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Abstract
In this paper, we report the spatiotemporal dynamics of an intraguild predation (IGP)-type predator–prey model
incorporating harvesting and prey-taxis. We first discuss the local and global existence of the classical solutions
in N-dimensional space. It is found that the model has a global classical solution when controlling the prey-taxis
coefficient in a certain range. Thereafter, we focus on the existence of the steady-state bifurcation. Moreover, we the-
oretically investigate the properties of the bifurcating solution near the steady-state bifurcation critical threshold. As
a consequence, the spatial pattern formation of this model can be theoretically confirmed. Importantly, by means of
rigorous theoretical derivation, we provide discriminant criteria on the stability of the bifurcating solution. Finally,
the complicated patterns are numerically displayed. It is demonstrated that the harvesting and prey-taxis signifi-
cantly affect the pattern formation of this IGP-type predator–prey model. Our main results of this paper reveal that
(i) The repulsive prey-taxis could destabilize the spatial homogeneity, while the attractive prey-taxis effect and self-
diffusion will stabilize the spatial homogeneity of this model. (ii) Numerical results suggest that over-harvesting for
prey or predators is not advisable, it can lead to an ecological imbalance due to a significant reduction in population
numbers. However, harvesting within a certain range is a feasible approach.

1. Introduction

Intraguild predation (IGP) is ubiquitous in the natural environment, and it describes an interaction in
which two or more species compete for shared resources and consume each other. Typically, prey pro-
motes the growth of predator density due to the consumption of prey by predators. However, the impact
of prey on predators resulting from competition for the same resource is rarely considered in some exist-
ing literature, see Refs. [7, 11, 16, 28]. As a consequence, there is interest in studying the dynamics of the
predator–prey model with IG prey and IG predators. In fact, some scholars have devoted great attention to
the dynamics of IGP-type predator–prey models. Ji et al. [19] investigated the well-posedness, properties
of the solution semiflow, and spatiotemporal dynamics of a three-dimensional IGP-type predator–prey
model with homogeneous Neumann boundary conditions. By employing a delayed IGP model, Shu
et al. [34] demonstrated that delays could induce the stability switch, multitype bistability, and chaos
phenomena. Blé et al. [4] reported on the Hopf and Bautin bifurcations of an intraguild predation model
with general functional responses for the predators and a significantly growing rate functions for the
prey. The longtime behavior of solutions, the existence of biologically meaningful equilibria, and the
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linear and nonlinear stability of equilibria in an intraguild predator–prey model with a Holling type II
functional response were investigated by Capone et al. in [5]. Please refer to Refs. [18, 29, 30, 31] for
more experimental and theoretical results regarding IGP-type predator–prey models.

In this paper, we investigate the following IGP-type predator–prey model incorporating prey-taxis
and linear harvesting:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂t
= d1�P − ∇ · (ξφ(P)∇Q) + P

(
bc

cP + eQ
+ dQ − α

)
, x ∈ �, t > 0,

∂Q

∂t
= d2�Q + Q

(
be

cP + eQ
− dP − β

)
− hQ, x ∈ �, t > 0,

∂P

∂ν
= ∂Q

∂ν
= 0, x ∈ ∂�, t ≥ 0,

P(x, 0) = P0(x) ≥ 0, Q(x, 0) = Q0(x) ≥ 0, x ∈ �,

(1)

where P = P(x, t) and Q = Q(x, t) are the densities of the IG predator and IG prey at spatial location
x and time t, respectively. The domain � ⊂R

N is a bounded region with N ≥ 1, ν is the outward unit
normal vector along the smooth ∂�, and � is the Laplacian operator. The parameters d1 and d2 describe
the movement speeds of the predator P and prey Q, respectively. The terms c

cP+eQ
and e

cP+eQ
represent

the per capita share of resources accruing to the predator P and prey Q, respectively. The parameter b
measures the consumption of the resources by predator and prey, while α and β are the natural death
rates of the predator P and prey Q, respectively. The term −hQ explains the linear harvesting of the Q
species with the harvesting constant h. Furthermore, the term −∇ · (ξφ(P)∇Q) represents the prey-taxis
with the sensitivity coefficient ξ . This means that the predator species P moves toward higher gradient
directions of prey species Q. The prey-taxis can be attractive or repulsive when ξ > 0 or ξ < 0, respec-
tively. φ(P) is a density functions related to population P. This density function can take different forms.
For instance, linear form: φ(P) = P, saturated form: φ(P) = P

1+εPm with ε > 0 and m ≥ 1, Ricker form:
φ(P) = Pe−εP with ε > 0, monotonic non-increasing form: φ(P) = 1

1+P
(or φ(P) = 1

(1+P)2 ), among others.
The parameters b, e, c, d, h, α, β, d1, d2 are positive constants and prey-taxis sensitivity parameter ξ > 0
or ξ < 0 for its different biological meanings. We would like to mention that the prey-taxis term in the
model (1) is similar to the chemotaxis term in some population models, see the references [21, 22, 32],
for instance. When the prey-taxis coefficient ξ = 0 and the harvesting constant h = 0, the model (1)
degenerates into the classical IGP model, which was proposed by Holt and Polis in [14]. There are
recent works focused on the dynamics of the IGP-type predator–prey model (1) with ξ = 0 or h = 0. Ma
et al. [25] reported spatiotemporal patterns in the model with delay and cross-fractional diffusion, show-
ing that cross-fractional diffusion can induce Turing pattern formation. If choosing the density function
φ(P) = P and the harvesting constant h = 0, Wang and Wang [35] showed the boundedness of classical
solutions and the global stability of the positive equilibrium. The existence of global-in-time solutions
and the Hopf bifurcation of the model with Schoener’s kinetic and indirect taxis have been reported by
Mishra and Wrzosek in [26].

Let us state our tasks in this paper about the IGP-type predator–prey model (1). The first aim of
this paper is to explore the solution profiles of the model (1). To be more specific, we want to study
the local and global existence of the classical solution (P(x, t), Q(x, t)) in an N-dimensional space. We
can show that the IGP-type predator–prey model (1) admits a unique non-negative local-in-time classical
solution (P(x, t), Q(x, t)) ∈ [C([0, Tmax); W1,p(�)) ∩ C2,1(� × (0, Tmax))]2, with its maximal existence time
Tmax by virtue of the Amann’s theorem [2]. The global existence of the classical solution (P(x, t), Q(x, t))
for the IGP-type predator–prey model (1) can be obtained by using estimates and the Neumann heat
semigroup theory [13, 37]. Here, we can explain that the prey-taxis sensitivity coefficient ξ can govern
the global existence of the classical solution (P(x, t), Q(x, t)). Our theoretical results show that if 0 < ξ ≤

d1d2
3c0(2+N)C1(d1+d2)

, where C1 = max
{
‖Q0(x)‖L∞(�), b

h+β

}
is valid, then the IGP-type predator–prey model

(1) possesses a unique non-negative global classical solution (P(x, t), Q(x, t)) ∈ [C([0, ∞); W1,p(�)) ∩
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C2,1(� × (0, ∞))]2 and ‖P(·, t)‖L∞(�) + ‖Q(·, t)‖L∞(�) ≤ M, where M is a positive constant dependents
on P0(x) and Q0(x) for P0(x), Q0(x) ≥ 0( �≡ 0).

Using bifurcation theory, the exploration of spatiotemporal pattern formation in ecological models
is still a hot research area. Consequently, our next task is to explore the existence of steady-state bifur-
cation and the stability of the bifurcating solutions for the spatial local system of the system (1) when
� = (0, Lπ ). This is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d1�P − ∇ · (ξφ(P)∇Q) + P

(
bc

cP + eQ
+ dQ − α

)
= 0, x ∈ �,

d2�Q + Q

(
be

cP + eQ
− dP − β

)
− hQ = 0, x ∈ �,

∂P

∂ν
= ∂Q

∂ν
= 0, x ∈ ∂�.

(2)

One difficulty is how to determine the stability of these bifurcating solutions of the system (2). Typically,
scholars have adopted some existing techniques to investigate the stability of the bifurcating solutions.
For instance, they use weakly nonlinear analysis method (or multiple time scale) [27, 3] and normal
form theory [20, 12]. In these approaches, the authors derived the amplitude equations and normal
forms so that the stability of the bifurcating solution can be established. In contrast to the previously
mentioned technique, we will apply the Crandall–Rabinowitz local bifurcation theory [6, 8, 9, 33, 36]
to demonstrate the existence and stability of the bifurcating solution (i.e., the nonconstant steady state)
around the threshold of the steady-state bifurcation. By choosing the prey-taxis sensitivity coefficient
ξ as the steadystate bifurcation parameter, we can theoretically demonstrate that the repulsive prey-
taxis (ξ < 0) could destabilize the spatial homogeneity of this IGP-type predator–prey model, while the
attractive prey-taxis (ξ > 0) effect will stabilize the spatial homogeneity. Naturally, we conduct extensive
numerical simulations to confirm our theoretical results by choosing different density functions φ(P).
For example, considering linear form φ(P) = P, saturated form φ(P) = P

1+P
, and the Ricker form φ(P) =

Pe−P, we can observe the pattern formations in 1D and 2D domains, and on spherical and torus surfaces.
We also investigate the influence of the harvesting effects on pattern formation. It is shown that extensive
harvesting of IG prey will lead to the disappearance of spatial patterns. This phenomenon reminds us
that over-harvesting for prey or predators is not advisable because of the drastic reduction in population
numbers from the point of view of ecology.

In this paper, we require (P0(x), Q0(x)) and the density function φ(P) to fulfill the following.

(H1) (P0(x), Q0(x)) ∈ [W1,p(�)]2 with p > N and P0(x), Q0(x) ≥ 0 ( �≡ 0).
(H2) There is a c0 such that φ(P) ≤ c0P for ∀P ≥ 0 and x ∈ �, where φ:[0, ∞) → [0, ∞) is continuously

differentiable and φ(0) = 0. Moreover, we suppose that
(H3) β+h

ed
< b

eα−c(β+h)
< α

cd
.

