservation 19: 337349.Google Scholar
Laikre, L., Andrén, R., Larsson, H. O. & Ryman, N. (1996). Inbreeding depression in brown bear Ursus arctos. Biological Conservation 76: 6972.Google Scholar
Lan, T., Gill, S., Bellemain, E., et al. (2017). Evolutionary history of enigmatic bears in the Tibetan Plateau–Himalaya region and the identity of the yeti. Proceedings of the Royal Society B: Biological Sciences 284(1868): 20171804.Google Scholar
Linnaeus, C. V. (1758). Systema Naturae per regna tria naturae. Secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th edition, Vol. 1. Stockholm: Lars Salvius.Google Scholar
Liu, S., Lorenzen, E. D., Fumagalli, M., et al. (2014). Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157: 785794.Google Scholar
Loy, A., Genov, P., Galfo, M., Jacobone, M. G. & Vigna Taglianti, A. (2008). Cranial morphometrics of the Apennine brown bear (Ursus arctos marsicanus) and preliminary notes on the relationships with other southern European populations. Italian Journal of Zoology 75: 6775.Google Scholar
Luan, P. T., Ryder, O. A., Davis, H., Zhang, Y. P. & Yu, L. (2013). Incorporating indels as phylogenetic characters: impact for interfamilial relationships within Arctoidea (Mammalia: Carnivora). Molecular Phylogenetics and Evolution 66: 748756.Google Scholar
Malenfant, R. M., Davis, C. S., Cullingham, C. I. & Coltman, D. W. (2016). Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS ONE 11(3): e0148967.CrossRefGoogle ScholarPubMed
Margari, V., Skinner, L. C., Tzedakis, P. C., et al. (2010). The nature of millennial-scale climate variability during the past two glacial periods. Nature Geoscience 3: 127131.Google Scholar
Meijaard, E. (2004): Craniometric differences among Malayan sun bears (Ursus malayanus); evolutionary and taxonomic implications. The Raffles Bulletin of Zoology 52: 665672.Google Scholar
Merriam, J. C. & Stock, C. (1925). Relationships and structure of the shortfaced bear, Arctotherium, from the Pleistocene of California. Contributions to Palaeontology, Carnegie Institution of Washington 347: 135.Google Scholar
Meyer, F. A. (1793). Systematisch-summarische Uebersicht der neuesten zoologischen Entdeckungen in Neuholland und Afrika. Leipzig: Dykischen Buchhandlung.Google Scholar
Mikle, N., Graves, T. A., Kovach, R., Kendall, K. C. & Macleod, A. C. (2016). Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore. Proceedings of the Royal Society of London B 283(1839): 20161467.Google Scholar
Miller, W., Schuster, S. C., Welch, A. J., et al. (2012). Polar and brown bear genomes reveal ancient admixture and demographic footprints of past plimate change. Proceedings of the National Academy of Sciences 109: E2382E2390.Google Scholar
Milne-Edwards, A. (1870). Note sur quelques mammifères du Thibet oriental. Annales des Sciences Naturelles, Zoologie et Paléontologie, 5th series, 13, article 10.Google Scholar
Mitchell, K. J., Bray, S. C., Bover, P., et al. (2016). Ancient mitochondrial DNA reveals convergent evolution of giant short-faced bears (Tremarctinae) in North and South America. Biology Letters 12(4): 20160062.Google Scholar
Murphy, S. M., Augustine, B. C., Ulrey, W. A., et al. (2017). Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population. PLoS ONE 12(7): e0181849.Google Scholar
Murtskhvaladze, M., Gavashelishvili, A. & Tarkhnishvili, D. (2010). Geographic and genetic boundaries of brown bear (Ursus arctos) population in the Caucasus. Molecular Ecology 19: 18291841.Google Scholar
Norman, A. J., Stronen, A. V., Fuglstad, G. A., et al. (2017). Landscape relatedness: detecting contemporary fine-scale spatial structure in wild populations. Landscape Ecology 32: 181194.Google Scholar
