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Abstract

We describe generators of disguised residual intersections in any commutative
Noetherian ring. It is shown that, over Cohen–Macaulay rings, the disguised residual
intersections and algebraic residual intersections are the same, for ideals with sliding
depth. This coincidence provides structural results for algebraic residual intersections in
a quite general setting. It is shown how the DG-algebra structure of Koszul homologies
affects the determination of generators of residual intersections. It is shown that
the Buchsbaum–Eisenbud family of complexes can be derived from the Koszul–Čech
spectral sequence. This interpretation of Buchsbaum–Eisenbud families has a crucial
rule to establish the above results.
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1. Introduction

Residual intersections have a long history in algebraic geometry which goes back to Cayley–
Bacharach theory, or at least in the middle of the nineteenth century to Chasles [Cha64] who
counted the number of conics tangent to a given conic (see Eisenbud’s talk [Eis18] or Kleiman
[Kle80] for the historical introduction).

In intersection theory, the concept of ‘residual schemes’ and ‘residual intersections’ are the
base of the residual intersection formula of Fulton, Kleiman, Laksov, and MacPherson (or others
such as [Wu94]) which describes a decomposition of the refined intersection product [Ful98,
Corollary 9.2.3]. The theory became part of commutative algebra in the work of Artin and
Nagata [AN72] wherein Artin and Nagata defined ‘Algebraic Residual Intersections’ to study
the ‘double point locus’ of maps between schemes of finite type over a field. Although Fulton’s
definition [Ful98, Definition 9.2.2] is not the same as the following definition of the algebraic
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Generators of residual intersections

residual intersection, there is a tight relation between them in the affine case (see the introduction

of [HN16]).

From the commutative algebra point of view, the theory of residual intersections is a

vast generalization of the ‘Linkage theory’ of Peskine and Szpiro [PS74]. The family of

s-residual intersections contains determinantal ideals and, obviously, complete intersections of

codimension s. Precisely, if R is a commutative Noetherian ring, I an ideal of grade g and s > g

an integer, then the following hold.

• An (algebraic) s-residual intersection of I is a proper ideal J of R such that ht(J) > s and

J = (a :R I) for some ideal a ⊂ I which is generated by s elements.

• A geometric s-residual intersection of I is an algebraic s-residual intersection J of I such

that ht(I + J) > s+ 1.

• An arithmetic s-residual intersection of I is an algebraic s-residual intersection such that

µRp((I/a)p) 6 1 for all prime ideal p ⊇ (I + J) with ht(p) 6 s (µ denotes the minimum

number of generators).

Since 1983, after the work of Huneke [Hun83], the theory became stronger and stronger

due to a series of works of Huneke, Ulrich, Kustin, Chardin, Eisenbud, and others. Due to the

ubiquity of residual intersections, the theory has attained more attention in the recent years (e.g.

[CEU01, CEU15, CNT19, EU18, Eis18] and [HHU12]). However, there are still many basic and

mysterious properties of s-residual intersections which are not established. One of the very basic

tasks is to determine the generators of an s-residual intersection.

Even from the computational point of view, calculating the generators of J = a : I using

elimination, is expensive. Theoretically, there are few cases for which the set of generators of J

can be described, namely:

• if R is Gorenstein I is perfect and s = g, [PS74];

• if R is Gorenstein and I is a complete intersection, [BKM90, Theorem 4.8] and [HU88,

Theorem 5.9(i)];

• if R is Cohen–Macaulay(CM) and I is a perfect ideal of height 2, [Hun83, KU92] and

[CEU01, Theorem 1.1];

• if R is Gorenstein and I is perfect Gorenstein ideal of height 3, [KU92, § 10];

• if R is Gorenstein, I is Gorenstein licci, generically a complete intersection ideal and s =

g + 1, [KMU92, Corollary 2.18].

In this paper, we describe the generators of residual intersections if s 6 g + 1, or if the ideal

I satisfies the sliding depth condition SD1, Definition 4.3. This wide range contains all of the

above cases. The turning point is that, instead of looking at the module structure of Koszul

homologies of I, we study the differential graded algebra structure of H•(I). There is a new ideal

which comes into being. We call this ideal the Koszul–Fitting ideal associated to I and a, and

we denote it by Kitt(a, I).1 The ideal Kitt(a, I) is defined as follows.

Let R be a commutative Noetherian ring, I = (f1, . . . , fr) ⊆ R an ideal, a = (a1, . . . , as) ⊆ I.

Let Φ = (cij) be an r × s matrix in R such that (a1, . . . , as) = (f1, . . . , fr) · Φ. Let

K• = R〈e1, . . . , er; ∂(ei) = fi〉 be the Koszul complex equipped with the structure of the

differential graded algebra. Let ζj =
∑r

i=1 cijei, 1 6 j 6 s, Γ• = R〈ζ1, . . . , ζs〉 the algebra

generated by the ζ values, and Z• be the algebra of Koszul cycles. Then we look at the elements

of degree r in the sub-algebra of K• generated by Γ• and Z• and define

Kitt(a, I) := 〈Γ• · Z•〉r ⊆ Kr = R.

1 This acronym can be used for two different entities.
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We summarize some of our results in the following theorem.

Theorem 1.1. With the above notation, we have the following.

(1) The ideal Kitt(a, I) depends only on the ideals a and I and not on the generators or

representative matrix.

(2) The ideal Kitt(a, I) is, indeed, the disguised residual intersection introduced in [HN16];

hence Kitt(a, I) ⊆ a :R I, they have the same radical and Kitt(a, I) = a :R I if µ(I/a) 6 1.

(3) The ideal Kitt(a, I) = a + 〈Γ• · H̃•〉r where H̃• is the sub-algebra of K• generated by the

representatives of Koszul homologies. However Kitt(a, I) ⊇ Fitt0(I/a).

(4) If R is CM, J = a :R I is an s-residual intersection and I satisfies SD1, then Kitt(a, I) = J

and it is a CM ideal.

So not only the Cohen–Macaulayness but also the structure of the residual intersections is

determined by the above theorem.

We briefly recall the history behind this theorem. In 1983, Huneke [Hun83] showed that the

Gs condition defined by Artin and Nagata [AN72], in 1972, is not enough to prove the CM-ness

of residual intersections in a CM ring (indeed the main theorem in the Artin–Nagata paper was

wrong although the applications were not); so Huneke defined Strongly Cohen–Macaulay (SCM)

ideals to show that residual intersections of SCM+Gs ideals are Cohen–Macaulay. The Strongly

Cohen–Macaulay condition then relaxed to the sliding depth condition in [HVV85]. In their 1988

landmark paper, [HU88], Huneke and Ulrich asked the question of whether the Gs condition

is at all needed to prove that SCM ideals have CM residual intersection? Following earlier

work of Chardin and Ulrich [CU02], Hassanzadeh [Has12] answered this question, affirmatively,

for arithmetic residual intersections. The answer is based on new construction which is called

disguised residual intersection2 in [HN16]. Disguised residual intersections are CM under sliding

depth conditions and coincide with the algebraic residual intersections in many different cases;

so Hassanzadeh and Naeliton in [HN16, Conjecture 5.9] conjectured that the disguised residual

intersection is the same as the residual intersection for ideals with sliding depth. Cohen–

Macaulayness of algebraic residual intersection for ideals with sliding depth was finally proved

in [CNT19] in 2018. Theorem 1.1(4) proves [HN16, Conjecture 5.9], in particular.

The whole paper is designed to prove Theorem 5.1 (Theorem 1.1(4)). The idea of the proof

is to use reduction modulo regular sequences which reduces the problem to the case where I

has height 2; one then uses the important duality result of [CNT19] to show that the disguised

residual and algebraic residual are the same. The byproduct is that we have already taken off

the mask of the disguised residual intersection in Theorem 4.9 (Theorem 1.1(2)); hence we have

a description of the generators of the residual intersection.

The paper is divided into five sections. To understand the structure of disguised residual

intersections, one needs to explicitly determine the maps in any pages of the Koszul–Čech-Z•
spectral sequence. This part is done in the first section where we define r-liftable elements and

determine when an element in any pages of spectral sequences is liftable, Theorems 2.5 and 2.6.

This study led us to a rediscovery of the Buchsbaum–Eisenbud family of complexes which in

turn contains the Eagon–Northcott and Buchsbaum–Rim complexes. In § 3, we show that the

structure of Buchsbaum–Eisenbud family can be simply explained by a Koszul–Čech spectral

2 Disguised residual intersections are limit terms in a particular Koszul–Čech-Z• spectral sequence, [HN16].
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sequence; so the structure of the complex acyclicity and many other properties are natural

consequences of the convergence of the spectral sequence. The crucial point is the connecting

maps, Theorem 3.6, which have been determined in § 3. In order not to diverge from the main

goal we do not add any corollaries in this section. In § 4, we first recall some of the basic

definitions including ‘disguised residual intersection’ and determine the generators of disguised

residual intersections in a quite general setting, Theorem 4.9. This is due to the structure of the

Eagon–Northcott complex and its coincidence with a strand Koszul–Čech spectral sequence (the

fact developed in § 3). Section 4.3 is devoted to showing that the construction of the disguised

residual intersection does not depend on the choice of the generators. Theorem 4.23 covers

the assertion of Theorem 1.1(3) and provides more details about the number of generators.

Another structural result in this section is Theorem 4.27 wherein it is shown that disguised

residual intersections specialize. Finally, in § 5 we collect several corollaries and applications,

more notably, Theorem 5.1 proves Conjecture [HN16, Conjecture 5.9] to a certain extent. We

finish the paper by gathering some interesting corollaries of the main theorems.

2. Maps in spectral sequences

To explain the structure of the disguised residual intersection, we need a concrete explanation

of the maps in spectral sequences. Unfortunately there does not exist such an explanation in the

literature although the facts may be known to the experts. Here we follow the notation in [Eis95].

More details may be found in the first author’s PhD thesis [Bou19].

Definition 2.1. Let R be a commutative ring and (E•,•, dv, dh) be a first quadrant double

complex of R-modules. The total complex of this bi-complex is a graded module with kth

component

Tot(E•,•)k =
⊕
p+q=k

Ep,q

coming with a degree-one differential d given by

d(m) = (dv(m), dh(m)) ∈ Ep+1,q ⊕ Ep,q+1 for all m ∈ Ep,q.

The pth vertical filtration of Tot(E•,•) is defined by

(verTot(E•,•)p)k =
⊕
i>p

Ei,k−i.