Now we can release our main results of this article. The first result is concerned with the global
existence of the classical solution (P(x, t), Q(x, t)) of the system (1) with the assumptions (H1) and (H2).

Theorem 1.1. (Global existence of the classical solution) Suppose � ⊂R
N with the smooth boundary

∂� and the initial conditions (P0(x), Q0(x)) ∈ [W1,p(�)]2 with p > N and P0(x) ≥ 0, Q0(x) ≥ 0 for x ∈ �.
If

0 < ξ ≤ d1d2

3c0(2 + N)C1(d1 + d2)
,

where C1 = max
{
‖Q0(x)‖L∞(�), b

h+β

}
, then system (1) enjoys a unique global solution (P(x, t), Q(x, t)) ∈

[C([0, ∞); W1,p(�)) ∩ C2,1(� × (0, ∞))]2 and

‖P(·, t)‖L∞(�) + ‖Q(·, t)‖L∞(�) ≤ M,

where M is a positive constant depending on P0(x) and Q0(x) for P0(x), Q0(x) ≥ 0( �≡ 0).
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Remark 1.1. Theorem 1.1 shows the global existence of the classical solutions when the prey-taxis
is attractive-type. We shall point out that a similar result could also be obtained as the prey-taxis is
repulsive-type in (1).

Our following goal is to explore the existence and stability of the bifurcating solution induced by
the steady state bifurcation. We need to mention that if the spatial dimension is high, namely, N ≥ 2,
the analysis of bifurcation is very difficult, especially to discuss the stability criterion of the bifurcating
solution. Therefore, to finish our goal, we restrict N = 1 and choose � = (0, Lπ ) with L > 0.

If the assumption (H3) is true and fix � = (0, Lπ ) with L > 0, then system (1) has a unique positive
equilibrium E∗ = (P∗, Q∗) =

(
be

eα−c(β+h)
− β+h

d
, α

d
− bc

eα−c(β+h)

)
. Define

ξ S
k = d1d2δ

4
k − (fPd2 + gQd1)δ2

k + d2P∗Q∗
φ(P∗)gPδ

2
k

< 0, k ∈N0 = {0, 1, 2, · · ·}, (3)

where δk = k
L
> 0 and fP = − bc2P∗

(cP∗+eQ∗)2 , gP = −dQ∗ − bceQ∗
(cP∗+eQ∗)2 , gQ = − be2Q∗

(cP∗+eQ∗)2 . Also, if there is a k0 ∈
N0\{0} satisfying

k0 =
⎧⎨⎩
[
k̂0

]
+ 1, if ξ S

[k̂0]
≤ ξ S

[k̂0]+1
,[

k̂0

]
, if ξ S

[k̂0]
> ξ S

[k̂0]+1

with k̂0 = L

√
d
√

P∗Q∗
d1d2

, then ξ S
k has its maximum ξ S

k0
at k = k0, where [ · ] is the integer function.

In this fashion, we can establish the stability result of the constant steady state E∗.

Theorem 1.2. (Local stability of the constant steady state E∗) Suppose that (H2)–(H3) are satisfied and
take � = (0, Lπ ) with L > 0.

(i) If ξ ≥ 0, E∗ is locally asymptotically stable;
(ii) If ξ = ξ S

k , then system (1) suffers from the steady-state bifurcation. Moreover, E∗ is locally
asymptotically stable as ξ S

k < ξ < 0 and it becomes unstable when ξ < ξ S
k < 0;

(iii) If 0 < ξ 2 < 4d1d2Q∗
c2

0P∗C2
1

, then E∗ is globally asymptotically stable.

Remark 1.2. Clearly, if k = k0, then system (1) will undergo the steady-state bifurcation at the threshold
ξ = ξ S

k0
. We will later discuss the existence and stability of the nonconstant steady state (bifurcating

solution) at this onset.

Remark 1.3. From (i)–(ii) of Theorem 1.2, we infer that the repulsive prey-taxis (i.e., ξ < 0) could
destabilize the spatial homogeneity of the IGP predator–prey model (1). On the contrary, the attractive
prey-taxis effect (i.e., ξ > 0) and self-diffusion (i.e., ξ = 0) will stabilize the spatial homogeneity.

Our third result implies that system (2) exhibits nonconstant steady state around (P∗, Q∗, ξ S
k ) for k ∈

N0\{0} in X = {u ∈ H2(0, Lπ )|u′(0) = u′(Lπ ) = 0}. To do so, define

F(P, Q, ξ ) =

⎛⎜⎜⎝ (d1P′ − ξφ(P)Q′)′ + P

(
bc

cP + eQ
+ dQ − α

)
d2Q′′ + Q

(
be

cP + eQ
− dP − β

)
− hQ

⎞⎟⎟⎠ (4)

and the Fréchet derivative D(P,Q)F(P̆, Q̆, ξ )(P, Q) of the operator F(P, Q, ξ ). Then, for any (P̆, Q̆, ξ ) ∈
X × X ×R, we deduce
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D(P,Q)F(P̆, Q̆, ξ )(P, Q) (5)

=

⎛⎜⎜⎝
d1P′′ − ξ (φ ′(P̆)PQ̆′ + φ(P̆)Q′)′ +

[
bceQ̆

(cP̆+eQ̆)2 + dQ̆ − α
]

P +
[
dP̆ − bceP̆

(cP̆+eQ̆)2

]
Q

d2Q′′ −
[

dQ̆ + bceQ̆

(cP̆ + eQ̆)2

]
P +

[
bceP̆

(cP̆ + eQ̆)2
− dP̆ − β − h

]
Q

⎞⎟⎟⎠ .

Let (P̆, Q̆, ξ ) = (P∗, Q∗, ξ ), we obtain

D(P,Q)F(P∗, Q∗, ξ )(P, Q) (6)

=

⎛⎜⎜⎜⎝
d1P′′ − ξ (φ(P∗)Q′)′ +

[
bceQ∗

(cP∗+eQ∗)2 + dQ∗ − α
]

P +
[
dP∗ − bceP∗

(cP∗+eQ∗)2

]
Q

d2Q′′ −
[

dQ∗ + bceQ∗
(cP∗ + eQ∗)2

]
P +

[
bceP∗

(cP∗ + eQ∗)2
− dP∗ − β − h

]
Q

⎞⎟⎟⎟⎠

=
⎛⎜⎝d1P′′ − ξ (φ(P∗)Q′)′ − bc2P∗

(cP∗+eQ∗)2 P +
[
dP∗ − bceP∗

(cP∗+eQ∗)2

]
Q

d2Q′′ −
[

dQ∗ + bceQ∗
(cP∗ + eQ∗)2

]
P − be2Q∗

(cP∗ + eQ∗)2
Q

⎞⎟⎠ .

We can establish the following.

Theorem 1.3. (Existence of the nonconstant steady state) Suppose that (H1)–(H3) are satisfied and
take � = (0, Lπ ) with L > 0, ξ S

j �= ξ S
k for j �= k and k ∈N0 \ {0}, where ξ S

k is given by (3). Then sys-
tem (2) admits a spatially inhomogeneous solution which resulted from (P∗, Q∗) when ξ = ξ S

k for
k ∈N0 \ {0}. Moreover, in the vicinity of the onset (P∗, Q∗, ξ S

k ), there exists a bifurcation branch Sk(ε) =
(Pk(ε, x), Qk(ε, x)) that satisfies{

ξ S
k (ε) = ξ S

k +O(ε),

(Pk(ε, x), Qk(ε, x)) = (P∗, Q∗) + ε(̂Pk, Q̂k) +O(ε)
(7)

for any ε ∈ (−�, �) and � is a small positive constant. Also, (Pk(ε, x), Qk(ε, x)) − (P∗, Q∗) − ε(̂Pk, Q̂k) =
O(ε) ∈K with K is a closed complement of N(D(P,Q)F(P∗, Q∗, ξ )) and it admits

K=
{

(P, Q) ∈ X × X
∣∣∣ ∫ Lπ

0

(PP̂k + QQ̂k)dx = 0

}
, (8)

where N is null space and

P̂k = cos
kx

L
, Q̂k = αkcos

kx

L
(9)

with

αk = −dQ∗(cP∗ + eQ∗)2 + bceQ∗
be2Q∗ + d2δ

2
k (cP∗ + eQ∗)2

< 0, k ∈N0\{0}.

Benefiting form (7) of Theorem 1.3, we can set ξ S
k (ε) = ξ S

k + εξ1 + ε2ξ2 + · · ·, where ξ1 and ξ2 are
undetermined constants. Let ξ S

k0
= maxk∈N0\{0}ξ S

k . Accordingly, our fourth result shows that ξ1 = 0 and
the sign of ξ2 uniquely determines the stability of the bifurcating solution (Pk0 (ε, x), Qk0 (ε, x)) for ε ∈
(−�, �).

Theorem 1.4. (Local stability of the nonconstant steady state) Suppose that the conditions (H1)–
(H3) hold and fix � = (0, Lπ ) with L > 0. Then we can compute the first perturbation term ξ1 = 0 in
ξ S

k (ε). In addition, when k = k0, near (P∗, Q∗, ξ S
k0

), the bifurcating solution Sk0 (ε) = (Pk0 (ε, x), Qk0 (ε, x))
is asymptotically stable when ξ2 < 0 and it is unstable as ξ2 > 0 for ε ∈ (−�, �).
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Remark 1.4. The results presented in Theorem 1.4 show that the stability of the bifurcating solution
(namely, nonconstant steady state) completely depends on the symbol of the second perturbation term
ξ2 in ξ S

k (ε) for ε ∈ (−�, �).

