Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T03:16:34.210Z Has data issue: false hasContentIssue false

Chapter 25 - Frequently Asked Questions on Autoimmune Encephalitis and Related Disorders

from Section 4 - Autoimmunity in Neurological and Psychiatric Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

In this chapter we have selected relevant questions that over the years many colleagues have asked us at conferences or in consultations. Some answers are straightforward, but others are difficult because they reflect grey areas in our knowledge of autoimmune encephalitis that require further research. The chapter includes 90 questions covering 14 general topics: definitions and general concepts, diagnostic issues, pathogenesis and mechanisms of disease, limbic encephalitis, anti-NMDA receptor encephalitis, autoimmune cerebellar/brainstem encephalitis, autoimmunity against the inhibitory synapses, neurological syndromes and glial antibodies, autoimmune and inflammatory encephalopathies as a complication of cancer treatment, autoimmunity and psychiatric manifestations, seizures and autoimmunity, autoimmunity and sleep, abnormal movements in neurological autoimmune disorders, and CNS syndromes at the frontier of autoimmune encephalitis. The answers are short, and we strongly recommend readers go to the suggested sections in the book and read the related references, where more comprehensive answers can be found.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Graus, F, Vogrig, A, Muñiz-Castrillo, S et al., Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 2021;8:e1014.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.Google Scholar
Graus, F, Saiz, A, Dalmau, J. GAD antibodies in neurological disorders: insights and challenges. Nat Rev Neurol 2020;16:353365.Google Scholar
Do, LD, Chanson, E, Desestret, V, et al. Characteristics in limbic encephalitis with anti-adenylate kinase 5 autoantibodies. Neurology 2017;88:514524.Google Scholar
Dalmau, J, Geis, C, Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839887.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Graus, F, Dalmau, J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2019;16:535548.Google Scholar
Vogrig, A, Fouret, M, Joubert, B, et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 2019;6:e604.Google Scholar
Steriade, C, Britton, J, Dale, RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020;61:13411351.Google Scholar
de Bruijn, M, van Sonderen, A, van Coevorden-Hameete, MH, et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 2019;92:e2185e2196.Google Scholar
Graus, F, Escudero, D, Oleaga, L, et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur J Neurol 2018;25:10111016.CrossRefGoogle ScholarPubMed
Escudero, D, Guasp, M, Arino, H, et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology 2017;89:14711475.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
Armangue, T, Olive-Cirera, G, Martinez-Hernandez, E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234246.Google Scholar
Titulaer, MJ, Soffietti, R, Dalmau, J, et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS Task Force. Eur J Neurol 2011;18:19–e13.Google Scholar
Joubert, B, Saint-Martin, M, Noraz, N, et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 2016;73:11151124.Google Scholar
Ruiz-García, R, Muñoz-Sánchez, G, Naranjo, L, et al., Limitations of a commercial assay as diagnostic test of autoimmune encephalitis. Front Immunol 2021;12:691536.Google Scholar
Reindl, M, Schanda, K, Woodhall, M, et al. International multicenter examination of MOG antibody assays. Neurol Neuroimmunol Neuroinflamm 2020;7:e674.Google Scholar
Graus, F, Lang, B, Pozo-Rosich, P, et al. P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002;59:764766.Google Scholar