Similarly, we can define the pth horizontal filtration by putting

(horTot(E•,•)p)k =
⊕
i>p

Ek−i,i.

In what follows, we will be working with the totalization of a first quadrant spectral sequence,

as in Definition 2.1, filtered by the vertical filtration. Let F• =
⊕

p(verTot(E•,•)p) and

0E•,• =
⊕
p

(verTot(E•,•)p)

(verTot(E•,•)p+1)
'
⊕
p

Ep,•.
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These modules are bi-graded: one degree, given by p, is given by the filtration, and the other,

given by k, is the grading coming from the complex Tot(E•,•). Let q = k− p. Consider the exact

sequence (we remove the subscript ver for the rest of this section)

0 →

⊕
p

Tot(E•,•)p+1 i−→
⊕
p

Tot(E•,•)p
π−→
⊕
p

Tot(E•,•)p/Tot(E•,•)p+1
→ 0.

It is clear that 0Ep,q = Ep,q. Moreover, if we fix the degree p, then 0Ep,•, with the induced

differential d0, is just the complex Ep,• with the differential dv. So, from the above complex, we

get the exact couple (H(F ), H(E), i∗, π∗, δ). Both H(F ), H(E) are also bi-graded and defined

below. Setting k = p+ q, we have the following.

(1) The (p, q)-th component of H(F ) is H(F )p,q = Hk(Tot(E•,•)p).

(2) The (p, q)-th component of H(E) is H(E)p,q = Hq(Ep,•).

(3) The map i∗ takes a cohomology class (ap+1, . . . , ak) ∈ Hk(Tot(E•,•)p+1)

to the cohomology class (0, ap+1, . . . , ak) ∈ Hk(Tot(E•,•)p)

and has bi-degree (−1, 1).

(4) The map π∗ takes a cohomology class (ap, ap+1, . . . , ak) ∈ Hk(Tot(E•,•)p)

to the cohomology class of ap ∈ Hq(Ep,•). It has bi-degree (0, 0).

(5) The map δ is a snake-lemma-like map which takes an element

m ∈ Hq(Ep,•) to the element (dh(m), 0, . . . , 0) ∈ Hk+1(Tot(E•,•)p)

and has bi-degree (1, 0).

(2.1)

So, if we put F (1) = H(F ), 1E = H(E) and d1 = π ◦ δ and iterate the process, we

get exact couples (F (r), rE, i∗(r), (π)(r), δ(r)) with differentials dr = (π)(r) ◦ δ(r) on rE. The

spectral sequence (rE•,•, dr) constructed above is the spectral sequence associated to the vertical

filtration.

We denote the kernel and the image of dr by rZ•,• and rB•,• respectively.

The following definition is new to the context.

Definition 2.2. Let m ∈ Ep,q. We say that m is an r-liftable element, for some integer r, if

dv(m) = 0 and there is a sequence of elements (m, a1, . . . , ar) such that:

(1) dh(m) = dv(a1);

(2) dh(ai) = dv(ai+1) for every 0 6 i 6 r − 1.

The element ar is called an rth lift of m and the sequence (m, a1, . . . , ar) is called an r-lift

sequence of m.

Remark 2.3. Let m ∈ Ep,q, k = p+ q and (m, a1, . . . , ar) be an r-lift sequence with dh(ar) = 0.

Then the sequence (0,m,−a1, a2, . . . , (−1)rar,0) gives a cohomology class in Hk(Tot(E•,•)).

Conversely, if (0,m, a1, . . . , ar,0) gives a cohomology class in Hk(Tot(E•,•)), then

dv(m) = 0, dv(a1) = −dh(m), dv(ai+1) = −dh(ai).

Therefore (m,−a1, a2, . . . , (−1)rar) is an r-lift sequence for m.

We now describe the differentials dr on the rth page of the spectral sequence.
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Proposition 2.4. Let m ∈ Ep,q be an r-liftable element, and (m, a1, a2, . . . , ar) an r-lift
sequence. Then m ∈ iZp,q for all 0 6 i 6 r and dr+1(m) is the class of dh(ar) in r+1Ep+r+1,q−r.

Proof. We need to follow the rules of definition of the spectral sequence by an exact couple. It
is easy to see that d0 = dv and d1 = dh.

We start with the case r = 1. Suppose that m is 1-liftable and let (m, a) be a 1-lift sequence.
Considering the map δ in (2.1)

δ(m) = (dh(m), 0, . . . , 0) ∈ Hk+1(Tot(E•,•)). (2.2)

As (m, a) is a 1-lift sequence, we have dh(m) = −dv(a). Moreover, (−dv(a), 0, . . . , 0)
and (0, dh(a), . . . , 0) are cohomologous in Hk+1(Tot(E•,•)). To calculate d1(m), we have to
project (0, dh(a), . . . , 0) onto the first coordinate. Therefore m ∈ ker d1. To calculate d2(m) we
must calculate π(1)(0, dh(a), . . . , 0). By definition, we must take preimage by i∗ once and then
project onto the first coordinate, as

(i∗)−1((0, dh(a), . . . , 0)) = (dh(a), . . . , 0), (2.3)

d2(m) is the class of dh(a) in 2Ep+2,q−1.
Suppose now that m is r-liftable and that (m, a1, . . . , ar) is an r-lift sequence. Again, applying

δ to m, we have the same equation as in (2.2). Thence

(dh(m), 0, . . . , 0) = (−dv(a1), 0, . . . , 0) ∼ (0, dh(a1), 0, . . . , 0)

= (0,−dv(a2), 0, . . . , 0) ∼ (0, 0, dh(a2), 0, . . . , 0)

= · · · ∼ (

r︷ ︸︸ ︷
0, . . . , 0, dh(ar), 0, . . . , 0), (2.4)

where ∼ means homologous. To apply di, we must take (i − 1) times the preimage by i∗ and
then project onto the first coordinate. Thus, if i 6 r, then m ∈ ker di. To calculate dr+1(m), we
must, r times, take the preimage by i∗. As

(i∗)r(

r︷ ︸︸ ︷
0, . . . , 0, dh(ar), 0, . . . , 0) = (dh(ar), 0, . . . , 0). (2.5)

Therefore, projecting in the first coordinate yields the result. 2

We now prove the converse.

Theorem 2.5. Let m ∈ Ep,q. If m ∈ rZp,q, then m is r-liftable.

Proof. For r = 1 the proof is easy: d1(m) = dh(m) = 0 ∈ 1Ep+1,q = Hq(Mp+1.•) implies dh(m) =
dv(a) for some a ∈Mp+1,q−1.

To illustrate the proof, we do the case r = 2. Let m ∈ 2Zp,q. In particular, m ∈ 1Zp,q which
implies that m is 1-liftable. Let (m, a) be a 1-lift sequence. As d2(m) ∈ 1Bp+2,q−1, there is a′

with dv(a
′) = 0 such that dh(a) = dh(a′) in 1E. By the case r = 1, there is a′′ ∈ Ep+2,q−2 with

dv(a
′′) = dh(a− a′). Now, (m, a− a′, a′′) is a 2-lift sequence for m.
For the general case, let m ∈ rZp,q. Then, by induction, m is (r − 1)-liftable. Let

(m, a1, . . . , ar−1) be an (r − 1)-lift sequence. Then by Proposition 2.4, dh(ar−1) = dr(m) = 0

in rE. Therefore, there is a
(1)
r−1 ∈ r−1Zp,q such that dv(ar−1) = 0 and dh(ar−1) = dr−1(a

(1)
1 ) in

r−1E. Again by induction a
(1)
1 is (r − 2)-liftable. Take an (r − 2)-lift sequence

(0, a
(1)
1 , a

(1)
2 , . . . , a

(1)
r−1) (2.6)
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such that dh(ar−1 − a(1)
r−1) = 0 in r−1E. It is immediate to see that

(m, a1 − a(1)
1 , a2 − a(1)

2 , . . . , ar−1 − a(1)
r−1) (2.7)

is an (r−1)-lift sequence. Now we may construct inductively, for each 1 6 i 6 r−1, (r−1−i)-lift
sequences

(0, . . . , 0, a
(i)
i , . . . , a

(i)
r−1) (2.8)

such that dh(ar−1−a(i)
1 −· · ·−a

(i)
r−1) = 0 in r−iE. If i= r−1, we have that dh(ar−1−

∑r−1
i=1 a

(i)
r−1) = 0

in 1E, that is, there is ar such that

dh

(
ar−1 −

r−1∑
i=1

a
(i)
r−1

)
= dv(ar). (2.9)

It follows that (
m, a1 − a(1)

1 , a2 −
2∑
i=1

a
(i)
2 , . . . , ar−1 −

r−1∑
i=1

a
(i)
r−1, ar

)
(2.10)

is an r-lift sequence. 2

The same method of the proof of Theorem 2.4 gives us the following characterization of rBp,q.

Theorem 2.6. Let m ∈ Ep,q. Then m ∈ rBp,q if and only if there is an (r − 1)-lift sequence
(a1, . . . , ar−1,m) and an element ar such that m = dh(ar−1) + dv(ar).

Again, considering the vertical filtration of the first quadrant double complex E•,•, the
inclusions

i : Tot(E•,•)p → Tot(E•,•) (2.11)

induce a filtration

Hk(Tot(E•,•)) ⊃ i∗(Hk(Tot(E•,•)1)) ⊃ i∗(Hk(Tot(E•,•)2)) ⊃ · · · ⊃ i∗(Hk(Tot(E•,•)p)) ⊃ · · · .
(2.12)

The following theorem explicitly explains the convergence of spectral sequences.

Proposition 2.7. Let E•,• be a first quadrant bi-complex with the vertical filtration. Then the
map

ϕp,q : i∗(Hk(Tot(M•,•)p))/i∗(Hk((Tot(M•,•)p+1))) →
∞Ep,q

(m, ap+1, . . . , ak) 7→ m̄,

(q = k − p) is a well-defined isomorphism.