2. Existence and boundedness of classical solution

Lemma 2.1. Suppose that � ⊂R
N with the smooth boundary ∂� and (P0(x), Q0(x)) ∈ [W1,p(�)]2 with

p > N fulfilling P0(x) ≥ 0, Q0(x) ≥ 0 for x ∈ �. Then, we can yield the following.

(i) System (1) enjoys a unique nonnegative classical solution (P(x, t), Q(x, t)) satisfying
(P(x, t), Q(x, t)) ∈ [C([0, Tmax); W1,p(�)) ∩ C2,1(� × (0, Tmax))]2. Also, we have

P(x, t) > 0, Q(x, t) ≤ C1, x ∈ �, t ∈ [0, Tmax) (10)

where C1 = max
{
‖Q0(x)‖L∞(�), b

h+β

}
and Tmax > 0 implies that the maximal existence time.

(ii) There are C2 > 0 and C3 > 0 such that

‖Q(x, t)‖L1(�) ≤ C2, ‖P(x, t)‖L1(�) ≤ C3, t ∈ (0, Tmax),

where

C2 = max
{∫

�

Q0(x)dx,
b|�|
h + β

}
, C3 = max

{∫
�

(P0(x) + Q0(x)) dx,
b|�|

min{α, h + β}
}

.

(iii) If for any T > 0, there exists C(T) such that

sup
0≤t≤T

‖P(x, t), Q(x, t)‖L∞(�) ≤ C(T), 0 < T < min{1, Tmax},

then there holds Tmax = +∞, where C(T) depends on T and ‖P0(x), Q0(x)‖W1,p(�).

Proof. The local-in-time existence of the nonnegative classical solution (P(x, t), Q(x, t)) in (i) can be
confirmed by employing Amann’s theorem [2]. Next, using the P−equation of (1), we obtain⎧⎪⎨⎪⎩

∂P
∂t

= d1�P − ξφ ′(P)∇P∇Q − ξφ(P)�Q + P�(P, Q), x ∈ �, t ∈ (0, Tmax),
∂P
∂ν

= 0, x ∈ ∂�, t ∈ (0, Tmax),

P(x, 0) = P0(x) ≥ 0, x ∈ �,

where �(P, Q) = bc
cP+eQ

+ dQ − α. It follows from the maximum principle that 0 is a lower solution for
the above equation. Thus, it follows that P(x, t) ≥ 0 for all (x, t) ∈ � × (0, Tmax). Using the strong maxi-
mum principle and the initial data P0(x) ≥ 0( �≡ 0), one can claim that P(x, t) > 0 is true. Next, from the
Q−equation of (1), one can derive⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂Q

∂t
− d2�Q ≤ Q

(
b

Q
− β

)
− hQ, x ∈ �, t > 0,

∂Q

∂ν
= 0, x ∈ ∂�, t ≥ 0,

Q(x, 0) = Q0(x) ≥ 0, x ∈ �.

Therefore, the maximum principle gives that Q(x, t) ≤ b
h+β

for any (x, t) ∈ � × (0, Tmax). For (ii),
integrating the Q−equation of (1) over �, we get

d

dt

∫
�

Qdx ≤ b|�| − (h + β)
∫

�

Qdx.

Accordingly, one has ∫
�

Qdx ≤ max
{∫

�

Q0(x)dx,
b|�|
h + β

}
:= C2.
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On the other hand, we can obtain
d

dt

∫
�

(P + Q) dx = b|�| − α

∫
�

Pdx − (h + β)
∫

�

Qdx ≤ b|�| − min{α, (h + β)}
∫

�

(P + Q)dx.

This gives ∫
�

Pdx ≤ max
{∫

�

(P0(x) + Q0(x)) dx,
b|�|

min{α, h + β}
}

:= C3.

Finally, conclusion (iii) can be directly obtained by using Theorem 15.5 in [1]. This ends the proof.

Lemma 2.1 shows the local-in-time existence of the classical solution (P(x, t), Q(x, t)), our fol-
lowing goal is exploring its global existence. To obtain the global existence of the classical solution
(P(x, t), Q(x, t)), we introduce some existing results.

Lemma 2.2. (Lemma 2.6 of [22]) Suppose that z(t) satisfies{
z′(t) ≤ −a1z�(t) + a2z(t) + a3,

z(0) = z0 > 0,

where a1, a2, a3 > 0 and � > 1. Then,
z(t) ≤ max{C4(z0), C5(a1, a2, a3, �)}.

Lemma 2.3. For n > 1, p(x) ≥ 0 and q(x) ≥ 0, the following inequality holds∫
�

pn−1ϕ(q)dx ≤ C6

∫
�

pnϕ(q)dx + C7,

where C6 and C7 are positive constants and ϕ(q) is bounded with respect to q.

Proof. By employing ε−Young inequality, we get∫
�

pn−1ϕ(q)dx ≤ε

∫
�

(pn−1ϕ(q))
n

n−1 dx + Cε|�|

=ε

∫
�

(ϕ(q))
1

n−1 (pnϕ(q))dx + Cε|�| ≤ C6

∫
�

pnϕ(q)dx + C7.

This ends the proof.

Lemma 2.4. (Lemma 2.3 of [22]) Suppose m ∈ {0, 1}, p ∈ [1, ∞), and q ∈ (1, ∞). Then, there is a C8 >

0 such that
‖u‖Wm,p(�) ≤ C8‖(−� + 1)ku‖Lq(�), (11)

for u ∈ D((−� + 1)k) with D((−� + 1)k) = {
ζ ∈ W2,p(�):ζν = 0 over ∂�

}
and k ∈ (0, 1) satisfies

m − N

p
< 2k − N

q
.

In addition, if q ≥ p is satisfied, then C9 > 0 and γ > 0 exist such that

‖(−� + 1)ke−t(−�+1)u‖Lq(�) ≤ C9t−k− N
2 (

1
p − 1

q )e−γ t‖u‖Lq(�), (12)
for u ∈ Lp(�), where the diffusion semigroup {e−t(−�+1)}t≥0 maps Lp(�) into D((−� + 1)k). Moreover,
for any p ∈ (1, ∞) and ε > 0, there are C10 > 0 and μ > 0 satisfying

‖(−� + 1)ket�∇ · u‖Lq(�) ≤ C10t−k− 1
2 −εe−μt‖u‖Lp(�) (13)

for u ∈ Lp(�).

Now we can prove the following results.
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Lemma 2.5. Assume that � ⊂R
N with the smooth boundary ∂�, the initial condition (P0(x), Q0(x)) ∈

[W1,p(�)]2 with p > N and P0(x) ≥ 0, Q0(x) ≥ 0 for x ∈ �. If

0 < ξ ≤ d1d2

3c0(2 + N)C1(d1 + d2)
,

then there is a positive constant C11 such that

‖P(·, t)‖LN+2(�) ≤ C11, t ∈ (0, Tmax). (14)

Proof. Let n = N + 2 and define an auxiliary function ϕ(Q) = e(σQ)2 for 0 ≤ Q(x, t) ≤ C1, where σ

satisfies

σ = 1

C1(d1 + d2)

√
d1d2(n − 1)

6n
> 0.

Accordingly, multiplying P−equation by Pn−1ϕ(Q) and integrating it over �, one yields

1

n

d

dt

∫
�

Pnϕ(Q)dx

=
∫

�

Pn−1ϕ(Q)Ptdx + 1

n

∫
�

Pnϕ ′(Q)Qtdx

=d1

∫
�

Pn−1ϕ(Q)�Pdx −
∫

�

Pn−1ϕ(Q)∇(ξφ(P)∇Q)dx

+
∫

�

Pn−1ϕ(Q)

(
bcP

cP + eQ
+ dPQ − αP

)
dx

+ d2

n

∫
�

Pnϕ ′(Q)�Qdx + 1

n

∫
�

Pnϕ ′(Q)

[
beQ

cP + eQ
− dPQ − (β + h)Q

]
dx

≤ − d1(n − 1)
∫

�

Pn−2ϕ(Q)|∇P|2dx − d1

∫
�

Pn−1ϕ ′(Q)∇P∇Qdx

+ ξ

∫
�

Pn−1ϕ ′(Q)φ(P)|∇Q|2dx + ξ (n − 1)
∫

�

Pn−2ϕ(Q)φ(P)∇P∇Qdx

+ b
∫

�

Pn−1ϕ(Q)dx + dC1

∫
�

Pnϕ(Q)dx − d2

n

∫
�

Pnϕ ′′(Q)|∇Q|2dx

− d2

∫
�

Pn−1ϕ ′(Q)∇P∇Qdx + 2bσ 2C1

n

∫
�

Pn−1ϕ(Q)dx.

Recalling the assumption φ(P) ≤ c0P in (H2), we have

1

n

d

dt

∫
�

Pnϕ(Q)dx + d1(n − 1)
∫

�

Pn−2ϕ(Q)|∇P|2dx + d2

n

∫
�

Pnϕ ′′(Q)|∇Q|2dx (15)

≤ − (d1 + d2)
∫

�

Pn−1ϕ ′(Q)∇P∇Qdx + c0ξ

∫
�

Pnϕ ′(Q)|∇Q|2dx

+ c0ξ (n − 1)
∫

�

Pn−1ϕ(Q)∇P∇Qdx + dC1

∫
�

Pnϕ(Q)dx

+
(

b + 2bσ 2C1

n

) ∫
�

Pn−1ϕ(Q)dx.
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Now, by employing Young’s inequality and note that Pn−1 = P
n−2

2 P
n
2 , one obtains

− (d1 + d2)
∫

�

Pn−1ϕ ′(Q)∇P∇Qdx

≤(d1 + d2)
∫

�

Pn−1ϕ ′(Q)|∇P||∇Q|dx

=
∫

�

(√
(n − 1)d1ϕ(Q)

2
P

n−2
2 |∇P|

)( √
2(d1 + d2)√

(n − 1)d1ϕ(Q)
P

n
2 ϕ ′(Q)|∇Q|

)
dx

≤ (n − 1)d1

4

∫
�

Pn−2ϕ(Q)|∇P|2dx + (d1 + d2)2

(n − 1)d1

∫
�

Pnϕ ′2(Q)

ϕ(Q)
|∇Q|2dx

and, similarly, one yields

c0ξ (n − 1)
∫

�

Pn−1ϕ(Q)∇P∇Qdx

≤ (n − 1)d1

4

∫
�

Pn−2ϕ(Q)|∇P|2dx + c2
0ξ

2(n − 1)

d1

∫
�

Pnϕ(Q)|∇Q|2dx.