Ebright, MJ, Li, SH, Reynolds, E, et al. Unintended consequences of Mayo paraneoplastic evaluations. Neurology 2018;91:e2057e2066.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
Martinez-Hernandez, E, Guasp, M, Garcia-Serra, A, et al. Clinical significance of anti-NMDAR concurrent with glial or neuronal surface antibodies. Neurology 2020;94:e2302e2310.Google Scholar
Lang, B, Makuch, M, Moloney, T, et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry 2017;88:353361.Google Scholar
van Sonderen, A, Schreurs, MW, de Bruijn, MA, et al. The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology 2016;86:16921699.CrossRefGoogle ScholarPubMed
Graus, F, Gorman, MP. Voltage-gated potassium channel antibodies: game over. Neurology 2016;86:16571658.Google Scholar
Rose, NR, Bona, C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993;14:426430.Google Scholar
Witebsky, E, Rose, NR, Terplan, K, Paine, JR, Egan, RW. Chronic thyroiditis and autoimmunization. J Am Med Assoc 1957;164:14391447.Google Scholar
Sabater, L, Planaguma, J, Dalmau, J, Graus, F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. J Neuroinflammation 2016;13:226.Google Scholar
Koneczny, I. A new classification system for IgG4 autoantibodies. Front Immunol 2018;9:97.Google Scholar
Koneczny, I. Update on IgG4-mediated autoimmune diseases: new insights and new family members. Autoimmunity Rev 2020;19:102646.Google Scholar
Malviya, M, Barman, S, Golombeck, KS, et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann Clin Transl Neurol 2017;4:768783.Google Scholar
Mueller, SH, Farber, A, Pruss, H, et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol 2018;83:863869.Google Scholar
Kim, TJ, Lee, ST, Moon, J, et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes. Ann Neurol 2017;81:183192.Google Scholar
Gaig, C, Ercilla, G, Daura, X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm 2019;6:e605.Google Scholar
Binks, S, Varley, J, Lee, W, et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 2018;141:22632271.Google Scholar
Muñiz-Castrillo, S, Joubert, B, Elsensohn, MH, et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J Neurol Neurosurg Psychiatry 2020;91:10761084.Google Scholar
Planaguma, J, Leypoldt, F, Mannara, F, et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015;138:94109.Google Scholar
Sayyah, M, Javad-Pour, M, Ghazi-Khansari, M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors – nitric oxide and prostaglandins. Neuroscience 2003;122:10731080.CrossRefGoogle ScholarPubMed
Jurek, B, Chayka, M, Kreye, J, et al. Human gestational N-methyl-D-aspartate receptor autoantibodies impair neonatal murine brain function. Ann Neurol 2019;86:656670.Google Scholar
Joubert, B, García-Serra, A, Planagumà, J, et al. Pregnancy outcomes in anti-NMDA receptor encephalitis: case series. Neurol Neuroimmunol Neuroinflamm 2020;7:e668.Google Scholar
Wagnon, I, Hélie, P, Bardou, I, et al. Autoimmune encephalitis mediated by B-cell response against N-methyl-D-aspartate receptor. Brain 2020;143:29572972.Google Scholar
Jones, BE, Tovar, KR, Goehring, A, et al. Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors. Sci Transl Med 2019;11:eaaw0044.Google Scholar
Chow, FC, Glaser, CA, Sheriff, H, et al. Use of clinical and neuroimaging characteristics to distinguish temporal lobe herpes simplex encephalitis from its mimics. Clin Infect Dis 2015;60:13771383.Google Scholar
Seeley, WW, Marty, FM, Holmes, TM, et al. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology 2007;69:156165.Google Scholar
Vogrig, A, Joubert, B, Ducray, F, et al. Glioblastoma as differential diagnosis of autoimmune encephalitis. J Neurol 2018;265:669677.Google Scholar
Budhram, A, Britton, JW, Liebo, GB, et al. Use of diffusion-weighted imaging to distinguish seizure-related change from limbic encephalitis. J Neurol 2020;267:33373342.Google Scholar