Nyakatura, K. & Bininda-Emonds, O. R. (2012). Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biology 10(1): 12.Google Scholar
Ohnishi, N., Uno, R., Ishibashi, Y., Tamate, H. B. & Oi, T. (2009). The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102: 579.Google Scholar
Onuma, M., Suzuki, M. & Ohtaishi, N. (2006). Possible conservation units of the sun bear (Helarctos malayanus) in Sarawak based on variation of mtDNA control region. Japanese Journal of Veterinary Research 54: 135139.Google Scholar
Paetkau, D., Shields, G. F. & Strobeck, C. (1998). Gene flow between insular, coastal and interior populations of brown bears in Alaska. Molecular Ecology 7: 12831292.Google Scholar
Pages, M., Calvignac, S., Klein, C., et al. (2008). Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny. Molecular Phylogenetics and Evolution 47: 7383.Google Scholar
Pallas, P. S. (1780). Spicilegia zoologica: quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur, fascicle 14, pp. 324. Berlin: Joachim Paul.Google Scholar
Pamilo, P. & Nei, M. (1988). Relationships between gene trees and species trees. Molecular Biology and Evolution 5: 568583.Google Scholar
Pelletier, A., Obbard, M. E., White, B. N., Doyle, C. & Kyle, C. J. (2011). Small-scale genetic structure of American black bears illustrates potential postglacial recolonization routes. Journal of Mammalogy 92: 629644.Google Scholar
Phipps, C. J. (1774). A voyage towards the North Pole undertaken by His Majesty’s command. London: J. Nourse.Google Scholar
Pierson, J. C., Graves, T. A., Banks, S. C., Kendall, K. C. & Lindenmayer, D. B. (2018). Relationship between effective and demographic population size in continuously distributed populations. Evolutionary Applications 11: 11621175.Google Scholar
Puckett, E. E., Etter, P. D., Johnson, E. A. & Eggert, L. S. (2015). Phylogeographic analyses of American black bears (Ursus americanus) suggest four glacial refugia and complex patterns of postglacial admixture. Molecular Biology and Evolution 32: 23382350.Google Scholar
Raffles, T. S. (1821). Descriptive catalogue of a zoological collection, made on account of the Honourable East India Company, in the island of Sumatra and its vicinity, under the direction of Sir Thomas Stamford Raffles, Lieutenant-Governor of Fort Marlborough; with additional notices illustrative of the natural history of those countries. Transactions of the Linnean Society of London 13(1): 239274.Google Scholar
Ren, G. (2000). Decline of the mid- to late Holocene forests in China: climatic change or human impact? Journal of Quaternary Science 15: 273281.3.0.CO;2-2>CrossRefGoogle Scholar
Rose, K. D. (2006). The beginning of the age of mammals. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Rounds, R. C. (1987). Distribution and analysis of colourmorphs of the black bear (Ursus americanus). Journal of Biogeography 14: 521538.Google Scholar
Ruiz-García, M. (2007). Genética de Poblaciones: Teoría y aplicación a la conservación de mamíferos neotropicales (Oso andino y delfín rosado). Boletín de la Real Sociedad Española de Historia Natural 102: 99126.Google Scholar
Ruiz-García, M. (2013). The genetic demography history and phylogeography of the Andean bear (Tremarctos ornatus) by means of microsatellites and mtDNA markers. In: Ruiz-García, M. & Shostell, J.M. (Eds.), Molecular population genetics, evolutionary biology and conservation of Neotropical carnivores (pp. 129158). New York, NY: Nova Science Publishers.Google Scholar
Ruiz-García, M., Orozco-terWengel, P., Payán, E. & Castellanos, A. (2003). Genética de Poblaciones molecular aplicada al estudio de dos grandes carnívoros (Tremarctos ornatus – Oso andino, Panthera onca – jaguar): lecciones de conservación. Boletín de la Real Sociedad Española de Historia Natural 98: 135158.Google Scholar