Consequently, putting these into (15), we get
1

n

d

dt

∫
�

Pnϕ(Q)dx + d1(n − 1)

2

∫
�

Pn−2ϕ(Q)|∇P|2dx + d2

n

∫
�

Pnϕ ′′(Q)|∇Q|2dx (16)

≤ (d1 + d2)2

(n − 1)d1

∫
�

Pnϕ ′2(Q)

ϕ(Q)
|∇Q|2dx + c0ξ

∫
�

Pnϕ ′(Q)|∇Q|2dx

+ c2
0ξ

2(n − 1)

d1

∫
�

Pnϕ(Q)|∇Q|2dx + dC1

∫
�

Pnϕ(Q)dx

+
(

b + 2bσ 2C1

n

) ∫
�

Pn−1ϕ(Q)dx.

Let

ω1(Q) = (d1 + d2)2

(n − 1)d1

ϕ ′2(Q)

ϕ(Q)
, ω2(Q) = c0ξϕ ′(Q),

ω3(Q) = c2
0ξ

2(n − 1)

d1

ϕ(Q), ω4(Q) = d2

n
ϕ ′′(Q).

As a consequence, (16) becomes
1

n

d

dt

∫
�

Pnϕ(Q)dx + d1(n − 1)

2

∫
�

Pn−2ϕ(Q)|∇P|2dx +
∫

�

Pnω4(Q)|∇Q|2dx (17)

≤
∫

�

Pnω1(Q)|∇Q|2dx +
∫

�

Pnω2(Q)|∇Q|2dx +
∫

�

Pnω3(Q)|∇Q|2dx

+ dC1

∫
�

Pnϕ(Q)dx +
(

b + 2bσ 2C1

n

) ∫
�

Pn−1ϕ(Q)dx.

Recalling that ϕ(Q) = e(σQ)2 for 0 ≤ Q(x, t) ≤ C1, one obtains

ω1(Q) = 4σ 4(d1 + d2)2Q2

(n − 1)d1

ϕ(Q), ω2(Q) = 2σ 2Qc0ξϕ(Q),

ω3(Q) = c2
0ξ

2(n − 1)

d1

ϕ(Q), ω4(Q) = d2

n
(2σ 2ϕ(Q) + 4σ 4Q2ϕ(Q)).
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For 0 ≤ Q(x, t) ≤ C1, we take

0 < ξ ≤ d1d2

3c0nC1(d1 + d2)
.

Using this approach, we have
3ω1(Q)

ω4(Q)
≤ 6nσ 2(d1 + d2)2Q2

(n − 1)d1d2

≤ 6nσ 2(d1 + d2)2C2
1

(n − 1)d1d2

= 1,

3ω2(Q)

ω4(Q)
≤ d1

d1 + d2

< 1,

and
3ω3(Q)

ω4(Q)
≤ 3c2

0ξ
2n(n − 1)

2d1d2σ 2
≤ 1.

Therefore, one has ∫
�

(ω1(Q) + ω2(Q) + ω3(Q))Pn|∇Q|2dx ≤
∫

�

ω4(Q)Pn|∇Q|2dx.

As such, (17) takes the form
1

n

d

dt

∫
�

Pnϕ(Q)dx + d1(n − 1)

2

∫
�

Pn−2ϕ(Q)|∇P|2dx (18)

≤ dC1

∫
�

Pnϕ(Q)dx +
(

b + 2bσ 2C1

n

) ∫
�

Pn−1ϕ(Q)dx.

In light of Lemma 2.3, we get
1

n

d

dt

∫
�

Pnϕ(Q)dx + d1(n − 1)

2

∫
�

Pn−2ϕ(Q)|∇P|2dx (19)

≤ (dC1 + C12)
∫

�

Pnϕ(Q)dx + C13.

On the other hand, owing to ϕ(Q) = e(σQ)2 , so ϕ(Q) ≤ eσ 2C2
1 for 0 ≤ Q(x, t) ≤ C1. Thereby, by utilizing the

first two inequalities on page 55 of [15] and (ii) of Lemma 2.1, we get∫
�

Pnϕ(Q)dx ≤eσ 2C2
1

∫
�

Pndx = eσ 2C2
1
∥∥P

n
2
∥∥2

L2(�)

≤eσ 2C2
1 C

∥∥P
n
2
∥∥2ν

W1,2(�)

∥∥P
n
2
∥∥2(1−ν)

L
2
n (�)

≤eσ 2C2
1 C

(∥∥∇P
n
2
∥∥

L2(�)
+ ∥∥P

n
2
∥∥

L
2
n (�)

)2ν ∥∥P
n
2
∥∥2(1−ν)

L
2
n (�)

=eσ 2C2
1 C

(∥∥∇P
n
2
∥∥

L2(�)
+ ‖P‖ n

2
L1(�)

)2ν ‖P‖n(1−ν)
L1(�)

≤C14

(∥∥∇P
n
2
∥∥2

L2(�)
+ 1

)ν

where C is positive constant and ν = nN
2 − N

2
nN
2 +1− N

2
∈ (0, 1). Accordingly, for n > 2 and 0 < ν < 1, we get∫

�

Pn−2ϕ(Q)|∇P|2dx ≥
∫

�

Pn−2|∇P|2dx= 4

n2

∫
�

|∇P
n
2 |2dx ≥ 4C

− 1
ν

14

n2

(∫
�

Pnϕ(Q)dx

) 1
ν

− 4

n2
. (20)

Thereby, putting (20) into (19), we have

1

n

d

dt

∫
�

Pnϕ(Q)dx ≤ (dC1 + C12)
∫

�

Pnϕ(Q)dx − 2d1(n − 1)C
− 1

ν

14

n2

(∫
�

Pnϕ(Q)dx

) 1
ν

+ 2d1(n − 1)

n2
.
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By using Lemma 2.2, there is a C15 > 0 such that∫
�

Pnϕ(Q)dx ≤ C15.

This implies

‖P(·, t)‖Ln(�) ≤ C11

is valid. We finish the proof.
The following result means that the solution P(x, t) admits the L∞-bound.

Lemma 2.6. Suppose that � ⊂R
N with the smooth boundary ∂�, the initial conditions (P0(x), Q0(x)) ∈

[W1,p(�)]2 with p > N and P0(x) ≥ 0, Q0(x) ≥ 0 for x ∈ �. If

0 < ξ ≤ d1d2

3c0(2 + N)C1(d1 + d2)
,

then there is a positive constant C16 such that

‖P(·, t)‖L∞(�) ≤ C16, t ∈ (0, Tmax). (21)

Proof. Rewrite Q−equation of (1) as follows.

∂Q

∂t
= d2�Q − Q + Q

(
be

cP + eQ
− dP − β − h

)
+ Q.

Then, we can compute

Q(·, t) = e−t(−d2�+1)Q0 +
∫ t

0

e−(t−s)(−d2�+1)

[
Q

(
be

cP + eQ
− dP − β − h

)
+ Q

]
ds.

Let τ ∈ (0, Tmax), 0 < τ < 1, q > N, 1
2
(1 + N

q
) < k < 1. Then, using (11), (12) in Lemma 2.4 and (14) in

Lemma 2.5, one gets

‖Q(·, t)‖W1,∞(�)

≤ C8

∥∥∥∥(−d2� + 1)k

[
e−t(−d2�+1)Q0 +

∫ t

0

e−(t−s)(−d2�+1)(b + (dP + β + h + 1)C1)ds

]∥∥∥∥
Lq(�)

≤ C8C9t−ke−γ t‖Q0‖Lq(�) + C8C9

∫ t

0

(t − s)−ke−γ (t−s)(b + (d‖P‖Lq(�) + β + h + 1)C1)ds

≤ C16t−k + C17

∫ t

0

(t − s)−ke−γ (t−s)ds

≤ C16t−k + C17

∫ ∞

0

�−ke−γ �d�

≤ C16τ
−k + C17�(1 − k) := K(τ ), t ∈ (τ , Tmax),

where �( · ) is a Gamma function and �(1 − k) > 0 due to 1
2
(1 + N

q
) < k < 1. Therefore, we get

‖∇Q(·, t)‖L∞(�) ≤ K(τ ), t ∈ (τ , Tmax). (22)

Now, the variation of the constant formula to the P−equation of (1) shows

P(·, t) =e−t(−d1�+1)P0 − ξ

∫ t

0

e−(t−s)(−d1�+1)∇(φ(P)∇Q)ds

+
∫ t

0

e−(t−s)(−d1�+1)

[
P

(
bc

cP + eQ
+ dQ − α

)
+ P

]
ds.
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Let

P1(·, t) = e−t(−d1�+1)P0, P2(·, t) = −ξ

∫ t

0

e−(t−s)(−d1�+1)∇(φ(P)∇Q)ds,

and

P3(·, t) =
∫ t

0

e−(t−s)(−d1�+1)

[
P

(
bc

cP + eQ
+ dQ − α

)
+ P

]
ds.

Therefore, P(·, t) = P1(·, t) + P2(·, t) + P3(·, t). That is to say, we must give L∞-bounds of P1(·, t), P2(·, t)
and P3(·, t) to obtain ‖P(·, t)‖L∞(�).