Malter, MP, Helmstaedter, C, Urbach, H, Vincent, A, Bien, CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010;67:470478.Google Scholar
Malter, MP, Widman, G, Galldiks, N, et al. Suspected new-onset autoimmune temporal lobe epilepsy with amygdala enlargement. Epilepsia 2016;57:14851494.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Irani, SR, Stagg, CJ, Schott, JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:31513162.CrossRefGoogle Scholar
Flanagan, EP, Kotsenas, AL, Britton, JW, et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm 2015;2:e161.Google Scholar
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 2008;65:13411346.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Guasp, M, Giné-Servén, E, Maudes, E, et al. Clinical, neuroimmunologic, and CSF investigations in first episode psychosis. Neurology 2021;97:e61e75.Google Scholar
Pollak, TA, Lennox, BR, Müller, S, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020;7:93108.Google Scholar
Rubio-Agustí, I, Dalmau, J, Sevilla, T, et al. Isolated hemidystonia associated with NMDA receptor antibodies. Mov Disord 2011;26:351352.CrossRefGoogle ScholarPubMed
Kayser, MS, Titulaer, MJ, Gresa-Arribas, N, Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2013;70:11331139.Google Scholar
Guasp, M, Modena, Y, Armangue, T, Dalmau, J, Graus, F. Clinical features of seronegative, but CSF antibody-positive, anti-NMDA receptor encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e659.Google Scholar
Nosadini, M, Mohammad, SS, Ramanathan, S, Brilot, F, Dale, RC. Immune therapy in autoimmune encephalitis: a systematic review. Expert Rev Neurother 2015;15:13911419.Google Scholar
Scheibe, F, Pruss, H, Mengel, AM, et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 2017;88:366370.Google Scholar
Behrendt, V, Krogias, C, Reinacher-Schick, A, Gold, R, Kleiter, I. Bortezomib treatment for patients with anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2016;73:12511253.Google Scholar
Shin, YW, Lee, ST, Kim, TJ, Jun, JS, Chu, K. Bortezomib treatment for severe refractory anti-NMDA receptor encephalitis. Ann Clin Transl Neurol 2018;5:598605.Google Scholar
Lee, WJ, Lee, ST, Moon, J, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics 2016;13:824832.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
Liu, X, Yan, B, Wang, R, et al. Seizure outcomes in patients with anti-NMDAR encephalitis: a follow-up study. Epilepsia 2017;58:21042111.Google Scholar
Zheng, F, Ye, X, Shi, X, Poonit, ND, Lin, Z. Management of refractory orofacial dyskinesia caused by anti-N-methyl-D-aspartate receptor encephalitis using botulinum toxin. Front Neurol 2018;9:81.Google Scholar
Arino, H, Gresa-Arribas, N, Blanco, Y, et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol 2014;71:10091016.Google Scholar
Joubert, B, Rostasy, K, Honnorat, J. Immune-mediated ataxias. Handb Clin Neurol 2018;155:313332.Google Scholar
Spatola, M, Pedrol, MP, Maudes, E, et al. Clinical features, prognostic factors, and antibody effects in anti-mGluR1 encephalitis. Neurology 2020;95:e3012e3025.Google Scholar
Emelifeonwu, JA, Shetty, J, Kaliaperumal, C, et al. Acute cerebellitis in children: a variable clinical entity. J Child Neurol 2018;33:675684.Google Scholar
Iizuka, T, Kaneko, J, Tominaga, N, et al. Association of progressive cerebellar atrophy with long-term outcome in patients with anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2016;73:706713.Google Scholar
Tobin, WO, Guo, Y, Krecke, KN, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017;140:24152425.CrossRefGoogle ScholarPubMed
Taieb, G, Mulero, P, Psimaras, D, et al. CLIPPERS and its mimics: evaluation of new criteria for the diagnosis of CLIPPERS. J Neurol Neurosurg Psychiatry 2019;90:10271038.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.CrossRefGoogle ScholarPubMed