Ruiz-García, M., Orozco-terWengel, P., Castellanos, A. & Arias, L. (2005). Microsatellite analysis of the spectacled bear (Tremarctos ornatus) across its range distribution. Genes and Genetics Systems 80: 5769.Google Scholar
Ruiz-García, M., Arias, J. Y., Castellanos, A., Kolter, L. & Shostell, J. M. (2020a). Molecular evolution (mitochondrial and nuclear microsatellites markers) in the Andean bear (Tremarctos ornatus; Ursidae, Carnivora): How many ESUs are there? In: Ortega, J. & Maldonado, J. E. (Eds.), Mammalian Conservation Genetics (pp. 165–194). Berlin: Springer-Verlag.Google Scholar
Ruiz-García, M., Arias, J. Y., Restrepo, H., Cáceres-Martínez, C. & Shostell, J. M. (2020b). The genetic structure of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Colombia by means of mitochondrial and microsatellite markers. Journal of Mammalogy (in press).Google Scholar
Ruiz-García, M., Castellanos, A., Arias, J.Y. & Shostell, J.M. (2020c). Genetics of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Ecuador: When the Andean Cordilleras are not an obstacle. Mitochondrial DNA Part A 31: 194–212.Google Scholar
Salesa, M. J., Siliceo, G., Antón, M., et al. (2006). Anatomy of the “false thumb” of Tremarctos ornatus (Carnivora, Ursidae, Tremarctinae): phylogenetic and functional implications. Estudios Geológicos 62: 389394.Google Scholar
Salomashkina, V. V., Kholodova, M. V., Semenov, U. A., Muradov, A. S. & Malkhasyan, A. (2017). Genetic variability of brown bear (Ursus arctos L., 1758). Russian Journal of Genetics 53: 108117.Google Scholar
Schmidt-Kittler, N. (1987). The Carnivora (Fissipedia) from the lower Miocene of East Africa. Palaeontographica. Abteilung A, Paläozoologie, Stratigraphie 197: 85126.Google Scholar
Schwartz, M. K., Luikart, G. & Waples, R. S. (2007). Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution 22: 2533.Google Scholar
Shaw, G. (1790). The naturalist’s miscellany, or coloured figures of natural objects, vol. 2. London: Nodder & Co.Google Scholar
Shen, F., Zhang, Z., He, W. E. I., et al. (2009). Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population. Molecular Ecology 18: 10611070.Google Scholar
Skrbinšek, T., Jelenčič, M., Waits, L., et al. (2012). Monitoring the effective population size of a brown bear (Ursus arctos) population using new single‐sample approaches. Molecular Ecology 21: 862875.Google Scholar
Soibelzon, L. H. & Schubert, B. W. (2011). The largest known bear, Arctotherium angustidens, from the Early Pleistocene Pampean Region of Argentina: with a discussion of size and diet trends in bears. Journal of Paleontology 85: 6975.Google Scholar
Soibelzon, L. H., Tonni, E. P. & Bond, M. (2005). The fossil record of South American short-faced bears (Ursidae, Tremarctinae). Journal of South American Earth Sciences 20: 105113.Google Scholar
Talbot, S. L. & Shields, G. F. (1996). A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Molecular Phylogenetics and Evolution 5: 567575.Google Scholar
Tedford, R. H. (1976). Relationships of pinnipeds to other carnivores (Mammalia). Systematic Zoology 25: 363374.Google Scholar
Thenius, E. (1989). Molekulare und adaptive Evolution, Kladistik und Stammesgeschichte1: Ergänzungen zu einer Arbeitshypothese. Journal of Zoological Systematics and Evolutionary Research 27: 94105.Google Scholar
Turner, H. N. (1848). Observations relating to some of the foramina at the base of the skull in Mammalia, and on the classification of the order Carnivora. Proceedings of the Zoological Society of London 16: 6388.Google Scholar