Proof. The proof is a straightforward application of Theorems 2.5 and 2.6. 2

To finish this section, we give some remarks: we have chosen to work with a first-quadrant
double complex with differentials increasing the degree for the sake of clarity. All the definitions
and arguments can be adapted to double complexes placed in other quadrants or with other
configurations for the differentials. For the convergence, the proof of Theorem 2.7 shows that the
only thing we need is a complex with finite diagonals.
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3. Buchsbaum–Eisenbud complexes are strands of Koszul–Čech spectral sequences

To understand the structure of the disguised residual intersection, we need an explicit expression
for a transgression map in a Koszul–Čech spectral sequence. This expression is exactly the same
as the connecting map in the Buchsbaum–Eisenbud complexes explained in [Eis95, §A2.6]. The
surprising fact is that the whole family of Buchsbaum–Eisenbud complexes can be explained by
the complexes Koszul and Čech. This, we will explain in this section.

3.1 Preliminaries
We explain the new structures as much complete as possible here and refer to [Eis95, §A2] for
the details about the family of complexes Ci•; where C0

• is the Eagon–Northcott complex and C1
• is

the Buchsbaum–Rim complex. Besides some basic notation, we will recall some notation and the
basic structure of the Buchsbaum–Eisenbud family of complexes. We avoid repeating the whole
well-known structures. Instead, we keep the same notation and names as in [Eis95, §A2.6], for
the sake of consistency, and refer the reader to [Eis95].

Let R be a commutative ring. For an R-module M , we denote by M∗ the dual HomR(M,R).
Recall that for R-module G and any linear map ϕ ∈ G∗ one can define a differential

∂ϕ :
∧
G →

∧
G, called the Koszul differential of the linear map ϕ; see [BH98, Definition 1.6.1].

This defines an action of G∗ on
∧
G given by

ψ · w = ∂ψ(w).

Clearly, if ϕ,ψ ∈ G∗, then ϕ · ψ ·w = −ψ · ϕ ·w and this gives a natural action of
∧
G∗ on

∧
G.

Let Φ : F = Rf → G = Rg be a linear map. Then we can construct the generalized Koszul
complex K(Φ), defined in [Vas94] as follows. Let S(G) be the symmetric algebra of G and φ be
the composition of the maps

F ⊗R S(G)
Φ⊗1−−→ G⊗R S(G) → S(G),

where the last map is just the multiplication on S(G). Then we can construct the Koszul
differential

∂φ :
∧
F ⊗R S(G) →

∧
F ⊗R S(G).

The module
∧
G∗ acts on

∧
F as follows. For any η ∈ G∗ and any v ∈

∧
F ,

η · v := Φ∗(η) · v = (η ◦ Φ) · v. (3.1)

Moreover, the module G acts naturally on S(G) via the multiplication. Therefore, we have an
action of the module G∗ ⊗R G on

∧
F ⊗R S(G) given by

(η ⊗ u) · (v ⊗ w) = η · v ⊗ uw. (3.2)

The differential of the complex K(Φ) can be explained via this action: it is just the action of
the element c which is the pullback of 1 via the natural evaluation map G⊗G∗ → R. Moreover
for any S(G)-module M , one can define the generalized Koszul complex with coefficients
in M given by K(Φ)⊗S(G)M . Again, G∗⊗G acts on

∧
F⊗M and the differential of K(Φ)⊗S(G)M

is again given by the action of the element c.

Definition 3.1. A connecting map of degree d for the map Φ is a map of the form

εd :

d+g∧
F →

d∧
F

given by the action of a generator γ of
∧g G∗.
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Definition 3.2. Let Φ : F =Rf →G=Rg be a linear map with f > g. The complex obtained by
joining (K(Φ)(f−g−d))

∗ and K(Φ)(d) via a connecting map εd is denoted by Cd(Φ). {Cd(Φ)}d∈Z is
the family of Buchsbaum–Eisenbud complexes. The complex C0(Φ) is called the Eagon–Northcott
complex, and the complex C1(Φ) is the Buchsbaum–Rim complex.

Let T1, . . . , Tg be a basis of G. Then S(G) ' R[T1, . . . , Tg] is a polynomial extension and has
the standard grading, and the complex K(Φ) is graded as well.

In terms of the basis T1, . . . , Tg the map Φ has a decomposition

Φ(w) = φ1(w)T1 + · · ·+ φg(w)Tg,

where φi ∈ F ∗ for all i. In this case the differential ∂φ of K(Φ) can be expressed as

∂φ(w) = ∂φ1(w)T1 + · · ·+ ∂φg(w)Tg.

The connecting map εd can also be easily described in terms of the basis T1, . . . , Tg.
Let T ′1, . . . , T

′
g be the basis of G∗ which is dual to T1, . . . , Tg. Then the associated connecting

map, εd, associated to the generator T ′1 ∧ · · · ∧ T ′g is given by

w → ∂φ1 · · · ∂φg(w).

3.2 The new structure
Let R be a commutative ring, Φ : F = Rf → G = Rg, f > g a linear map and K• = K(Φ) its
generalized Koszul complex. Let T1, . . . , Tg be a basis for G and Sym(G) = S = R[T1, . . . , Tg].
Moreover, let Č•t be the Čech complex of S with respect to the sequence t = (T1, . . . , Tg). Consider
then the bi-complex K• ⊗S Č•t and write D• = Tot(K• ⊗S Č•t ). We display K• ⊗S Č•t as a
third-quadrant bi-complex with K0 ⊗R C0

t (S) at the origin of the plane.
We begin to explain our construction by looking at the spectral sequence coming from the

vertical filtration. As H i
t (S) = 0 for i < g, the spectral sequence collapses on the gth row on the

complex

1E−p,−qver =

{
0 if q 6= g,

Hg
t (Kp) otherwise,

1E∗,−gver : 0 // Hg
t (Kf ) // · · · // Hg

t (K1) // Hg
t (K0) // 0. (3.3)

Since Ki = S(fi)(−i) and Hg
t (S)(d) = 0 for d > −g, we have, for a fixed degree d,

(1Evert)
∗,−g
(d) : 0 → Hg

t (Kf )(d) → Hg
t (Kf−1)(d) → · · ·→ Hg

t (Kg+d+1)(d)
ψd−→ Hg

t (Kg+d)(d) → 0.

(3.4)
Then

(2E−d−g,−gver )(d) = (∞E−d−g,−gver )(d) ' Coker(ψd).

Now, we look at the spectral sequence coming from the horizontal filtration. The second page of
this spectral sequence is given by

(2E−p,−qhor )(d) = Hq
t (Hp(K•))(d).

The 0th row of 0E∗,∗hor in degree d is the complex

0 → (Kd)(d)
µd−→ · · ·→ (K0)(d) → 0; (3.5)
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so that
(2E−d,0hor )(d) ' H0

t (Ker(µd)) ⊆ Ker(µd).

By the convergence of the spectral sequences, we have

(∞E−d−g,−gver )(d) ' Hd(D•)(d). (3.6)

Moreover, there is a filtration

Hd(D•)(d) = Fd,0 ⊇ Fd,1 ⊇ · · ·

such that
Fd,i
Fd,i+1

' ∞(E−d−i,−ihor )(d).

We then have a natural surjection Hd(D•)(d) → (∞Ed,0hor)(d). Define the map

τd : Hg
t (Kd+g)(d) → (Kd)(d)

to be the composition

Hg
t (Kd+g)(d) → Coker(ψd)

∼−→ Hd(D•)(d) → (∞E−d,0hor )(d) ↪→ (1E−d,0hor )(d) = Ker(µd) ↪→ (Kd)(d).
(3.7)

We define the complex Kd(Φ) to be the complex

0 → Hg
t (Kf )(d) → · · ·→ Hg

t (Kd+g)(d)
τd−→ (Kd)(d) → · · ·→ (K0)(d) → 0. (3.8)

The principal theorem of this chapter is the following.

Theorem 3.3. Let Φ : F = Rf → G = Rg be a linear map with f > g. Then the complexes
Cd(Φ) and Kd(Φ) are isomorphic for d 6 f − g.

Fix d 6 f−g. The complexes Cd(Φ) and Kd(Φ) are isomorphic at the right side of the joining
maps τd and εd as they are both the generalized Koszul complex of Φ. Therefore we must study
the left parts and the joining map of both complexes.

Proposition 3.4. The left parts of Cd(Φ) and Kd(Φ) are isomorphic.

Proof. Recall that Hg
t (S) has an inverse polynomial structure, and Hg

t (S)(−g) is a free R-module

generated by the monomials 1/(Tα1
1 . . . T

αg
g ) with

∑g
i=1 αi = g, αi > 1. Thus there is a perfect

pairing
S(d) ⊗R H

g
t (S)(−d−g) −→ Hg

t (S)(−g) ' R

given by multiplication. The isomorphism (S(d))
∗ ' Hg

t (S)(−d−g) induced by this pairing takes

the element (Tα1
1 . . . T

αg
g )′ to the element 1/(Tα1+1

1 . . . T
αg+1
g ). Using this paring, we have the

following isomorphisms:

Kd(Φ)d+i = Hg
t (Kg+d+i−1)(d)

' Hg
t

(d+g+i−1∧
F ⊗R S(−g − d− i+ 1)

)
(d)

'
g+d+i−1∧

F ⊗R Hg
t (S(−g − d− i+ 1))(d)
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'
g+d+i−1∧

F ⊗R Hg
t (S)(−g−i+1)

'
g+d+i−1∧

F ⊗R (S(i−1))
∗ ' (Cd)d+i.

Hence components of the complexes are isomorphic.
For the differentials, notice that the left part of Cd is a strand of the generalized Koszul

complex of Φ with coefficients in S∗ and the left part of Kd(Φ) is a strand of the generalized
Koszul complex of Φ with coefficients in Hg

t (S). Both differentials are induced by the action
of the element c ∈ G∗ ⊗ G defined earlier in this section, and this action commutes with the
isomorphism induced by the above perfect pairing. The proposition is therefore proved. 2

It remains to analyze the joining maps τd : Hg
t (Kg+d)(d) → (Kd)(d) defined in (3.7) and εd

defined in Definition 3.1.
We use the following notation in what follows.

Notation 3.5.
• For any L ⊂ {1, . . . , g} with |L| = `, we define sgn(L) to be the sign of the permutation

that put the elements of L on the first ` positions.
• For the set of variables T1, . . . , Tg and L ⊂ {1, . . . , g}, we define TL :=

∏
j /∈L Tj .

• For a set of maps {ϕ`i : i= 1, . . . ,m} in F ∗, we use the notation ∂L to denote the composition
∂ϕ`1
· · · ∂ϕ`m

where L = {`1, . . . , `m}.

Using the theorems developed in § 2 about the structure of the maps in spectral sequences,
we have an explicit description for τd.