Now, for P1(·, t), by using (11) and (12), we have
‖P1(·, t)‖L∞(�) =‖e−t(−d1�+1)P0‖L∞(�)

≤C8‖(−d1� + 1)ke−t(−d1�+1)P0‖Lq(�)

≤C8C9t−ke−γ t‖P0‖Lq(�)

≤C8C9τ
−ke−γ t‖P0‖Lq(�)

≤C18‖P0‖L∞(�), t ∈ (τ , Tmax)

for m = 0, p = ∞, 0 < τ < 1, N
2q

< k < 1, q > N and γ > 0.
For P2(·, t), one takes N

2q
< k < 1

2
, so 0 < ε < 1/2 − k. Then, by employing (11)–(13) and (22), we

obtain

‖P2(·, t)‖L∞(�) ≤C8

∥∥∥∥(−d1� + 1)kξ

∫ t

0

e−(t−s)(−d1�+1)|∇(φ(P)∇Q)|ds

∥∥∥∥
Lq(�)

≤ξC8

∫ t

0

∥∥(−d1� + 1)ke−(t−s)(−d1�+1)|∇(φ(P)∇Q)|∥∥
Lq(�)

ds

≤C19

∫ t

0

(t − s)−k−ε−1/2e−(μ+1)(t−s)ds

≤C19

∫ ∞

0

�−k−ε−1/2e−(μ+1)�d�

≤C19�(1/2 − k − ε), t ∈ (τ , Tmax),

where �(1/2 − k − ε) > 0 due to 0 < ε < 1/2 − k.
For P3(·, t), in a similar approach, we have

‖P3(·, t)‖L∞(�) ≤C8

∥∥∥∥(−d1� + 1)k

∫ t

0

e−(t−s)(−d1�+1)(b + (dC1 + 1 + α)P)ds

∥∥∥∥
Lq(�)

≤C8

∫ t

0

∥∥(−d1� + 1)ke−(t−s)(−d1�+1)(b + (dC1 + 1 + α)P)
∥∥

Lq(�)
ds

≤C8C9

∫ t

0

(t − s)−ke−(t−s)γ (b + (dC1 + 1 + α) ‖P‖Lq(�) )ds

≤C20

∫ t

0

(t − s)−ke−(t−s)γ ds

≤C20

∫ ∞

0

�−ke−�γ d�

≤C20�(1 − k), t ∈ (τ , Tmax),

where �(1 − k) > 0 since 0 < k < 1. Therefore, the result performed in (21) is valid. The proof readily
follows.
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Proof of Theorem 1.1. By employing Q(x, t) ≤ C1 in Lemma 2.1 and ‖P(·, t)‖L∞(�) ≤ C16 in Lemma 2.6,
where C16 is a positive constant and C1 = max

{
‖Q0(x)‖L∞(�), b

h+β

}
, we can infer that there exists a

positive constant M depending on P0(x) and Q0(x) for P0(x), Q0(x) ≥ 0( �≡ 0) such that ‖P(·, t)‖L∞(�) +
‖Q(·, t)‖L∞(�) ≤ M is fulfilled. The proof is finished.

3. Steady-state bifurcation

In this section, we shall establish the existence and stability of the nonconstant steady state resulting
from the steady-state bifurcation near the positive equilibrium of the system (1). To achieve this, let⎧⎪⎪⎨⎪⎪⎩

f (P, Q) = P

(
bc

cP + eQ
+ dQ − α

)
,

g(P, Q) = Q

(
be

cP + eQ
− dP − β

)
− hQ.

3.1 Stability analysis

Taking � = (0, Lπ ) with L > 0. Then at E∗, the linearization form of the system (1) is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂P

∂t
= d1�P − ξφ(P∗)�Q − bc2P∗

(cP∗ + eQ∗)2
P +

[
dP∗ − becP∗

(cP∗ + eQ∗)2

]
Q,

∂Q

∂t
= d2�Q −

[
dQ∗ + bceQ∗

(cP∗ + eQ∗)2

]
P − be2Q∗

(cP∗ + eQ∗)2
Q.

(23)

Considering the eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1ζxx − ξφ(P∗)ηxx − bc2P∗
(cP∗ + eQ∗)2

ζ +
[

dP∗ − becP∗

(cP∗ + eQ∗)2

]
η = λkζ ,

d2ηxx −
[

dQ∗ + bceQ∗
(cP∗ + eQ∗)2

]
ζ − be2Q∗

(cP∗ + eQ∗)2
η = λkη,

∂ζ

∂ν
= ∂η

∂ν
= 0,

(24)

where λk denotes the eigenvalue of the problem (24). For the no-flux boundary conditions, one takes the
form of (ζ (x), η(x)) as follows

ζ (x) =
∞∑

k=0

akcos
kx

L
, η(x) =

∞∑
k=0

bkcos
kx

L
,

where ak and bk are constants. By using (24), one has
∞∑

k=0

(Jk − λkI)

(
ak

bk

)
cos

kx

L
= 0,

where

Jk =

⎛⎜⎜⎝− bc2P∗
(cP∗ + eQ∗)2

− d1δ
2
k dP∗ − becP∗

(cP∗ + eQ∗)2
+ ξφ(P∗)δ2

k

−dQ∗ − bceQ∗
(cP∗ + eQ∗)2

− be2Q∗
(cP∗ + eQ∗)2

− d2δ
2
k

⎞⎟⎟⎠ ,

with δk = k
L
> 0. Consequently, we have the following characteristic equation at E∗

λ2
k − Tk(ξ )λk + Dk(ξ ) = 0, for k ∈N0 = {0, 1, 2, · · ·}, (25)
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where {
Tk(ξ ) = −(d1 + d2)δ2

k + fP + gQ,

Dk(ξ ) = d1d2δ
4
k − [

fPd2 + gQd1 + φ(P∗)gPξ
]
δ2

k + d2P∗Q∗,

with

fP = − bc2P∗
(cP∗ + eQ∗)2

, fQ = dP∗ − becP∗

(cP∗ + eQ∗)2
, gP = −dQ∗ − bceQ∗

(cP∗ + eQ∗)2
, gQ = − be2Q∗

(cP∗ + eQ∗)2
.

It is noticed that fP < 0 and gQ < 0. As a consequence, we know that Tk(ξ ) < 0 for any k ∈N0. This
implies that the stability of the unique positive equilibrium E∗ completely depends on the sign of Dk(ξ ).
By direct calculation, we can show that Dk(ξ ) = Dk(ξ S

k ) = 0 when ξ = ξ S
k , where

ξ S
k = d1d2δ

4
k − (fPd2 + gQd1)δ2

k + d2P∗Q∗
φ(P∗)gPδ

2
k

< 0.

We establish the following.

Lemma 3.1. If there is a k0 ∈N0\{0} satisfying

k0 =
⎧⎨⎩
[
k̂0

]
+ 1, if ξ S

[k̂0]
≤ ξ S

[k̂0]+1
,[

k̂0

]
, if ξ S

[k̂0]
> ξ S

[k̂0]+1
,

where k̂0 = L

√
d
√

P∗Q∗
d1d2

. Then ξ S
k has its maximum ξ S

k0
at k = k0, where [ · ] is the integer function.

Proof. Since

ξ S
k = d1d2δ

2
k

φ(P∗)gP

+ d2P∗Q∗
φ(P∗)gPδ

2
k

− fPd2 + gQd1

φ(P∗)gP

,

we define

F(z) = d1d2z

φ(P∗)gP

+ d2P∗Q∗
φ(P∗)gPz

− fPd2 + gQd1

φ(P∗)gP

.

Taking the derivative of F(z) with respect to z, one has

F′(z) = d1d2

φ(P∗)gP

− d2P∗Q∗
φ(P∗)gPz2

.

Let F′(z) = 0, then we have z = z0 = d
√

P∗Q∗
d1d2

. As a consequence, F′(z) < 0 as z > z0 and F′(z) > 0 as
0 < z < z0. Moreover, limz→+∞ F(z) = −∞ since gP < 0. Therefore, F(z) could achieve its maximum at
z = z0. This is

maxz>0F(z) = F(z0) = 2d
√

d1d2P∗Q∗
φ(P∗)gP

− fPd2 + gQd1

φ(P∗)gP

< 0.

Recalling that z = δ2
k = (k/L)2 > 0 and the definition of F(z), we infer that there is a k0 satisfying

k0 =
⎧⎨⎩
[
k̂0

]
+ 1, if ξ S

[k̂0]
≤ ξ S

[k̂0]+1
,[

k̂0

]
, if ξ S

[k̂0]
> ξ S

[k̂0]+1

with k̂0 = L

√
d
√

P∗Q∗
d1d2

such that ξ S
k has its maximum at k = k0. The proof is completed.

Proof of Theorem 1.2. Clearly, fP < 0, gQ < 0, and gP < 0 are valid conditions. As a consequence, we
know that Tk(ξ ) < 0 for any k ∈N0. This implies that the stability of the unique positive equilibrium E∗
completely depends on the sign of Dk(ξ ). If ξ ≥ 0, it immediately follows that Dk(ξ ) > 0 for all k ∈N0.
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This shows that all eigenvalues of the characteristic equation (25) with negative real parts. Therefore, (i)
is true. If ξ = ξ S

k is valid, we can check that Dk(ξ ) = 0, namely, 0 is an eigenvalue of the characteristic
equation (25). Hence, system (1) admits the steady-state bifurcation as ξ = ξ S

k . Now for Dk(ξ ), taking
its derivation with respect to ξ , one yields D′

k(ξ ) = −φ(P∗)gPδ
2
k > 0. Therefore, Dk(ξ ) is strictly increas-

ing about ξ ∈ (−∞, 0). Keeping this in mind, if ξ S
k < ξ < 0, we have 0 = Dk(ξ S

k ) < Dk(ξ ). Clearly, E∗
is locally asymptotically stable as ξ > ξ S

k for any k ∈N0. However, if ξ < ξ S
k < 0 is valid, we infer that

Dk(ξ ) < Dk(ξ S
k ) = 0. This implies that there is at least one eigenvalue of the characteristic equation (25)

with a positive real part. In this case, E∗ is unstable, and (ii) is valid. For (iii), define the following
time-evolution Lyapunov function

V(t) =
∫

�

(
P(·, t) − P∗ − P∗ ln

P(·, t)

P∗

)
dx +

∫
�

(
Q(·, t) − Q∗ − Q∗ ln

Q(·, t)

Q∗

)
dx.