Dubey, D, Wilson, MR, Clarkson, B, et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic Kelch-like protein-11 encephalitis. JAMA Neurol 2020;77:14201429.Google Scholar
Simard, C, Vogrig, A, Joubert, B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e699.CrossRefGoogle ScholarPubMed
Saiz, A, Bruna, J, Stourac, P, et al. Anti-Hu-associated brainstem encephalitis. J Neurol Neurosurg Psychiatry 2009;80:404407.Google Scholar
Yoshikawa, K, Kuwahara, M, Morikawa, M, Kusunoki, S. Bickerstaff brainstem encephalitis with or without anti-GQ1b antibody. Neurol Neuroimmunol Neuroinflamm 2020;7:e889.Google Scholar
Jarius, S, Kleiter, I, Ruprecht, K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016;13:281.Google Scholar
Gaig, CGF, Compta, Y, Högl, B, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88:17361743.Google Scholar
Armangue, T, Sabater, L, Torres-Vega, E, et al. Clinical and immunological features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol 2016;73:417424.CrossRefGoogle ScholarPubMed
Berridge, G, Menassa, DA, Moloney, T, et al. Glutamate receptor delta2 serum antibodies in pediatric opsoclonus myoclonus ataxia syndrome. Neurology 2018;91:e714e723.Google Scholar
Petit-Pedrol, M, Guasp, M, Armangue, T, et al. Absence of GluD2 antibodies in patients with opsoclonus-myoclonus syndrome. Neurology 2021;96:e1082e1087.Google Scholar
Swayne, A, Tjoa, L, Broadley, S, et al. Antiglycine receptor antibody related disease: a case series and literature review. Eur J Neurol 2018;25:12901298.Google Scholar
Hinson, SR, Lopez-Chiriboga, AS, Bower, JH, et al. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders. Neurol Neuroimmunol Neuroinflamm 2018;5:e438.Google Scholar
Martinez-Hernandez, E, Arino, H, McKeon, A, et al. Clinical and immunological investigations in 121 patients with stiff-person spectrum disorder. JAMA Neurol 2016;73:714720.Google Scholar
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:21782192.Google Scholar
Folli, F, Solimena, M, Cofiell, R, et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N Engl J Med 1993;328:546551.Google Scholar
Dropcho, EJ. Antiamphiphysin antibodies with small-cell lung carcinoma and paraneoplastic encephalomyelitis. Ann Neurol 1996;39:659667.Google Scholar
Pittock, SJ, Lucchinetti, CF, Parisi, JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005;58:96107.Google Scholar
Reindl, M, Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol 2019;15:89102.Google Scholar
Baumann, M, Sahin, K, Lechner, C, et al. Clinical and neuroradiological differences of paediatric acute disseminating encephalomyelitis with and without antibodies to the myelin oligodendrocyte glycoprotein. J Neurol Neurosurg Psychiatry 2015;86:265272.Google Scholar
Waters, P, Fadda, G, Woodhall, M, et al. Serial anti-myelin oligodendrocyte glycoprotein antibody analyses and outcomes in children with demyelinating syndromes. JAMA Neurol 2019;77:8293.Google Scholar
Hoftberger, R, Sepulveda, M, Armangue, T, et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult Scler 2015;21:866874.Google Scholar
Sepulveda, M, Delgado-García, G, Blanco, Y, et al. Late-onset neuromyelitis optica spectrum disorder: the importance of autoantibody serostatus. Neurol Neuroimmunol Neuroinflamm 2019;6:e607.Google Scholar
Cheng, C, Jiang, Y, Chen, X, et al. Clinical, radiographic characteristics and immunomodulating changes in neuromyelitis optica with extensive brain lesions. BMC Neurol 2013;13:72.Google Scholar
Kim, W, Park, MS, Lee, SH, et al. Characteristic brain magnetic resonance imaging abnormalities in central nervous system aquaporin-4 autoimmunity. Mult Scler 2010;16:12291236.Google Scholar
Pittock, SJ, Berthele, A, Fujihara, K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med 2019;381:614625.Google Scholar