Theorem 3.6. Let R be a commutative ring, Φ : F = Rf → G = Rg a linear map with f > g
and K• = K(Φ) the generalized Koszul complex.

Let T1, . . . , Tg be a basis of G, Φ =
∑r

i=1 φi · Ti and S := S(G) = R[T1, . . . , Tg].

Consider the double complex K•⊗S Č•t (S) and its horizontal and vertical spectral sequences.
Then, for each 0 6 d 6 f − g and w ∈ Kg+d, the element

m = w ⊗ 1

T1 . . . Tg
∈ Kg+d ⊗ Čgt (S) (3.9)

is g-liftable. Moreover, the ith lift of this element is, up to a sign,∑
|L|=i

∂L(w)⊗ sgn(L)
1

TL
.

In particular,

τd(m) = ∂φ1 · · · ∂φg(m).

Hence τd = εd.

Proof. In the course of the proof we do all the liftings without concerning the signs coming from
the bi-complex, for the sake of clarity. Finally, we stress that the involved signs depends only
on g.
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In (0E−d−g,−gver )(d) the differential d0 = dv is zero. By (3.4), (1E−d−g+1,−g
ver )(d) = 0 and

(rE−d−g+r,−g−r+1
ver )(d) = 0 for all r > 2. Therefore all differentials dr are zero in (rE−d−g,−gver )(d)

and (0E−d−g,−gver )(d) = (∞Z−d−g,−gver )(d). Then by Theorem 2.5, m is g-liftable.
We now show the formula for the ith lift by using an induction on i. The process of lifting is by

applying the horizontal map, Koszul differentials, in each step and then taking the pre-image
by the vertical maps which are the Čech differentials.

dh(m) =

g∑
i=1

∂i(w)⊗ Ti
T1 . . . Tg

. (3.10)

It is immediate to see that (3.10) is a Čech boundary, and the 1-lift is given by

∂1(w)⊗ 1

T{1}
− ∂2(w)⊗ 1

T{2}
+ · · ·+ (−1)g∂g(w)⊗ 1

T{g}
, (3.11)

as required.
Now suppose that i > 1 and that the ith lift of m is given by

mi =
∑
|L|=i

∂L(w)⊗ sgn(L)
1

TL
. (3.12)

Applying the Koszul differential, we then have

dh(mi) =
∑
|L|=i

( g∑
i=1

∂i∂L(m)Ti

)
⊗ sgn(L)

1

TL
. (3.13)

Notice that if i ∈ L, then ∂i∂L = 0. This shows that dh(mi) is the image of the Čech map of the
element

mi+1 =
∑
|L|=i+1

∂L(w)⊗ sgn(L)
1

TL
, (3.14)

as desired.
To see that τd = εd, we analyze the construction of τd given in (3.7). Since

Hg
t

(d+g∧
(S(−d− g))f

)
'

d+g∧
F ⊗Hg

t (S)(−g),

any element of Coker(ϕd) is presented by an element

m = w ⊗ 1

T1 . . . Tg
∈ Kg+d ⊗ Čgt (S).

By Theorem 2.7, the isomorphism Coker(ϕd) ' Hd(D•)(d) sends m to the cohomology class

(m,−a1, . . . , (−1)gag) ∈ Hd(D•)(d) where (m, a1, . . . , ag) is a g-lift sequence for m.

Again by Theorem 2.7, the map Hd(D•)(d) →
∞E−d,0 sends the cohomology class (m,−a1,

. . . , (−1)gag) to the element (−1)gag, as ag is just the g-lift of m calculated above. Comparing
with Definition 3.1, we see that τd = εd up to a sign. 2

The proof of Theorem 3.3 now follows from Proposition 3.4 and Theorem 3.6.
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4. Generators of residual intersections

In this section, we recall the definition of ‘residual approximation complexes’ and ‘disguised
residual intersections’. Based on the materials developed so far, we show how Kitt ideals (defined
in the introduction) can approximate a general colon ideal (a : I). By general colon ideal we
mean, in most of the coming results, J = a : I needs not to be a residual intersection. However,
it is not true that Kitt(a, I) = (a : I) for any colon ideal, see Example 5.9.

4.1 Definitions and known results
Definition 4.1. Let R be a commutative ring and I ⊂ R an ideal of grade g and s > g. We say
that an ideal J is an algebraic s-residual intersection of I, if J = (a : I), with a = (a1, . . . , as) ⊂ I,
and ht(J) > s. Moreover, we say that:

(1) J is an arithmetic s-residual intersection if µRp(I/a)p 6 1 for all prime ideals p with
ht(p) = s;

(2) J is a geometric s-residual intersection if ht(I + J) > s+ 1.

In [Has12, HN16, CNT19] the authors tackle the problem of the Cohen–Macaulayness of an
s-residual intersection J = (a : I) without assuming that I satisfies the Gs-condition.3 These
works rely upon the construction of a family of complexes, called the residual approximation
complexes, that we now describe.

Let R be a commutative ring, I = (f1, . . . , fr) an ideal of R and a = (a1, . . . , as) ⊆ I. For each
1 6 j 6 s, let aj =

∑r
i=1 cijfi for some cij ∈ R. Let S = R[T1, . . . , Tr] be a standard polynomial

extension of R and γj =
∑r

i=1 cijTi ∈ S1. We then consider the Z-complex, Z•(f ;R), of Herzog,
Simis and Vasconcelos [HSV83]:

0 → Zr(f ;R)⊗R S(−r) → Zr−1(f ;R)⊗R S(−r + 1) → · · ·→ Z0(f ;R)⊗R S → 0, (4.1)

where Zi(f ;R) stands for the ith module of Koszul cycles of the sequence f = (f1, . . . , fr).
Subsequently we consider the bold form f ,a and γ for the sequences f1, . . . , fr, a1, . . . , as

and γ1, . . . , γs.
Now, consider a new complex, given by

D• = Tot(Z•(f ;R)⊗S K•(γ, S)),

where K•(γ, S) is the Koszul complex K•(γ1, . . . , γs, S). The ith component of this complex is
given by

Di =

min{i,r}⊕
k=i−s

(Zk(f ;R)⊗R S(−k))⊗S S( s
i−k)(−i+ k) '

min{i,r}⊕
k=i−s

(Zk(f ;R)⊗R S( s
i−k))(−i). (4.2)

We then tensor D• to the Čech complex Č•t (S), where t = (T1, . . . , Tr), and repeat the same
procedure as in § 3.2 to glue the horizontal spectral sequence to the vertical spectral sequence.
Thence for each degree k, we have the complex

kZ+
• : 0 → Hr

t (Dr+s−1)(k) → · · ·→ Hr
t (Dr+k)(k)

τk−→ (Dk)(k) → · · ·→ (D0)(k) → 0. (4.3)

Definition 4.2. The complex kZ+
• constructed above is called the kth residual approximation

complex with respect to the generating sets f and a of I and a.

3 An ideal I satisfies the Gs-condition if µ(Ip) 6 ht(p) for any prime ideal p ∈ V(I) of height at most s− 1.
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Having these approximation complexes in hand, the first interesting property is their
acyclicity. Here is where the Cohen–Macaulayness of the ring R and sliding depth conditions
come into play. We recall the definitions here.

Definition 4.3. Let (R,m) be a Noetherian local ring of dimension d and I = (f1, . . . , fr) = (f)
an ideal. Let k be an integer. We say that the ideal I satisfies SDk if

depth(Hi(f ;R)) > min{d− g, d− r + i+ k}

for all i > 0; also SD stands for SD0. Similarly, we say that I satisfies the sliding depth condition
on cycles, SDCk, at level t, if depth(Zi(f ;R)) > min{d− r+ i+ k, d− g+ 2, d} for all r− g− t 6
i 6 r − g.

The ideal I is said to be strongly Cohen–Macaulay, SCM, if Hi(f ;R) is CM for all i.

We state an acyclicity criterion.

Theorem 4.4 [HN16, Theorem 2.6]. Let (R,m) be a CM local ring of dimension d,
I = (f1, . . . , fr) an ideal with height g > 1. Let s > g and fix 0 6 k 6 s − g + 2. Suppose
that I satisfies SD and that one the following hypotheses holds:

(i) r + k 6 s or;

(ii) r + k > s+ 1 and depth(Zi(f)) > min{d, d− s+ k} for 0 6 i 6 k.

Then for any s-residual intersection J = (a : I), the complex kZ+
• is acyclic. Furthermore,

H0(kZ+
• ) is a Cohen–Macaulay R-module of dimension d− s.

The last map of the complex 0Z+
• is

τ0 : Hr
t (Dr)0 → (D0)0 ' R. (4.4)

Hence H0(0Z+
• ) ' R/K for some ideal K ⊂ R ideal. This ideal is called the disguised residual

intersection. More specifically, we have the following.

Definition 4.5. Let R be a commutative ring, I = (f1, . . . , fr) and a = (a1, . . . , as) ⊆ I be
ideals of R and Φ = (cij) be an r × s matrix such that (a) = (f).Φ.

Then the disguised residual intersection of I with respect to the representation matrix Φ is
the image of the map

τ0 : Hr
t (Dr)0 → R

in 0Z+
• -complex; we denote it by K(a, f ,Φ).

There are some tight relations between the disguised residual intersection and the residual
intersection as the following theorems state.

Theorem 4.6. Let R be a commutative ring and keep the notation in the Definition 4.5. Let
J = a :R I and K = K(a, f ,Φ). Then we have the following.

(1) K ⊆ J , and V (K) = V (J) [Has12, Theorem 2.11].

(2) J = K if f = (a1, . . . , as, b) [HN16, Theorem 4.4].

(3) If R is Cohen–Macaulay local ring, I is an ideal of height g > 1 satisfying SDC1 at level
min{s − g, r − g} and J is an arithmetic s-residual intersection, then K = J and it is
Cohen–Macaulay of height s, [Has12, Theorem 2.11].
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(4) If R is Cohen–Macaulay local ring, I is an ideal of height 2 satisfying SD1 and J is any
algebraic s-residual intersection, then K = J , [CNT19, Theorem 4.5].

In [CNT19, Theorem 4.5] Chardin, Naeliton and Tran also show that if R is a Cohen–
Macaulay local ring and I is an ideal of height g > 1 satisfying SD1, then any algebraic s-residual
intersection of I is Cohen–Macaulay of height s. This provides an affirmative answer to the
question of Huneke and Ulrich [HU88].