Then, one yields

V̇(t) =
∫

�

(
1 − P∗

P

)
Ptdx +

∫
�

(
1 − Q∗

Q

)
Qtdx

=
∫

�

(P − P∗)

(
bc

cP + eQ
+ dQ − α

)
dx +

∫
�

(Q − Q∗)

(
be

cP + eQ
− dP − β − h

)
dx

− d1P∗

∫
�

|∇P|2

P2
dx − d2Q∗

∫
�

|∇Q|2

Q2
dx +

∫
�

ξP∗φ(P)∇P∇Q

P2
dx

=V1(t) + V2(t),

where

V1(t) =
∫

�

(P − P∗)

(
bc

cP + eQ
+ dQ − α

)
dx +

∫
�

(Q − Q∗)

(
be

cP + eQ
− dP − β − h

)
dx

= − b
∫

�

[c(P − P∗) + e(Q − Q∗)]2

(cP + eQ)(cP∗ + eQ∗)
dx

<0,

and

V2(t) = − d1P∗

∫
�

|∇P|2

P2
dx − d2Q∗

∫
�

|∇Q|2

Q2
dx +

∫
�

ξP∗φ(P)∇P∇Q

P2
dx

≤ − d1P∗

∫
�

|∇P|2

P2
dx − d2Q∗

∫
�

|∇Q|2

Q2
dx +

∫
�

c0ξP∗∇P∇Q

P
dx

= −
∫

�

XAXTdx,

where we define X(x, t) = (|∇P(x, t)|, |∇Q(x, t)|) in � × (0, ∞) and

A =
⎛⎜⎝ d1P∗

P2
−c0ξP∗

2P

−c0ξP∗
2P

d2Q∗
Q2

⎞⎟⎠ .

Therefore, if 0 < ξ 2 < 4d1d2Q∗
c2

0P∗C2
1

is valid, one obtains

Trace(A) = d1P∗
P2

+ d2Q∗
Q2

> 0, Det(A) = P∗
P2

(
d1d2Q∗

Q2
− c2

0ξ
2P∗

4

)
> 0.

Hence, A is a positive definite matrix which implies that V2(t) = − ∫
�

XAXTdx < 0 is true. Thereby,
V̇(t) = V1(t) + V2(t) < 0 is valid, namely, the unique positive equilibrium E∗ is globally asymptotically
stable. This finishes the proof.
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3.2 Bifurcating solution: nonconstant steady state
3.2.1 Existence
In this subsection, we explore the existence and stability of the nonconstant steady states around
the steady state bifurcation onset ξ = ξ S

k for k ∈N0\{0}. Define two Hilbert spaces: X = {u ∈
H2(0, Lπ )|u′(0) = u′(Lπ ) = 0} and Y = L2(0, Lπ ). Rewrite system (2) as follows.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = (d1P′ − ξφ(P)Q′)′ + P

(
bc

cP + eQ
+ dQ − α

)
, x ∈ �.

0 = d2Q′′ + Q

(
be

cP + eQ
− dP − β

)
− hQ, x ∈ �.

P′ = Q′ = 0, x ∈ ∂�.

(26)

Recalling the operator F(P, Q, ξ ) in (4), then system (26) is equivalent to F(P, Q, ξ ) = 0 and
F(P, Q, ξ ):X × X ×R−→ Y × Y is analytic for (P, Q, ξ ) ∈ X × X ×R. Now, at the onset ξ = ξ S

k , we
can confirm that N(D(P,Q)F(P∗, Q∗, ξ S

k )) �= {0}, where N is the null space and D(P,Q)F(P∗, Q∗, ξ ) has been
appeared in (6). Benefiting from (6), we infer that the null space N consists of solutions to the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 = d1P′′ − ξ (φ(P∗)Q

′)′ − bc2P∗
(cP∗ + eQ∗)2

P +
[

dP∗ − bceP∗
(cP∗ + eQ∗)2

]
Q,

0 = d2Q′′ −
[

dQ∗ + bceQ∗
(cP∗ + eQ∗)2

]
P − be2Q∗

(cP∗ + eQ∗)2
Q,

P′ = Q′ = 0.

(27)

Let

P(x) =
∞∑

k=0

a′
kcos

kx

L
, Q(x) =

∞∑
k=0

b′
kcos

kx

L
.

Then, putting them into (27), we get⎛⎜⎜⎝− bc2P∗
(cP∗ + eQ∗)2

− d1δ
2
k dP∗ − becP∗

(cP∗ + eQ∗)2
+ ξφ(P∗)δ2

k

−dQ∗ − bceQ∗
(cP∗ + eQ∗)2

− be2Q∗
(cP∗ + eQ∗)2

− d2δ
2
k

⎞⎟⎟⎠
(

a′
k

b′
k

)
=

(
0

0

)
.

Consequently, if ξ = ξ S
k , we have N(D(P,Q)F(P∗, Q∗, ξ S

k )) = span{̂Pk, Q̂k}, where P̂k and Q̂k can be found
in (9). Moreover, utilizing Theorem 3.3 of [33] or Lemma 2.3 of [36], we know that D(P,Q)F(P∗, Q∗, ξ )
is a Fredholm operator with index 0 and codimR(D(P,Q)F(P∗, Q∗, ξ )) = 1 is true, where R is the range
of the operator.

Now we can show the validity of Theorem 1.3.

Proof of Theorem 1.3. Owing to the Crandall–Rabinowitz bifurcation theory [9], we only need to prove
the following transversality condition

d

dξ
(D(P,Q)F(P∗, Q∗, ξ ))(̂Pk, Q̂k)|ξ=ξS

k
/∈R(D(P,Q)F(P∗, Q∗, ξ )) (28)

is true, where R denotes the range of the operator. Now, we assume that (28) fails, then from (6), we
can set⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d1P′′ − ξ S
k (φ(P∗)Q

′)′ − bc2P∗
(cP∗ + eQ∗)2

P +
[

dP∗ − bceP∗
(cP∗ + eQ∗)2

]
Q = φ(P∗)δ

2
k cos

kx

L
,

d2Q′′ −
[

dQ∗ + bceQ∗
(cP∗ + eQ∗)2

]
P − be2Q∗

(cP∗ + eQ∗)2
Q = 0,

P′ = Q′ = 0.

(29)
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Then, multiplying (29) by cos kx
L

and integrating it over (0, Lπ ), one obtains⎛⎜⎜⎝− bc2P∗
(cP∗ + eQ∗)2

− d1δ
2
k dP∗ − becP∗

(cP∗ + eQ∗)2
+ ξ S

k φ(P∗)δ2
k

−dQ∗ − bceQ∗
(cP∗ + eQ∗)2

− be2Q∗
(cP∗ + eQ∗)2

− d2δ
2
k

⎞⎟⎟⎠
⎛⎜⎜⎝

∫ Lπ

0

Pcos
kx

L
dx∫ Lπ

0

Qcos
kx

L
dx

⎞⎟⎟⎠=
⎛⎝ πδ2

k φ(P∗)L

2
0

⎞⎠ .

(30)

Because there is the steady-state bifurcation when ξ = ξ S
k , we obtain∣∣∣∣∣∣∣∣

− bc2P∗
(cP∗ + eQ∗)2

− d1δ
2
k dP∗ − becP∗

(cP∗ + eQ∗)2
+ ξ S

k φ(P∗)δ2
k

−dQ∗ − bceQ∗
(cP∗ + eQ∗)2

− be2Q∗
(cP∗ + eQ∗)2

− d2δ
2
k

∣∣∣∣∣∣∣∣= 0.

This leads to a contradiction from (30), and thereby (28) is valid. We end the proof.

3.2.2 Stability
In this subsection, we want to ensure the stability of the bifurcating solution (Pk(ε, x), Qk(ε, x)) in
Theorem 1.3. To this end, from (26), we know that the bifurcating solution (Pk(ε, x), Qk(ε, x)) admits⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = (d1P
′
k(ε, x) − ξ S

k (ε)φ(Pk(ε, x))Q′
k(ε, x))′ + Pk(ε, x)

(
bc

cPk(ε, x) + eQk(ε, x)
+ dQk(ε, x) − α

)
,

0 = d2Q′′
k (ε, x) + Qk(ε, x)

(
be

cPk(ε, x) + eQk(ε, x)
− dPk(ε, x) − β − h

)
,

P′
k = Q′

k = 0.
(31)

In the sequel, let us expand the critical threshold ξ S
k (ε) and bifurcating solution (Pk(ε, x), Qk(ε, x)) as

below: ⎧⎪⎪⎨⎪⎪⎩
ξ S

k (ε) = ξ S
k + εξ1 + ε2ξ2 + · · ·,

Pk(ε, x) = P∗ + εcos kx
L

+ ε2P1(x) + ε3P2(x) + · · ·,
Qk(ε, x) = Q∗ + εαkcos kx

L
+ ε2Q1(x) + ε3Q2(x) + · · ·,

(32)

where ξ1, ξ2 will be computed later and (Pj, Qj) ∈K for j = 1, 2, where K has been defined in (8). For
the density function φ(Pk(ε, x)), we set

