Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T20:21:06.189Z Has data issue: false hasContentIssue false

Chapter 8 - Fourier Analysis and Measures

Published online by Cambridge University Press:  18 December 2014

Michael Baake
Affiliation:
Universität Bielefeld, Germany
Uwe Grimm
Affiliation:
The Open University, Milton Keynes
Get access

Summary

In this chapter, we recall some basic facts from Fourier analysis which we need for our approach to diffraction theory in Chapter 9. Since Fourier series and their generalisations to almost periodic functions occur only occasionally below, we keep their exposition brief and informal (mostly without proofs, but with proper references). Subsequently, Fourier transforms of functions and measures are covered in more detail, including a brief introduction to volume-averaged (or Eberlein) convolutions.

Fourier series

A (possibly complex-valued) function f of one real variable is called periodic, if f (x + T) = f(x) holds for some T ≠ 0 and all x ∈ ℝ. Clearly, one then has f(x + nT) = f(x) for all n ∈ ℤ. Assuming that the periodic function f is not a constant function, the smallest T > 0 with this property is the fundamental period of f. It is simply called the period of f when misunderstandings are unlikely. Examples are provided by trigonometric functions, such as sin(x), cos(x) or eix, all three with fundamental period T = 2π. A natural way to look at such functions in a more general setting is to consider T-periodic functions that are locally integrable (over any compact set K ⊂ ℝ say), so that one can also view them as elements of the Banach space L1([0, T]); see [DMcK72, Kat04, Pin02] for general background.

Type
Chapter
Information
Aperiodic Order , pp. 303 - 332
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×