Hassanzadeh and Naeliton proposed the following conjecture in [HN16].

Conjecture 4.7. If R is a Cohen–Macaulay local ring and I an ideal satisfying SD and
depth(R/I) > d− s, then any algebraic s-residual intersection of I coincides with the disguised
residual intersection.

4.2 The structure of disguised residual intersections
An obstruction to generalizing the techniques in [CNT19, Theorem 4.5] for ideals I with ht(I)> 2
is that the usual reduction modulo a regular sequence does not work smoothly if one does not
know the explicit structure of the disguised residual intersection. This is why in this paper we look
for explicit descriptions of the maps in spectral sequences in order to determine the generators
of disguised residual intersections.

Since the bi-complex D• = Tot(K•(γ;S)⊗S Z•(f ;R)) is a subcomplex of the complex F• =
K•(γ, T1, . . . , Tr;S) ' Tot(K•(γ;S)⊗SK•(T1, . . . Tr;S)) and Č•t is a complex of flat modules,
the map τ0 in (4.4) is just the restriction of the comparison map τ0 constructed in § 3.2 for the bi-
complex F•⊗S Č•t . By Theorem 3.6, this map is just the connecting map in the Eagon–Northcott
complex

ε0 :
r∧
Rr+s → R, (4.5)

defined in Proposition 3.1, associated to the matrix M = (cij | id(r×r)).
For the rest of this section, we set e′1, . . . , e

′
s, e1, . . . , er for the basis of K1(γ1, . . . , γs, T1, . . . ,

Tr;S) as a free S-module; so ∂(e′i) = γi and ∂(ei) = Ti, in the corresponding Koszul complex.
We also denote the columns of the matrix M with C1, . . . , Cs, I1, . . . , Ir.

Lemma 4.8. Keeping the above notation, let L1 ⊆ {1, . . . , s} and L2 ⊆ {1, . . . , r} = L such that
|L1|+ |L2| = r. Then

ε0(e′L1
⊗ eL2) =

∧
i∈L1

Ci
∧
j∈L2

Ij ,

where Ci and Ij are the columns of M considered as elements in
∧1Rr. In other words,

ε0(e′L1
⊗ eL2) = ±det ΦL1

L\L2
,

where ΦL1

L\L2
is the sub-matrix of Φ = (cij) whose rows indexed by L \ L2 and columns indexed

by L1.

Proof. The complex F• is just the generalized Koszul complex of the linear map Ψ presented by
the matrix M . According to the notation in Definition 3.2, the differential of this complex ∂Ψ

can be expressed as

∂Ψ(w) = ∂ψ1(w)T1 + · · ·+ ∂ψr(w)Tr,

2164

https://doi.org/10.1112/S0010437X19007541 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007541


Generators of residual intersections

where ψi is determined by the ith row of the matrix M . Henceforth

ε0(w) = ∂ψ1 · · · ∂ψr(w).

Therefore the equality

ε0(e′L1
⊗ eL2) =

∧
i∈L1

Ci
∧
j∈L2

Ij

follows from the elementary properties of the exterior product.
For the second expression, one has

∧
i∈L1

Ci
∧
j∈L2

Ij = det(ΦL1 | idL2

(r×r)) = ±det

[
ΦL1

L\L2
0

∗ id|L2|×|L2|

]
= ±det ΦL1

L\L2
. 2

The following theorem explains the generators of the disguised residual intersection.

Theorem 4.9. Let R be a commutative ring, I = (f1, . . . , fr) ⊆ R, a = (a1, . . . , as) ⊆ I ideals
and Φ = (cij) a matrix such that (a) = (f)·Φ. Consider the differential graded algebra K•(f ;R) =
R〈e1, . . . , er; ∂(ei) = fi〉. Let ζj =

∑r
i=1 cijei, 1 6 j 6 s, Γ• = R〈ζ1, . . . , ζs〉 be the sub-algebra

generated by {ζ1, . . . , ζs}, and Z• = Z•(f ;R) be the sub-algebra of Koszul cycles. Then the
disguised residual intersection satisfies

K(a, f ,Φ) = 〈Γ• · Z•〉r.

Proof. By Definition 4.5, K(a, f ,Φ) is the image of the map

τ0 : Hr
t (Dr)0 → R.

Since

Dr =
r⊕

k=r−s
S( s

r−k)(−r + k)⊗S (Zk(f ;R)⊗R S(−k))

=
r⊕

k=r−s
(
∧r−k Rs)⊗R Zk(f , R)⊗R S(−r),

then

Hr
t (Dr)0 =

r⊕
k=r−s

r−k∧
Rs ⊗R Zk(f , R)⊗R Hr

t (S)−r.

The map τ0 above is the restriction of the same named map in Theorem 3.6 which is, up to a
sign, equal to the connecting map in the Eagon–Northcott complex, ε0. Hence it is enough to
determine

{ε0(e′L1
⊗ zj) : r − s 6 j 6 r, |L1| = r − j and zj ∈ Zj(f ;R)}.

More explicitly, for a cycle zj =
∑
|L2|=j αL2eL2 , according to the proof of Lemma 4.8,

ε0(e′L1
⊗ zj) =

∑
|L2|=j

αL2∂φ1 · · · ∂φr(e′L1
⊗ eL2) =

∑
|L2|=j

αL2

∧
i∈L1

Ci
∧
j∈L2

Ij .
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Now, identifying Ci with ζi =
∑r

k=1 ckiek ∈
∧1Rr and Ij with ej , we get

ε0(e′L1
⊗ zj) =

∑
|L2|=j

αL2

∧
i∈L1

Ci
∧
j∈L2

Ij =
∑
|L2|=j

αL2

∧
i∈L1

ζi
∧
j∈L2

ej =

( ∧
i∈L1

ζi

)∧
zj .

We also notice that 〈Γ• ·Z•〉r ⊆ Kr(f ;R) =
∧r Rr ' R. Hence 〈Γ• ·Z•〉r is isomorphic to an

ideal of R. 2

Remark 4.10. As it may be understood from the proof of the above theorem, to construct
K(a, f ,Φ) one may only need cycles of order j > r − s. However, this fact is implicit in the
equation K(a, f ,Φ) = 〈Γ• ·Z•〉r. Since Γ• = R〈ζ1, . . . , ζs〉, an element of Γ• has degree at most s.

We postpone the corollaries of this structural theorem until § 5. We first show that the
definition of the disguised residual intersection does not depend on any choices of generators of
a and I and neither on the choices of the matrix Φ.

4.3 Independence from the generating sets
In this subsection let R be a commutative ring, I = (f1, . . . , fr), a = (a1, . . . , as) ⊆ I and
(a) = (f)Φ for some matrix Φ = (cij).

Proposition 4.11. The disguised residual intersection does not depend on the presentation
matrix.

Proof. Let Φ = (cij) and Φ̃ = (c̃ij) be two matrices such that (a) = (f)Φ = (f)Φ̃. As (f)(Φ− Φ̃) =

(a1−a1, . . . , as−as) = 0, the columns of the matrix Φ− Φ̃ are syzygies of the sequence f . Hence

setting ζj =
∑r

i=1 cijei, ζ̃j =
∑r

i=1 c̃ijei, Γ• = R〈ζ1, . . . , ζs〉, Γ̃• = R〈ζ̃1, . . . , ζ̃s〉, and Z• the algebra
of Koszul cycles of the sequence f , we have, by Theorem 4.9,

K(a, f ,Φ) = 〈Γ• · Z•〉r (4.6)

and

K(a, f , , Φ̃) = 〈Γ̃• · Z•〉r. (4.7)

Since, for all j, ζj = ζ̃j + zj for some zj ∈ Z1, we have

Γ̃i ⊆ Γi + Γi−1 · Z1 + · · ·+ Γ1 · Zi−1 + Zi. (4.8)

Hence for 1 6 i 6 s

Γ̃i · Zr−i ⊆ Γi · Zr−i + Γi−1 · Zr−i+1 + · · ·+ Γ1 · Zr−1 + Zr. (4.9)

This proves the inclusion

K(a, f ,Φ) ⊇ K(a, f , Φ̃).

The opposite inclusion follows similarly. 2

Proposition 4.12. The disguised residual intersection does not depend on the choice of
generators of a.
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Proof. Let (a1, . . . , as) = (a), (a′1, . . . , a
′
s′) = (a′) be two generating sets of the ideal a. There

exists an s× s′ matrix M , and an s′ × s matrix M ′ such that

(a) ·M = (a′), (4.10)

(a′) ·M ′ = (a). (4.11)

Therefore, choosing Φ such that (a) = (f) · Φ, we have

(a′) = (f) · Φ ·M. (4.12)

Let ζj , 1 6 j 6 s, be the elements in K•(f ;R) associated to the matrix Φ and let ζ ′j , 1 6 j 6 s′,
be the elements in K•(f ;R) associated to the matrix Φ ·M . By elementary properties of the
wedge product, any wedge product of {ζ ′1, . . . , ζ ′s′} is a linear combination of wedge products of
{ζ1, . . . , ζs} with coefficients some minors of the matrix M . Hence, by Theorem 4.9,

K(a′, f,Φ ·M) ⊆ K(a, f ,Φ). (4.13)

On the other hand, Φ ·M ·M ′ is a matrix such that (a) = (f) ·Φ ·M ·M ′. By the same argument
as above, we have

K(a, f ,Φ ·M ·M ′) ⊆ K(a, f ,Φ ·M ′) ⊆ K(a, f ,Φ). (4.14)

The result now follows from the independence from the choice of the matrix Φ, Proposition 4.11.
2

It now remains to prove that the disguised residual intersection does not depend on a choice
of generators of I. For that we need two lemmas.

Lemma 4.13. Let R be a commutative ring, I = (f1, . . . , fr) an ideal, 1 6 i 6 r + 1, f0 ∈
AnnHi−1(f ;R) and K•(f0, f ;R) = R〈e0, e1, . . . , er; ∂(ei) = fi〉 the Koszul DG-Algebra. Then
any cycle z ∈ Zi(f0, f ;R) can be uniquely written in the form

z = e0 ∧ w + w′,

where w ∈ Zi−1(f ;R), w′ ∈ Ki(f0, f ;R) and ∂(w′) = −f0w. Conversely, for any w ∈ Zi−1(f ;R)
there exists w′ ∈ Ki(f0, f ;R) such that e0 ∧ w + w′ ∈ Zi(f0, f ;R).