Valdiosera, C. E., García, N., Anderung, C., et al. (2007). Staying out in the cold: glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Molecular Ecology 16: 51405148.Google Scholar
Viengkone, M., Derocher, A. E., Richardson, E. S., et al. (2016). Assessing polar bear (Ursus maritimus) population structure in the Hudson Bay region using SNPs. Ecology and Evolution 6: 84748484.Google Scholar
Von Duyke, A., Bellemain, E., Dejean, T., et al. (2017). The future is now; science in a spoonful of snow. Using eDNA to monitor a polar bear (Ursus maritimus) population in the Chukchi Sea. 22nd Biennial Conference on the Biology of Marine Mammals.Google Scholar
Wagner, J. (2010). Pliocene to early Middle Pleistocene ursine bears in Europe: a taxonomic overview. Journal of the National Museum (Prague), Natural History Series 179(20): 197215.Google Scholar
Waits, L., Paetkau, D. & Strobeck, C. (1999). Genetics of the bears of the world. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.) Bears. Status survey and conservation action plan, pp. 2532. Bern and Cambridge: IUCN.Google Scholar
Wan, Q. H., Fang, S. G., Wu, H. & Fujihara, T. (2003). Genetic differentiation and subspecies development of the giant panda as revealed by DNA fingerprinting. Electrophoresis 24: 13531359.Google Scholar
Wan, Q.-H., Wu, H. & Fang, S.-G. (2005). A new subspecies of giant panda (Ailuropoda melanoleuca) from Shaanxi, China. Journal of Mammalogy 86: 397402.Google Scholar
Wheat, R. E., Allen, J. M., Miller, S. D., Wilmers, C. C. & Levi, T. (2016). Environmental DNA from residual saliva for efficient noninvasive genetic monitoring of brown bears (Ursus arctos). PLoS ONE 11(11): e0165259.Google Scholar
Wilson, D. E. (1976). Cranial variation in polar bears. In Pelton, M. R., Lentfer, J. W. & Folk, G. E. (Eds.) Bears: Their biology and management. A selection of papers from the third international conference on bears, pp. 447453. Morges, Switzerland: IUCN.Google Scholar
Wooding, S. & Ward, R. (1997). Phylogeography and Pleistocene evolution in the North American black bear. Molecular Biology and Evolution 14: 10961105.Google Scholar
Wozencraft, W. C. (1989). The phylogeny of the recent Carnivora. In: Gittleman, J. L. (Ed.) Carnivore behaviour, ecology and evolution (pp. 495535). London: Chapman and Hall.Google Scholar
Wu, J., Kohno, N., Mano, S., et al. (2015). Phylogeographic and demographic analysis of the Asian black bear (Ursus thibetanus) based on mitochondrial DNA. PLoS ONE 10(9): e0136398.Google Scholar
Yu, L., Li, Q.-W., Ryder, O. A. & Zhang, Y.-P. (2004). Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 32: 480494.Google Scholar
Yu, L., Li, Y. W., Ryder, O. A. & Zhang, Y. P. (2007). Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evolutionary Biology 7(1): 198.Google Scholar
Zedrosser, A., Støen, O. G., Sæbø, S. & Swenson, J. E. (2007). Should I stay or should I go? Natal dispersal in the brown bear. Animal Behaviour 74: 369376.Google Scholar
Zhang, B., Li, M., Zhang, Z., et al. (2007). Genetic viability and population history of the giant panda, putting an end to the “evolutionary dead end”? Molecular Biology and Evolution 24: 18011810.CrossRefGoogle Scholar
Zhang, Y. P. & Ryder, O. A. (1993). Mitochondrial DNA sequence evolution in the Arctoidea. Proceedings of the National Academy of Sciences of the United States of America 90: 95579561.Google Scholar
Zhao, S., Zheng, P., Dong, S., et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45(1): 67.Google Scholar
Zuckerkandl, E. & Pauling, L. (1962). Molecular disease, evolution and genetic heterogeneity. In: Horizons in biochemistry (pp. 189225). New York, NY: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×