Traboulsee, A, Greenberg, BM, Bennett, JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 2020;19:402412.Google Scholar
Yamamura, T, Kleiter, I, Fujihara, K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med 2019;381:21142124.Google Scholar
Cree, BAC, Bennett, JL, Kim, HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019;394:13521363.Google Scholar
Tahara, M, Oeda, T, Okada, K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020;19:298306.Google Scholar
Chen, JJ, Tobin, WO, Majed, M, et al. Prevalence of myelin oligodendrocyte glycoprotein and aquaporin-4-IgG in patients in the optic neuritis treatment trial. JAMA Ophthalmol 2018;136:419422.Google Scholar
Chen, JJ, Flanagan, EP, Jitprapaikulsan, J, et al. Myelin oligodendrocyte glycoprotein antibody-positive optic neuritis: clinical characteristics, radiologic clues, and outcome. Am J Ophthalmol 2018;195:815.Google Scholar
Kim, SM, Woodhall, MR, Kim, JS, et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol Neuroimmunol Neuroinflamm 2015;2:e163.Google Scholar
Ramanathan, S, Prelog, K, Barnes, EH, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 2016;22:470482.Google Scholar
Fang, B, McKeon, A, Hinson, SR, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol 2016;73:12971307.Google Scholar
Astaras, C, de Micheli, R, Moura, B, Hundsberger, T, Hottinger, AF. Neurological adverse events associated with immune checkpoint inhibitors: diagnosis and management. Curr Neurol Neurosci Rep 2018;18:19.Google Scholar
Horn, L, Mansfield, AS, Szczęsna, A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 2018;379:22202229.Google Scholar
Brahmer, JR, Lacchetti, C, Schneider, BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2018;36:17141768.Google Scholar
Giavridis, T, van der Stegen, SJC, Eyquem, J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018;24:731738.Google Scholar
Sterner, RM, Sakemura, R, Cox, MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019;133:697709.Google Scholar
Lennox, BR, Palmer-Cooper, EC, Pollak, T, et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case–control study. Lancet Psychiatry 2017;4:4248.Google Scholar
Kelleher, E, McNamara, P, Dunne, J, et al. Prevalence of N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis in patients with first episode psychosis and treatment resistant schizophrenia on clozapine, a population based study. Schizophr Res 2020;222:455461.Google Scholar
Hara, M, Martinez-Hernandez, E, Ariño, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.Google Scholar
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76:8294.Google Scholar
Herken, J, Prüss, H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry 2017;8:25.Google Scholar
Dalmau, J, Armangue, T, Planaguma, J, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 2019;18:10451057.Google Scholar
Armangue, T, Olivé-Cirera, G, Martínez-Hernandez, E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234246.Google Scholar
Maureille, A, Fenouil, T, Joubert, B, et al. Isolated seizures are a common early feature of paraneoplastic anti-GABAB receptor encephalitis. J Neurol 2019;266:195206.Google Scholar
de Bruijn, MAAM, Bastiaansen, AEM, Mojzisova, H, et al., Antibodies contributing to focal epilepsy signs and symptoms score. Ann Neurol 2021;89:698710.Google Scholar
Khawaja, AM, Vines, BL, Miller, DW, Szaflarski, JP, Amara, AW. Refractory status epilepticus and glutamic acid decarboxylase antibodies in adults: presentation, treatment and outcomes. Epileptic Disord 2016;18:3443.Google Scholar
Carreño, M, Bien, CG, Asadi-Pooya, AA, et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res 2017;129:101105.Google Scholar