Proof. Every element z ∈ Ki(f0, f ;R) can be uniquely written in the form z = e0∧w+w′ where
w ∈ Ki−1(f ;R) and w′ ∈ Ki(f0, f ;R). If z is a cycle, then

0 = ∂(z) = f0.w − e0 ∧ ∂(w′) + ∂(w). (4.15)

Hence ∂(w) = 0 and ∂(w′) = −f0w.
For the converse, suppose that w ∈ Zi−1(f ;R). Since f0 ∈ AnnHi−1(f ;R), −f0w is a

boundary, that is, there is w′ ∈Ki(f ;R) with ∂(w′) =−f0w. Taking z = e0 ∧w+w′ ∈Ki(f0, f ;R),
we have

∂(z) = ∂(e0 ∧ w + w′) = f0w + e0 ∧ ∂(w) + ∂(w′) = 0, (4.16)

which proves the lemma. 2
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Lemma 4.14. Let f0 ∈
⋂r
i=max{0,r−s}AnnHi(f , R) and K•(f0, f ;R) = R〈e0, e1, . . . , er; ∂(ei) = fi〉

the Koszul DG-Algebra. Then

M =

[
0
Φ

]
satisfies (a) = (f0, f) ·M , and

K(a, f ,Φ) = K(a, (f0, f),M).

Proof. The assertion about the matrix is obvious. Let

ζj = 0.e0 +
r∑
i=1

cijei, (4.17)

the ζ values corresponding to the representation matrix M . These elements can be viewed as the
ζ values corresponding to the matrix Φ. By Theorem 4.9, we have K(a, (f0, f),M) = 〈Γ• ·Z•〉r+1.
Hence, to construct a generator of K(a, (f0, f),M), we take z ∈ Zj(f0, f ;R), r+1−s 6 j 6 r+1
and L1 ⊆ {1, . . . , s} with |L1| = r+1− j. By Lemma 4.13 z = e0∧w+w′, where w ∈ Zj−1(f ;R),
w′ ∈ Kj(f ;R). Therefore

ζL1 ∧ z = ζL1 ∧ e0 ∧ w + ζL1 . ∧ w′. (4.18)

Since ζL1 ∧ w′ is the wedge product of r + 1 elements containing only e1, . . . , er,

ζL1 ∧ w′ = 0. (4.19)

The product ζL1 ∧w is the product of a cycle of degree j − 1 with (r+ 1− j) values of ζ. Hence
it gives an element in K(a, f ,Φ). Therefore

K(a, (f0, f),M) ⊆ K(a, f ,Φ). (4.20)

For the converse, let w ∈ Zj(f ;R). By Lemma 4.13, there exists w′ ∈ Kj+1(f ;R) such that

e0 ∧ w + w′ ∈ Zj+1(a, (f0, f);R). (4.21)

Let L1 ⊆ {1, . . . , s} with |L1| = r − j. We have that e0 ∧ ζL1 ∧ w = ζL1 ∧ (e0 ∧ w + w′). This
shows that ζL1 ∧ w ∈ K(a, (f0, f),M). 2

We are now ready to prove the last part of the independence.

Proposition 4.15. The disguised residual intersection does not depend on the choice of
generators of I.

Proof. Let (f1, . . . , fr) = (f), (f ′1, . . . , f
′
t) = (f ′) be two sets of generators of I, (a1, . . . , as) = (a)

a generating set for a, Φ and Φ′ matrices such that (a) = (f) · Φ and (a′) = (f ′) · Φ′. By using
repeatedly Lemma 4.14, we have that

M =

[
0
Φ

]
(4.22)

satisfies (a) = (f ′, f) · M , and K(a, f ,Φ) = K(a, (f ′, f),M). Now, by Proposition 4.11,
K(a, (f ′, f),M) = K(a, (f ′, f),M ′) where

M ′ =

[
Φ′

0

]
. (4.23)

Again, repeated applications of Lemma 4.14 gives us K(a, (f ′, f),M ′) = K(a, f ′,Φ′). 2
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Now that we know the disguised residual intersection does not depend on any choice of
generators or matrix Φ, we introduce the following notation.

Definition 4.16. Let R be a commutative ring and a ⊆ I be two finitely generated ideals. We
denote the disguised residual intersection, K(a, f ,Φ), defined in Definition 4.5 by Kitt(a, I).

This notation reminds that the disguised residual intersections are Koszul–Fitting ideals,
based on Theorem 4.9.

Lemmas 4.13 and 4.14 provides some unexpected results about the codimension of the colon
ideals and at the same time on the structure of the common annihilators of Koszul homologies.
Both of these topics were mentioned as desirable in the works [CHKV06] and [Ulr92].

Corollary 4.17. Let R be a commutative ring, I = (f1, . . . , fr) an ideal and

a = (a1, . . . , as) ⊆ I.

Then Kitt(a, I) = Kitt(a, I ′) for any ideal I ′ satisfying

I ⊆ I ′ ⊆
r⋂

max{0,r−s}

AnnHi(f ;R).

In particular, if ht(I) = ht(I ′) (for instance when R is Cohen–Macaulay), then (a : I) being an
s-residual intersection implies that (a : I ′) is an s-residual intersection.

Proof. Let (f ′1, . . . , f
′
t) be a generating set for I ′. The proof of Proposition 4.15 is applicable:

it relies on of Lemma 4.14, which works for elements f0 ∈
⋂r

max{0,r−s}AnnHi(f , R). Therefore

Kitt(a, I) = Kitt(a, I ′). The second part of the statement follows from Theorem 4.6, stating that
these ideals have the same radical and [Hun85, Remark 1.5]. 2

Remark 4.18. Although, in the above propositions, we have shown that the structure of the
disguised residual intersection K = H0(0Z+

• ) is independent of the choice of generators,
the other homologies of 0Z+

• are not independent of the choice of generators in general; see
[HN16, Theorem 4.4].

4.4 Properties of Kitt ideals
In this section we exhibit some basic properties of the Kitt ideals (disguised residual
intersections), based on structure Theorem 4.9.

Proposition 4.19. Let R be a commutative ring and keep the same notation as in Theorem 4.9;
we have

〈Γ• · 〈Z1(f ;R)〉〉r = Fitt0(I/a).

In particular, if the algebra of Koszul cycles of the Koszul complex K•(f ;R) is generated by
cycles of degree one, then Kitt(a, I) = Fitt0(I/a).

Proof. Let Φ be an r× s matrix for which (a) = (f) ·Φ and Ψ = (bij) be a syzygy matrix for the
sequence (f) which has r rows. Then Z1 = Z1(f ;R) is generated by the elements zi =

∑r
i=1 bijei.

Therefore, 〈Γ• · 〈Z1(f ;R)〉〉r is obtained by taking all the products of the form

ζL1 ∧ zL2 , |L1|+ |L2| = r. (4.24)

2169

https://doi.org/10.1112/S0010437X19007541 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007541


V. Bouça and S. H. Hassanzadeh

By elementary properties of the wedge product, a product as in (4.24) is an r × r minor of the
matrix (Φ|Ψ). This matrix is the representation matrix of I/a as it is obtained by taking
the mapping-cone of the following diagram.

Rt
Ψ // Rr // R // R/I // 0

Rs //

Φ

OO

R //

=

OO

R/a //

OO

0

(4.25)

Thus 〈Γ• · 〈Z1(f ;R)〉〉r = Ir(Φ|Ψ) = Fitt0(I/a). 2

In the next theorem, we prove that the structure of Kitt(a, I) is encrypted on the Koszul
homology algebra of the ideal I. The main part of the proof is the following lemma. We fix some
notation.

Notation 4.20. Let n be an integer and I = {i1, . . . , in} be an ordered set. For any J ⊂ I with
|J | = j, define

sgn(J ⊂ I)

to be the sign of the permutation that put the elements of J on the first j positions.

Notation 4.21. Let Φ = (cij) be a r × s matrix.

(1) Let I ⊂ {1, . . . , r}, J ⊂ {1, . . . , s} be two ordered subsets. Define

ΦJ
I

to be the submatrix with rows indexed by I and columns indexed by J . If I = {1, . . . , r} we
suppress the subscript and write

ΦJ .

We use an analogous notation if J = {1, . . . , s}.
(2) Let I ⊂ {1, . . . , r}, J1, J2 ⊂ {1, . . . , s} be three ordered subsets. Define

ΦJ1,J2
I

to be the submatrix with rows indexed by I, the first columns indexed by J1 and the last columns
indexed by J2.

Lemma 4.22. Let R be a commutative ring and keep the same notation as in Theorem 4.9; let
B•(f ;R) be the ideal of Koszul boundaries. Then

〈Γ• ·B•〉r = a.

Proof. In the Koszul complex K•(f ;R), the module of boundaries of degree k is generated by
elements of the form ∂(eL2) where |L2| = k + 1. For any L1 ⊆ {1, . . . , s} with |L1| = r − k, we
have

ζL1∧∂(eL2) = ζL1∧
(∑
j∈L2

sgn({j} ⊆ L2)fjeL2\{j}

)
=
∑
j∈L2

(sgn({j} ⊆ L2)fjζL1∧eL2\{j}). (4.26)
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According to Lemma 4.8, the above equation (4.26) can be written as∑
j∈L2

sgn({j} ⊆ L2) sgn(L2 \ {j} ⊆ L) det ΦI
L\(L2\{j})fj . (4.27)

If we rearrange every determinant in a way such that the jth row becomes the first one, (4.27)
becomes∑

j∈L2

sgn({j} ⊆ L2) sgn(L2 \ {j} ⊆ L) sgn({j} ⊆ L \ (L2 \ {j})) det ΦL1

{j},L\L2
fj . (4.28)

One can verify that sgn({j} ⊆ L2) sgn(L2 \ {j} ⊆ L) sgn({j} ⊆ L \ (L2 \ {j})) does not depend
on j ∈ L2. Thus we can ignore this sign and take

ζL1 ∧ ∂(eL2) =
∑
j∈L2

det ΦL1

{j},L\L2
fj . (4.29)

If j /∈ L2, then det ΦL1

{j},L\L2
= 0, since ΦL1

{j},L\L2
has a repeated row. Therefore (4.29) is equal to

r∑
j=1

det ΦL1

{j},L\L2
fj . (4.30)

Now, we expand every determinant in this sum over the first row. Looking at each summand
separately, we have

det ΦL1

{j},L\L2
fj =

∑
i∈L1

sgn({i} ⊂ L1) det Φ
L1\{i}
L\L2

. cjifj . (4.31)

Summing over all j, we get

ζL1 ∧ ∂(eL2) =
∑
i∈L1

sgn({i} ⊂ L1) det Φ
L1\{i}
L\L2

ai. (4.32)

This shows that 〈Γ• ·B•〉r ⊆ a.
As to the other inclusion, we consider the last boundary given by

∂(e1 ∧ · · · ∧ er) =
r∑
i=1

(−1)i+1fie1 ∧ · · · êi · · · ∧ er =: z. (4.33)

Then, for any 1 6 j 6 s, we have

ζj ∧ z =

r∑
i=1

cijfi = aj . (4.34)

2

Theorem 4.23. Let R be a commutative ring and keep the same notation as in Theorem 4.9
with g = grade(I). Let H̃• be the sub-algebra of K•(f ;R) generated by the representatives of
Koszul homologies. Then

Kitt(a, I) = a + 〈Γ• · H̃•〉r = a +

r−g∑
i=max{0,r−s}

Γr−i · H̃i.