φ(Pk(ε, x)) = φ(P∗) + φPk(ε,x)(P∗)Pk(ε, x) + 1

2
φPk(ε,x)Pk(ε,x)(P∗)P2

k(ε, x) + · · ·,

Using the second perturbation of (32), we get

φ(Pk(ε, x)) = φ(P∗) + εφPk (P∗)cos
kx

L
+ ε2

(
φPk (P∗)P1(x) + 1

2
φPkPk (P∗)cos2 kx

L

)
+ · · ·. (33)

Then, submitting (32)–(33) into (31), we obtain⎧⎪⎪⎨⎪⎪⎩
0 = (d1P′

k − ξ S
k (ε)φ(Pk)Q′

k)
′ + fPP∗ + fQQ∗ +R0 + εR1(x) + ε2R2(x) + ε3R3(x) + · · ·,

0 = d2Q′′
k + gPP∗ + gQQ∗ + V0 + εV1(x) + ε2V2(x) + ε3V3(x) + · · ·,

P′
k = Q′

k = 0,

(34)
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where

(d1P′
k(ε, x) − ξ S

k (ε)φ(Pk(ε, x))Q′
k(ε, x))′

=d1P′′
k (ε, x) − ξ S

k (ε)(φ ′(Pk(ε, x))Q′
k(ε, x) + φ(Pk(ε, x))Q′′

k (ε, x))

=ε

[
δ2

k ξ
S
k φ(P∗)αkcos

kx

L
− δ2

k d1cos
kx

L

]
+ ε2

[
d1P′′

1(x) + δ2
k ξ1φ(P∗)αkcos

kx

L

+δ2
k ξ

S
k φP1k (P∗)αkcos

2kx

L
− ξ S

k φ(P∗)Q′′
1(x)

]
+ ε3

[
d1P′′

2(x) + δ2
k ξ1φPk (P∗)αkcos

2kx

L

−ξ1φ(P∗)Q
′′
1(x) − ξ S

k φPk (P∗)cos
kx

L
Q′′

1(x) − ξ S
k φ(P∗)Q′′

2(x) + ξ S
k φPk (P∗)δk sin

kx

L
Q′

1(x)

+δ2
k ξ

S
k αkcos

kx

L

(
φPk (P∗)P1(x) + 1

2
φPkPk (P∗)cos2 kx

L

)
+ δkξ

S
k αk sin

kx

L

×
(

φPk (P∗)P
′
1(x) − 1

2
φPkPk (P∗)δk sin

2kx

L

)
+ δ2

k ξ2φ(P∗)αkcos
kx

L

]
,

and R0, Rj(x), V0, Vj(x) for j = 1, 2, 3 can be found in Appendix A and B, respectively.

Proof of Theorem 1.4. To obtain the desired results, we should first determine the values of ξ1 and ξ2,
respectively. From the perturbation equation (34), we can get O(ε2) term as below.⎧⎪⎨⎪⎩

0 = d1P′′
1(x) + �(x) +R2(x),

0 = d2Q′′
1(x) + V2(x),

P′
1(x) = Q′

1(x) = 0,

(35)

where �(x) = δ2
k ξ1φ(P∗)αkcos kx

L
+ δ2

k ξ
S
k φPk (P∗)αkcos 2kx

L
− ξ S

k φ(P∗)Q′′
1(x). Multiplying (35) by cos kx

L
and

integrating it over (0, Lπ ), we have

δ2
k Lπ

2
ξ1φ(P∗)αk = (

d1δ
2
k −R21

) ∫ Lπ

0

P1(x)cos
kx

L
dx − (

ξ S
k φ(P∗)δ

2
k +R22

) ∫ Lπ

0

Q1(x)cos
kx

L
dx, (36)

and

0 = V21

∫ Lπ

0

P1(x)cos
kx

L
dx + (V22 − d2δ

2
k

) ∫ Lπ

0

Q1(x)cos
kx

L
dx, (37)

where

R21 =fP + fPPP∗ + fPQQ∗ + fPPQQ∗P∗ + fPQQ

2
Q2

∗ + fPPP

2
P2

∗,

R22 =fQ + fPQP∗ + fQQQ∗ + fQQQ

2
Q2

∗ + fPPQ

2
P2

∗ + fPQQP∗Q∗,

V21 =gP + gPPP∗ + gPQQ∗ + gPPQQ∗P∗ + gPQQ

2
Q2

∗ + gPPP

2
P2

∗,

V22 =gQ + gPQP∗ + gQQQ∗ + gQQQ

2
Q2

∗ + gPPQ

2
P2

∗ + gPQQQ∗P∗.

Moreover, in light of (8) and (P1, Q1) ∈K, we have

0 =
∫ Lπ

0

P1(x)cos
kx

L
dx + αk

∫ Lπ

0

Q1(x)cos
kx

L
dx, (38)

where αk can be found in (9). Consequently, by using (37) and (38), one obtains(
V21 V22 − d2δ

2
k

1 αk

)( ∫ Lπ

0
P1(x)cos kx

L
dx∫ Lπ

0
Q1(x)cos kx

L
dx

)
=

(
0

0

)
.
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It is noticed that ∣∣∣∣∣V21 V22 − d2δ
2
k

1 αk

∣∣∣∣∣= αkV21 − V22 + d2δ
2
k �= 0.

This gives ∫ Lπ

0

P1(x)cos
kx

L
dx =

∫ Lπ

0

Q1(x)cos
kx

L
dx = 0. (39)

Putting (39) into (36), we infer that ξ1 = 0.
Our next task is to determine ξ2 in the first perturbation equation of (32). To this end, we investigate

the O(ε3) term of (34). This is ⎧⎪⎨⎪⎩
0 = d1P′′

2(x) + �(x) +R3(x),

0 = d2Q′′
2(x) + V3(x),

P′
2(x) = Q′

2(x) = 0,

(40)

where

�(x) =δ2
k ξ1φPk (P∗)αkcos

2kx

L
− ξ1φ(P∗)Q′′

1(x) − ξ S
k φPk (P∗)cos

kx

L
Q′′

1(x) − ξ S
k φ(P∗)Q

′′
2(x)

+ ξ S
k φPk (P∗)δk sin

kx

L
Q′

1(x) + δ2
k ξ

S
k αkcos

kx

L

(
φPk (P∗)P1(x) + 1

2
φPkPk (P∗)cos2 kx

L

)
+ δkξ

S
k αk sin

kx

L

(
φPk (P∗)P

′
1(x) − 1

2
φPkPk (P∗)δk sin

2kx

L

)
+ δ2

k ξ2φ(P∗)αkcos
kx

L
.

Let us multiply (40) by cos kx
L

and integrating over (0, Lπ ), one yields

−δ2
k πLφ(P ∗ )αk

2
ξ2 =δ2

k ξ
S
k

2
φPk (P

∗)αk

∫ Lπ

0

P1(x)

(
1 − cos

2kx

L

)
dx + R31

2

∫ Lπ

0

P1(x)

(
1 + cos

2kx

L

)
dx

(41)

+ δ2
k ξ

S
k φPk (P

∗)
∫ Lπ

0

Q1(x)cos
2kx

L
dx + R32

2

∫ Lπ

0

Q1(x)

(
1 + cos

2kx

L

)
dx

+ (R33 − d1δ
2
k

) ∫ Lπ

0

P2(x)cos
kx

L
dx + (

δ2
k ξ

S
k φPk (P

∗) +R34

) ∫ Lπ

0

Q2(x)cos
kx

L
dx

+ δ2
k Lπ

16
φPkPk (P ∗ )ξ S

k αk + 3Lπ

8
R35,

and

0 = (V34 − d2δ
2
k

) ∫ Lπ

0

Q2(x)cos
kx

L
dx + V31

2

∫ Lπ

0

P1(x)

(
1 + cos

2kx

L

)
dx (42)

+ V32

2

∫ Lπ

0

Q1(x)

(
1 + cos

2kx

L

)
dx + V33

∫ Lπ

0

P2(x)cos
kx

L
dx + 3Lπ

8
V35,

where

R31 =fPP + fPQαk + fPPQ(Q∗ + αkP∗) + fPQQQ∗αk + 5fPPP

6
P∗,

R32 =fPQ + fQQαk + 5αkfQQQ

6
Q∗ + fPPQP∗ + fPQQ(αkP∗ + Q∗),
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R33 =fPPP∗ + fPQQ∗ + fPPQP∗Q∗ + fPQQ

2
Q2

∗ + fPPP

2
P2

∗ + fP,

R34 =fPQP∗ + fQQQ∗ + fQQQ

2
Q2

∗ + fPPQ

2
P2

∗ + fPQQP∗Q∗ + fQ,

R35 =α3
k fQQQ

3! + αkfPPQ

2
+ α2

k fPQQ

2
+ fPPP

3! ,

V31 =gPP + gPQαk + gPPQ(Q∗ + P∗αk) + gPQQP∗αk + 5gPPP

6
P∗,

V32 =gPQ + gQQαk + 5αkgQQQ

6
Q∗ + gPPQP∗ + gPQQ(αkP∗ + Q∗),

V33 =gPPP∗ + gPQQ∗ + gPPQP∗Q∗ + gPQQ

2
Q2

∗ + gPPP

2
P2

∗ + gP,

V34 =gPQP∗ + gQQQ∗ + gQQQ

2
Q2

∗ + gPPQ

2
P2

∗ + gPQQP∗Q∗ + gQ,

V35 =gQQQα3
k

3! + αkgPPQ

2
+ α2

k gPQQ

2
+ gPPP

3! .

On the other hand, by using (8) and (P2, Q2) ∈K, we get

0 =
∫ Lπ

0

P2(x)cos
kx

L
dx + αk

∫ Lπ

0

Q2(x)cos
kx

L
dx. (43)

Obviously, to get the expression of ξ2 in (41), we have to compute∫ Lπ

0

P2(x)cos
kx

L
dx,

∫ Lπ

0

Q2(x)cos
kx

L
dx,

∫ Lπ

0

P1(x)dx,∫ Lπ

0

Q1(x)dx,
∫ Lπ

0

P1(x)cos
2kx

L
dx,

∫ Lπ

0

Q1(x)cos
2kx

L
dx.