Feyissa, AM, Mirro, EA, Wabulya, A, et al. Brain-responsive neurostimulation treatment in patients with GAD65 antibody-associated autoimmune mesial temporal lobe epilepsy. Epilepsia Open 2020;5:307313.Google Scholar
Specchio, N, Pietrafusa, N. New-onset refractory status epilepticus and febrile infection-related epilepsy syndrome. Dev Med Child Neurol 2020;62:897905.Google Scholar
Jun, JS, Lee, ST, Kim, R, Chu, K, Lee, SK. Tocilizumab treatment for new onset refractory status epilepticus. Ann Neurol 2018;84:940945.Google Scholar
Brenner, T, Sills, GJ, Hart, Y, et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 2013;54:10281035.Google Scholar
Liimatainen, S, Peltola, M, Sabater, L, et al. Clinical significance of glutamic acid decarboxylase antibodies in patients with epilepsy. Epilepsia 2010;51:760767.CrossRefGoogle ScholarPubMed
Schmitt, SE, Pargeon, K, Frechette, ES, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 2012;79:10941100.Google Scholar
Sonderen, AV, Arends, S, Tavy, DLJ, et al. Predictive value of electroencephalography in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:11011106.Google Scholar
Gibbs, EL, Gibbs, FA. Extreme spindles: correlation of electroencephalographic sleep pattern with mental retardation. Science 1962;138:11061107.Google Scholar
Gaig, C, Iranzo, A, Cajochen, C, et al. Characterization of the sleep disorder of anti-IgLON5 disease. Sleep 2019;42:zsz133.Google Scholar
Gaig, C, Compta, Y. Neurological profiles beyond the sleep disorder in patients with anti-IgLON5 disease. Curr Opin Neurol 2019;32:493499.Google Scholar
Nissen, MS, Blaabjerg, M. Anti-IgLON5 disease: a case with 11-year clinical course and review of the literature. Front Neurol 2019;10:1056.Google Scholar
Cabezudo-García, P, Mena-Vázquez, N, Estivill Torrús, G, Serrano-Castro, P. Response to immunotherapy in anti-IgLON5 disease: a systematic review. Acta Neurol Scand 2020;141:263270.Google Scholar
Lugaresi, E, Provini, F. Agrypnia excitata: clinical features and pathophysiological implications. Sleep Med Rev 2001;5:313322.Google Scholar
Provini, F, Marconi, S, Amadori, M, et al. Morvan chorea and agrypnia excitata: when video-polysomnographic recording guides the diagnosis. Sleep Med 2011;12:10411043.Google Scholar
Wingerchuk, DM, Banwell, B, Bennett, JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:177189.Google Scholar
Syrbe, S, Stettner, GM, Bally, J, et al. CASPR2 autoimmunity in children expanding to mild encephalopathy with hypertension. Neurology 2020;94:e2290e2301.Google Scholar
Navarro, V, Kas, A, Apartis, E, et al. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 2016;139:10791093.Google Scholar
Wennberg, R, Steriade, C, Chen, R, Andrade, D. Frontal infraslow activity marks the motor spasms of anti-LGI1 encephalitis. Clin Neurophysiol 2018;129:5968.Google Scholar
Höglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society criteria. Mov Disord 2017;32:853864.Google Scholar
Varley, JA, Webb, AJS, Balint, B, et al. The movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019;90:724726.Google Scholar
Duan, BC, Weng, WC, Lin, KL, et al. Variations of movement disorders in anti-N-methyl-D-aspartate receptor encephalitis: a nationwide study in Taiwan. Medicine (Baltimore) 2016;95:e4365.Google Scholar
Baizabal-Carvallo, JF, Stocco, A, Muscal, E, Jankovic, J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord 2013;28:543547.Google Scholar
Mohammad, SS, Fung, VS, Grattan-Smith, P, et al. Movement disorders in children with anti-NMDAR encephalitis and other autoimmune encephalopathies. Mov Disord 2014;29:15391542.Google Scholar
Vernino, S, Tuite, P, Adler, CH, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol 2002;51:625630.Google Scholar
Vigliani, MC, Honnorat, J, Antoine, JC, et al. Chorea and related movement disorders of paraneoplastic origin: the PNS EuroNetwork experience. J Neurol 2011;258:20582068.Google Scholar