In particular Kitt(a, I) is generated by at most s+
∑r−g

i=max{0,r−s}
(
s
r−i
)
µ(Hi(f)) elements.
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Proof. According to Theorem 4.9, Kitt(a, I) = 〈Γ• · Z•〉r. Since Z• = B• + H̃•, we have

Kitt(a, I) = 〈Γ• ·B•〉r + 〈Γ• · H̃•〉r. By Lemma 4.22, 〈Γ• ·B•〉r = a which yields the result. 2

Remark 4.24. The fact that a ⊆ Kitt(a, I) is not clear from the definition. Hence, concerning

the inclusions

Fitt0(I/a) ⊆ Kitt(a, I) ⊆ (a : I),

Kitt(a, I) is closer to (a : I) than Fitt0(I/a). Combining Theorem 4.23 with Proposition 4.19,

one has that if an ideal I = (f) in a commutative ring R is such that the algebra of Koszul cycles

of the Koszul complex K•(f ;R) is generated by cycles of degree one, then for any ideal a ⊆ I,

a ⊆ Fitt0(I/a).

Another importance of Theorem 4.23 is that it connects the DG-algebra structure of

Koszul homologies of I to any colon ideal a : I. Even in the extremal cases where I is

complete intersection or an almost complete intersection this theorem provides highly non-trivial

information about the structure of J = a : I.

Corollary 4.25. Let R be a commutative ring and I = (f1, . . . , fr) = (f) be an ideal such that

the Koszul homology algebra H•(f ;R) is generated by elements of degree one. Then, for any

finitely generated ideal a ⊆ I, one has Kitt(a, I) = Fitt0(I/a) + a. In particular, this is the case

when (f1, . . . , fr) is an almost regular sequence (grade of I is r − 1).

If (f1, . . . , fr) is a regular sequence then Kitt(a, I) = Ir(Φ) + a where Φ is an r × s matrix

satisfying a = f · Φ.

Proof. Just notice that in the case of complete intersection, H̃• in Theorem 4.23 is concentrated

in degree zero, that is H̃• = R; hence

〈Γ• · H̃•〉r = 〈Γ• ·R〉r = Ir(Φ). 2

It is clear that the construction of Kitt ideals commutes with localization. The case of

specialization modulo a regular sequence α = (α1, . . . , αg) ⊂ a is more subtle and will be fixed

in the next proposition. The following lemma is necessary for the proof.

Lemma 4.26. Let R be a commutative ring, I = (f1, . . . , fr) = (f). Let f0 ∈ I be a R-regular

element and consider the Koszul complex K• = R〈e0, . . . , er : ∂(ei) = fi〉.Then there is an

isomorphism

Hi(f0, f ;R) → Hi(f ;R/f0)

given by the map

e0 ∧ w + w′ → w̃′,

where w ∈ Zi−1(f ;R), w′ ∈ Ki(f0, f ;R) and ∂(w′) = −f0w.

Proof. The proof is essentially the one of Lemma 4.13; see also [BH98, Proposition 1.6.12(c)]. 2

We now prove the last theorem in this section, showing that the disguised residual intersection

specializes modulo a regular sequence contained in a.
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Theorem 4.27. Let R be a commutative ring a ⊆ I finitely generated ideals and f0 ∈ a an
R-regular element. Then Kitt(a, I)/(f0) = Kitt(a/(f0), I/(f0)).

Proof. First, we notice that f0 ∈ Kitt(a, I) by Theorem 4.23. Also for an element r ∈ R, put r̃
to denote the image of r via the projection homomorphism R → R/(f0).

Fix generators (f1, . . . , fr) of I, (a1, . . . , as) of a, a matrix Φ = (cij) such that (a) = (f) · Φ,

and let ζj =
∑r

i=1 cijei ∈ K1(f1, . . . , fr;R). It is clear that Ĩ = (f̃), ã = (ã) and Φ̃ satisfies

(ã) = (f̃) · Φ̃. Setting ζ̃j =
∑r

i=1 c̃ijei and Γ̃• = (R/(f0))[ζ̃1, . . . , ζ̃s] ⊆ K•(f̃ ;R/(f0)), we have, by
Theorem 4.9,

Kitt

(
a

(f0)
,
I

(f0)

)
= 〈Γ̃• · Z•(f̃ ;R/(f0))〉r. (4.35)

Let z ∈ Zj(f̃ ;R/(f0)), 0 6 j 6 r and L1 ⊆ {1, . . . , s} such that |L1| = r − j. We need to prove

that ζ̃L1 ∧ z is the specialization of some elements in Kitt(a, I). By Lemma 4.26, there is a cycle

c = e0 ∧ w + w′ ∈ Zj(f0, f ;R) such that z = w̃′ in Hj(f̃ ;R/(f0)).
According to Theorem 4.23, it suffices to prove that ζL1 ∧w′ is an element in Kitt(a, I). Since

f0 ∈ a there exist αi ∈ R such that

f0 =
s∑
i=1

αiai. (4.36)

Hence e0 −
∑s

i=1 αiζi ∈ Z1(f0, f ;R). Therefore, Theorem 4.9 implies that

ζL1 ∧
(
e0 −

s∑
i=1

αiζi

)
∧ c ∈ Kitt(a, I).

On the other hand,

ζL1 ∧
(
e0 −

s∑
i=1

αiζi

)
∧ c = ζL1 ∧

(
−w′ ∧ e0 −

s∑
i=1

αiζi ∧ w ∧ e0 −
s∑
i=1

αiζi ∧ w′
)
. (4.37)

On the summands on the right side, we have:
• ζL1 ∧

∑s
i=1 αiζi ∧ w′, which is zero, since it is a wedge product of r + 1 elements involving

only e1, . . . , er;
• ζL1 ∧

∑s
i=1 αiζi ∧ w, which gives us a generator of Kitt(a, I) by Theorem 4.9.

It then follows that ζL1 ∧ w′ is an element in Kitt(a, I) as desired. 2

5. Applications and corollaries

For the first applications of the facts developed in the previous sections, we will present the
following theorem which proves Conjecture 4.7 to a certain extent.

Theorem 5.1. Let R be a Cohen–Macaulay local ring and I be an ideal of height g > 2 which
satisfies the SD1 condition. Then any algebraic s-residual intersection J = a : I coincides with
the disguised residual intersection.

Proof. According to Theorem 4.6(i), K ⊆ J . Hence to prove the equality, without loss of
generality, we may assume that R is a complete Cohen–Macaulay local ring and so possesses a
canonical module. Moreover K = Kitt(a, I) by the structure theorems in § 4.
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Let α = α1, . . . , αg−2 ⊆ a be a regular sequence which is a part of s generators of a. The
R/α-ideal I/α still satisfies the SD1 condition [CNT19, Proposition 4.1] and (a/α : I/α) = J/α
is an (s − g + 2)-residual intersection. Hence [CNT19, Theorem 4.5] (Theorem 4.6(4)) implies
that

Kitt

(
a

α
,
I

α

)
=

(
a

α
:
I

α

)
=
J

α
.

Now by Theorem 4.27, we have

Kitt

(
a

α
,
I

α

)
=

Kitt(a, I)

α

which proves the theorem. 2

Theorem 5.1 has several consequences. Indeed all of the known properties of disguised residual
intersections are the properties of algebraic residual intersections if the ideal I satisfies the
SD1 condition. Among these, there are the Cohen–Macaulayness, the Castelnuovo–Mumford
regularity and the type of algebraic residual intersections.

Corollary 5.2. Let R be a Cohen–Macaulay local ring and let I be an ideal of height g > 2
which satisfies the SD1 condition. Then any algebraic s-residual intersection J = a : I is a
Cohen–Macaulay ideal of height s, it is generated by at most s +

∑r−g
i=max{0,r−s}

(
s
r−i
)
µ(Hi(f))

elements, and it is resolved by the complex 0Z+
• .

We also have the following important property about the behaviors of the Hilbert functions.

Corollary 5.3. Let R be a CM standard graded ring over an Artinian local ring R0. Suppose
that I satisfies the SD1 condition. Then for any s-residual intersection J = (a : I), the Hilbert
function of R/J depends on the ideal I and merely on the degrees of the generators of a.

Proof. The fact has been already proved for disguised residual intersections in [HN16,
Proposition 3.1]. Due to Theorem 5.1 the disguised residual intersection is the same as the
algebraic residual intersection for ideals with SD1. 2

Besides the coincidence of disguised and algebraic residual intersections, we have the structure
of the generators of the disguised residual intersections by Theorem 4.23. This fact leads to some
important classification of residual intersections. We mention one immediate corollary here.

Corollary 5.4. Let R be a Cohen–Macaulay ring and I be a complete intersection ideal
generated by f = f1, . . . , fr. Suppose that J = a : I is an algebraic s-residual intersection of I.
Then J = Ir(Φ) + a where Φ is an r × s matrix satisfying a = f · Φ.

Proof. Complete intersections are obviously SD1, so we have J = Kitt(a, I) by Theorem 5.1, and
one may localize R as needed. The result now follows from Corollary 4.25. 2

This corollary provides generalizations to [BKM90, Theorem 4.8] and [HU88, Theorem 5.9(i)].
The former works for geometric residual intersections and the latter needs R to be a Gorenstein
domain; the proof of the latter in turn appeals to a result of Deconcini and Strickland [DS81] to
determine the structure of residual intersection ideal J .