O’Toole, O, Lennon, VA, Ahlskog, JE, et al. Autoimmune chorea in adults. Neurology 2013;80:11331144.Google Scholar
Joubert, B, Gobert, F, Thomas, L, et al. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e371.Google Scholar
Lopez Chiriboga, AS, Pittock, S. Episodic ataxia in CASPR2 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2019;6:e536.Google Scholar
Govert, F, Witt, K, Erro, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;86:13531355.Google Scholar
Tay, SH, Fairhurst, AM, Mak, A. Clinical utility of circulating anti-N-methyl-D-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjogren’s syndrome: an updated meta-analysis. Autoimmunity Rev 2017;16:114122.Google Scholar
Choi, MY, FitzPatrick, RD, Buhler, K, Mahler, M, Fritzler, MJ. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmunity Rev 2020;19:102463.Google Scholar
Hara, M, Martinez-Hernandez, E, Arino, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
DeGiorgio, LA, Konstantinov, KN, Lee, SC, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001;7:11891193.Google Scholar
The International Criteria for Behcet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol 2014;28:338347.Google Scholar
Akman-Demir, G, Serdaroglu, P, Tasci, B. Clinical patterns of neurological involvement in Behcet’s disease: evaluation of 200 patients. The Neuro-Behcet Study Group. Brain 1999;122:21712182.Google Scholar
Cohen Aubart, F, Bouvry, D, Galanaud, D, et al. Long-term outcomes of refractory neurosarcoidosis treated with infliximab. J Neurol 2017;264:891897.Google Scholar
Gelfand, JM, Bradshaw, MJ, Stern, BJ, et al. Infliximab for the treatment of CNS sarcoidosis: a multi-institutional series. Neurology 2017;89:20922100.Google Scholar
Fritz, D, Timmermans, WMC, van Laar, JAM, et al. Infliximab treatment in pathology-confirmed neurosarcoidosis. Neurol Neuroimmunol Neuroinflamm 2020;7:e847.Google Scholar
Jin, H, Qu, Y, Guo, ZN, et al. Primary angiitis of the central nervous system mimicking glioblastoma: a case report and literature review. Front Neurol 2019;10:1208.Google Scholar
Caputi, L, Erbetta, A, Marucci, G, et al. Biopsy-proven primary angiitis of the central nervous system mimicking leukodystrophy: a case report and review of the literature. J Clin Neurosci 2019;64:4244.Google Scholar
de Boysson, H, Boulouis, G, Aouba, A, et al. Adult primary angiitis of the central nervous system: isolated small-vessel vasculitis represents distinct disease pattern. Rheumatology (Oxford, England) 2017;56:439444.Google Scholar
Schuster, S, Bachmann, H, Thom, V, et al. Subtypes of primary angiitis of the CNS identified by MRI patterns reflect the size of affected vessels. J Neurol Neurosurg Psychiatry 2017;88:749755.Google Scholar
Danve, A, Grafe, M, Deodhar, A. Amyloid beta-related angiitis: a case report and comprehensive review of literature of 94 cases. Semin Arthrit Rheumat 2014;44:8692.Google Scholar
Regenhardt, RW, Thon, JM, Das, AS, et al. Association between immunosuppressive treatment and outcomes of cerebral amyloid angiopathy-related inflammation. JAMA Neurol 2020;77:110.Google Scholar
Castillo, P, Woodruff, B, Caselli, R, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol 2006;63:197202.Google Scholar
Mattozzi, S, Sabater, L, Escudero, D, et al. Hashimoto encephalopathy in the 21st century. Neurology 2020;94:e217e224.Google Scholar
Gitlits, VM, Toh, BH, Sentry, JW. Disease association, origin, and clinical relevance of autoantibodies to the glycolytic enzyme enolase. J Investig Med 2001;49:138145.Google Scholar
Kishitani, T, Matsunaga, A, Ikawa, M, et al. Limbic encephalitis associated with anti-NH2-terminal of alpha-enolase antibodies: a clinical subtype of Hashimoto encephalopathy. Medicine (Baltimore) 2017;96:e6181.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×