As far as we know, there is no structural result as above for residual intersections of almost
complete intersections. We have the following.
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Corollary 5.5. Let R be a Cohen–Macaulay local ring and let I be an almost complete
intersection ideal which is Cohen–Macaulay. Let J = a : I be an algebraic s-residual intersection
of I. Then J = Fitt0(I/a) + a.

Proof. Since almost complete intersection CM ideals are SCM, this is another consequence of
Theorem 5.1 and Corollary 4.25. 2

The DG-algebra structure of I has some non-trivial impacts on the structure of residual
intersections. For instance we have the following.

Corollary 5.6. Let R be a Cohen–Macaulay local ring and let I be a perfect ideal of height
2. Let J = a : I be an algebraic s-residual intersection of I. Then J = Fitt0(I/a).

Proof. A result of Avramov and Herzog [AH80, Proof of Theorem 2.1(e)] shows that for perfect
ideals of height 2 the algebra of cycles of Koszul is generated in degree one. Hence the result
follows from Theorem 5.1 and Proposition 4.19. 2

There are other ways to prove the above result, see for example [Hun83, KU92] or [CEU01,
Theorem 1.1].

We can also study the common annihilator of Koszul homologies using Corollary 4.17 without
any presence of sliding depth hypotheses.

Corollary 5.7. Let R be a Cohen–Macaulay local ring and a ⊆ I = (f1, . . . , fr) = (f) ideals
of R. Let J = a : I be an s-residual intersection of I. Suppose in addition that either a is NOT
generated by an analytic independent set of generators or else ht(J) > s+ 1. Then

r⋂
max{0,r−s}

AnnHi(f ;R) ⊆ ā

where ā is the integral closure of a.

Proof. The proof is a consequence of Corollary 4.17 applied to a nice result of Huneke and(or)
Ulrich [Ulr92, Proposition 3]. 2

Although the SD1 condition appears in the Theorem 5.1 and hence we need it in all of the
corollaries, it is not in an essential way. If one can show that the disguised residual intersection
and the algebraic residual intersection coincide for any nice class of ideals of small height, then
the techniques above will provide equality Kitt(a, I) = (a : I) quite generally. However, sliding
depth conditions are necessary if one seeks Cohen–Macaulay residual intersections [Ulr94]. On
the other hand, we conjecture that to prove Kitt(a, I) = (a : I) one can totally forget it.

Conjecture 5.8. Let R be a Cohen–Macaulay ring then Kitt(a, I) = (a : I) whenever J = a : I
is an algebraic s-residual intersection.

By the way one may not expect that Kitt(a, I) = (a : I) for any pair of ideals a and I.

Example 5.9. Let R = Z3[x, y, z, t], I = (x2, y2, xy, xt − yz) and a = (x4, y4, x2y2). Then J =
a : I has height 2 so that it is not a 3-residual intersection. One can check that the Koszul
homology algebra of I is generated in degree one; so Kitt(a, I) = a+Fitt0(I/a) by Corollary 4.25.
A Macaulay verification shows that Kitt(a, I) 6= J .
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In the following proposition, we prove Conjecture 5.8 in the case where s 6 g + 1.

Proposition 5.10. Let R be a Cohen–Macaulay ring, I ⊂R an ideal with ht(I) = g and J = a : I
an s-residual intersection. If s 6 g + 1 then Kitt(a : I) = J .

Proof. Let a1, . . . , as be a set of generators of a. By Proposition 4.12, we can suppose that
a1, . . . , ag is a regular sequence. By Theorem 5.1, we can mod out this regular sequence and
hence we may and do suppose that g = ht(I) = 0. Let f1, . . . , fr be a set of generators of I
and let K• = R〈e1, . . . , er; ∂(ei) = fi〉 be the Koszul complex of f .

If s = 0, then a = 0 and we must show that Kitt((0), I) = (0 : I). In this case, Γ• = R and
we have

Kitt(a, I) = Γ0 · Zr(f ;R) = R · (0 : I) = (0 : I) = J.

If s = 1, then by Proposition 4.15 we may suppose that a = (f1). In this case, Γ• = R⊕R ·e1

and then
Kitt(a, I) = Γ0 · Zr(f ;R) + Γ1 · Zr−1.

Write êi for e1 ∧ · · · ∧ êi ∧ · · · ∧ er. Then c =
∑r

i=1 a
′
iêi ∈ Zr−1(f ;R) if and only if

I2

[
a′1 a′2 · · · a′r
f1 f2 · · · fr

]
= 0.

Moreover the element of Kitt(a, I) produced by c is e1 ∧ c = a′1. Let α ∈ J . To show that
α ∈ Kitt(a, I), one needs to show that there are α2, . . . , αr ∈ R such that

I2

[
α α2 · · · αn
f1 f2 · · · fr

]
= 0. (5.1)

Since α ∈ J = (f1) : I, there are α2, . . . , αr such that

αfi = αif1. (5.2)

If one shows that αifj = αjfi for i, j > 2, then (α1, . . . , αr) satisfies (5.1); hence
α ∈ Kitt(a, I). If we suppose in addition that α is R-regular. Then the desired equality is
equivalent to

αifjα = αjfiα, (5.3)

which holds, due to (5.2).
Thence any R-regular element in J belongs to Kitt(a, I). Now, let β ∈ J be an arbitrary

element. Since J is a 1-residual intersection, ht(J) > 1. Since R is Cohen–Macaulay, grade(J) > 1.
Therefore there exists α ∈ J which is R-regular. Let αi, 2 6 i 6 r satisfy (5.1). Let β2, . . . , βr be
such that

βfi = βif1. (5.4)

The equations (5.2) and (5.4) imply that

(α+ β)fi = f1(αi + βi). (5.5)

By applying (5.1), we have

fi(αj + βj)− fj(αi + βi) = (fiαj − fjαi) + (fiβj − βjfi) = fiβj − βjfi. (5.6)

According to (5.5), (fi(αj + βj) − fj(αi + βi))(α + β) = 0. This in conjunction with (5.6)
implies that

(fiβj − βjfi)(α+ β) = 0. (5.7)
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Equation (5.4) implies that
(fiβj − βjfi)(β) = 0. (5.8)

Subtracting the last two equations we get

(fiβj − βjfi)(α) = 0,

which implies, by the regularity of α, that

fiβj − βjfi = 0. (5.9)

Therefore

I2

[
β β2 · · · βr
f1 f2 · · · fr

]
= 0

which implies that β ∈ Kitt(a, I). 2

Remark 5.11. One can see from the proof of Proposition 5.10 that the Cohen–Macaulay
assumption on R is only needed to guarantee the existence of a regular sequence in J . In other
words, if one replaces ht(J) > s with grade(J) > s, in the definition of residual intersection,
Definition 4.1, the result of Proposition 5.10 holds for any Noetherian ring.

Even the case where s = g, the above result for J = a : I is more general than the
known linkage theory, as here R is not Gorenstein and I is not unmixed, necessarily. However,
Proposition 5.10 determines the set of generators of J = a : I.

Another important aspect of Conjecture 5.8 or Theorem 5.1 and Proposition 5.10 is
that, from the structure of colon ideal, J = a : I, it is not clear that J can be specialized,
particularly from a generic choice of a to a general choice of a. However Kitt(a, I) = 〈Γ• · Z•〉r
specializes naturally.

One can also detect Cohen–Macaulay residual intersections under very slight conditions.

Proposition 5.12. Let R be a Cohen–Macaulay local ring of dimension d, I ⊂ R an ideal with
ht(I) = g and J = a : I an s-residual intersection with s 6 g + 1. Then 0Z+

• resolves R/J .
More precisely, let I = (f1, . . . , fr), Zi = Zi(f , R) the Koszul cycles and Z+

j mean a direct
sum of copies of Koszul cycles Zi for i > j. Then we have the following.

(1) If s = g, there exists an exact complex 0 → Fg → · · · → F2 → Z+
r−g → R → R/J → 0

wherein the Fi are free R-modules.

(2) If s = g + 1, there exists an exact complex 0 → Fg+1 → · · ·→ F3 → Z+
r−g → Z+

r−g−1 →

R → R/J → 0 wherein the Fi are free R-modules.

In particular we have the following.
• If s = g, then R/J is Cohen–Macaulay if and only if depth(Zr−g) > d− g + 1. In this case

depth(Zr−g) = d− g + 1.
• If s = g+ 1, then R/J is Cohen–Macaulay if depth(Zr−g) > d− g+ 1 and depth(Zr−g−1) >
d− g.

Proof. Parts (1) and (2) follow from the construction of Z ′• complex in [Has12, p. 6375] and
[Has12, Corollary 2.9(c)]. The statements about the Cohen–Macaulay property follow from a
usual diagram chasing (or spectral sequence) applying to the complexes in the first part. We
notice that one cannot deduce these Cohen–Macaulay properties by appealing to the standard
sequence 0 → Br−g → Zr−g → Hr−g → 0. 2
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Ulrich [Ulr94] defines the Artin–Nagata property, ANs, for the ideal I in a Cohen–Macaulay
ring R, if every i-residual intersection of I is Cohen–Macaulay for any i 6 s. As a consequence
of Conjecture 4.7, [Has12, Theorem 2.11] implies that ANs is equivalent to the SDC1 condition
at level min{s− g, r − g}, Definition 4.3. Nevertheless, we have the following corollary.

Corollary 5.13. Let R be a Cohen–Macaulay local ring of dimension d, I ⊂ R an ideal
generated by r elements with ht(I) = g and g 6 s 6 g + 1. Then the following are equivalent:

(i) I satisfies ANs;

(ii) for any i 6 s there exists an i-residual intersection of I which is Cohen–Macaulay;

(iii) I satisfies the SDC1 condition at level min{s− g, r − g}.

Proof. The implication (i) ⇒ (ii) holds trivially. The implication (iii) ⇒ (ii) also holds,
according to Proposition 5.10 and [Has12, Theorem 2.11]. For (ii)⇒ (iii), we use the resolutions
in Proposition 5.12. Since, by hypothesis, a Cohen–Macaulay g-residual intersection exists,
Proposition 5.12(1) implies that depth(Zr−g) > d− g + 1. Now having depth(Zr−g) > d− g + 1
and depth(R/J) > d− g − 1, Proposition 5.12(2) implies that depth(Zr−g−1) > d− g. 2
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