To this end, we utilize three steps to finish this task.
Step 1: Compute

∫ Lπ

0
P2(x)cos kx

L
dx and

∫ Lπ

0
Q2(x)cos kx

L
dx.

In light of (42)–(43), one gets(
V33 V34 − d2δ

2
k

1 αk

)( ∫ Lπ

0
P2(x)cos kx

L
dx∫ Lπ

0
Q2(x)cos kx

L
dx

)
=

(
w

0

)
, (44)

where

w = −V31

2

∫ Lπ

0

P1(x)

(
1 + cos

2kx

L

)
dx − V32

2

∫ Lπ

0

Q1(x)

(
1 + cos

2kx

L

)
dx − 3Lπ

8
V35.

By solving (44), we have

∫ Lπ

0

P2(x)cos
kx

L
dx =

∣∣∣∣∣w V34 − d2δ
2
k

0 αk

∣∣∣∣∣∣∣∣∣∣V33 V34 − d2δ
2
k

1 αk

∣∣∣∣∣
,
∫ Lπ

0

Q2(x)cos
kx

L
dx =

∣∣∣∣∣V33 w

1 0

∣∣∣∣∣∣∣∣∣∣V33 V34 − d2δ
2
k

1 αk

∣∣∣∣∣
. (45)

Step 2: Compute
∫ Lπ

0
P1(x)dx and

∫ Lπ

0
Q1(x)dx.
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Integrating (35) over (0, Lπ ), we have⎧⎪⎨⎪⎩
0 = d1

∫ Lπ

0
�(x)dx + ∫ Lπ

0
R2(x)dx,

0 = d2

∫ Lπ

0
V2(x)dx,

P′
1(x) = Q′

1(x) = 0,

(46)

where we employ ∫ Lπ

0

P′′
1(x)dx =

∫ Lπ

0

Q′′
1(x)dx = 0.

In addition, we can calculate∫ Lπ

0

�(x)dx = δ2
k ξ

S
k φPk (P

∗)αk

∫ Lπ

0

cos
2kx

L
dx − ξ S

k φ(P∗)
∫ Lπ

0

Q′′
1(x)dx = 0, (47)∫ Lπ

0

R2(x)dx =R21

∫ Lπ

0

P1(x)dx +R22

∫ Lπ

0

Q1(x)dx + Lπ

2
R̃2, (48)

and ∫ Lπ

0

V2(x)dx = V21

∫ Lπ

0

P1(x)dx + V22

∫ Lπ

0

Q1(x)dx + Lπ

2
Ṽ2, (49)

where

R̃2 = fPP

2
+ fPQαk + fQQα2

k

2
+ fQQQα2

k

2
Q∗ + fPPQ

2
(2αkP∗ + 1) + fPQQ

2
(2αkQ∗ + P∗α

2
k ) + fPPP

2
P∗,

Ṽ2 = gPP

2
+ gPQαk + gQQα2

k

2
+ gQQQα2

k

2
Q∗ + gPPQ

2
(2αkP∗ + 1) + gPQQ

2
(2αkQ∗ + P∗α

2
k ) + gPPP

2
P∗.

Consequently, putting (47)–(49) into (46), we can get⎧⎪⎨⎪⎩
0 =R21

∫ Lπ

0
P1(x)dx +R22

∫ Lπ

0
Q1(x)dx + Lπ

2
R̃2,

0 = V21

∫ Lπ

0
P1(x)dx + V22

∫ Lπ

0
Q1(x)dx + Lπ

2
Ṽ2,

P′
1(x) = Q′

1(x) = 0.

(50)

This is (
R21 R22

V21 V22

)( ∫ Lπ

0
P1(x)dx∫ Lπ

0
Q1(x)dx

)
=

(
− Lπ

2
R̃2

− Lπ

2
Ṽ2

)
. (51)

By solving (51), we obtain

∫ Lπ

0

P1(x)dx =

∣∣∣∣∣− Lπ

2
R̃2 R22

− Lπ

2
Ṽ2 V22

∣∣∣∣∣∣∣∣∣∣R21 R22

V21 V22

∣∣∣∣∣
,
∫ Lπ

0

Q1(x)dx =

∣∣∣∣∣R21 − Lπ

2
R̃2

V21 − Lπ

2
Ṽ2

∣∣∣∣∣∣∣∣∣∣R21 R22

V21 V22

∣∣∣∣∣
. (52)

Step 3: Compute
∫ Lπ

0
P1(x)cos 2kx

L
dx and

∫ Lπ

0
Q1(x)cos 2kx

L
dx.

Multiplying (35) by cos 2kx
L

, one yields⎧⎪⎨⎪⎩
0 = d1

∫ Lπ

0
P′′

1(x)cos 2kx
L

dx + ∫ Lπ

0
�(x)cos 2kx

L
dx + ∫ Lπ

0
R2(x)cos 2kx

L
dx,

0 = d2

∫ Lπ

0
Q′′

1(x) + ∫ Lπ

0
V2(x)cos 2kx

L
dx,

P′
1(x) = Q′

1(x) = 0.

(53)

We can obtain

d1

∫ Lπ

0

P′′
1(x)cos

2kx

L
dx = −4d1δ

2
k

∫ Lπ

0

P1(x)cos
2kx

L
dx, (54)
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d2

∫ Lπ

0

Q′′
1(x)cos

2kx

L
dx = −4d2δ

2
k

∫ Lπ

0

Q1(x)cos
2kx

L
dx, (55)

∫ Lπ

0

�(x)cos
2kx

L
dx = 4ξ S

k φ(P∗)δ2
k

∫ Lπ

0

Q1(x)cos
2kx

L
dx + δ2

k Lπ

2
ξ S

k φPk (P∗)αk, (56)

∫ Lπ

0

R2(x)cos
2kx

L
dx =R21

∫ Lπ

0

P1(x)cos
2kx

L
dx +R22

∫ Lπ

0

Q1(x)cos
2kx

L
dx + Lπ

4
R̃2, (57)

and ∫ Lπ

0

V2(x)cos
2kx

L
dx = V21

∫ Lπ

0

P1(x)cos
2kx

L
dx + V22

∫ Lπ

0

Q1(x)cos
2kx

L
dx + Lπ

4
Ṽ2. (58)

Then, submitting (54)–(58) into (53), one gets

0 = (R21 − 4d1δ
2
k

) ∫ Lπ

0

P1(x)cos
2kx

L
dx + (R22 + 4ξ S

k φ(P∗)δ
2
k

)
∫ Lπ

0

Q1(x)cos
2kx

L
dx + δ2

k Lπ

2
ξ S

k φPk (P∗)αk + Lπ

4
R̃2,

and

0 = V21

∫ Lπ

0

P1(x)cos
2kx

L
dx +

(
V22 − 4d2k2

L2

) ∫ Lπ

0

Q1(x)cos
2kx

L
dx + Lπ

4
Ṽ2.

We thereby obtain(
R21 − 4d1δ

2
k R22 + 4ξ S

k φ(P∗)δ2
k

V21 V22 − 4d2δ
2
k

)( ∫ Lπ

0
P1(x)cos 2kx

L
dx∫ Lπ

0
Q1(x)cos 2kx

L
dx

)
=

⎛⎜⎝−δ2
k Lπ

2
ξ S

k φPk (P∗)αk − Lπ

4
R̃2

−Lπ Ṽ2

4

⎞⎟⎠ .

Therefore, one achieves

∫ Lπ

0

P1(x)cos
2kx

L
dx =

∣∣∣∣∣∣∣
−δ2

k Lπ

2
ξ S

k φPk (P∗)αk − Lπ

4
R̃2 R22 + 4ξ S

k φ(P∗)δ
2
k

−Lπ Ṽ2

4
V22 − 4d2δ

2
k

∣∣∣∣∣∣∣∣∣∣∣∣R21 − 4d1δ
2
k R22 + 4ξ S

k φ(P∗)δ2
k

V21 V22 − 4d2δ
2
k

∣∣∣∣∣
, (59)

and

∫ Lπ

0

Q1(x)cos
2kx

L
dx =

∣∣∣∣∣∣∣
R21 − 4d1δ

2
k −δ2

k Lπ

2
ξ S

k φPk (P∗)αk − Lπ

4
R̃2

V21 −Lπ Ṽ2

4

∣∣∣∣∣∣∣∣∣∣∣∣R21 − 4d1δ
2
k R22 + 4ξ S

k φ(P∗)δ2
k

V21 V22 − 4d2δ
2
k

∣∣∣∣∣
. (60)

Clearly, ξ2 could be obtained by submitting (45), (52), (59), and (60) into (41).
Let ξ S

k0
= maxk∈N0\{0}ξ S

k (see also Lemma 3.1), then the validity of the second part of Theorem 1.4
can be confirmed. Now, owing to Corollary 1.13 of [9], there exists an interval I with ξ S

k0
∈ I and C1−

smooth function (ξ , ε):I × (−�, �) −→ (λ1(ξ ), λ2(ε)) with λ1(ξ S
k0

) = λ2(0) = 0 and

D(P,Q)F(P∗, Q∗, ξ )(P, Q) = λ1(ξ )(P, Q), (61)
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and

D(P,Q)F(Pk(ε, x), Qk(ε, x), ξ S
k (ε))(P, Q) = λ2(ε)(P, Q), (62)

for (P, Q) ∈ X × X. It is not difficult to find that λ1(ξ ) and λ2(ε) are eigenvalues of (61) and (62), respec-
tively. The eigenfunction of the problem (61) could be represented by (P(x, ξ ), Q(x, ξ )) and is uniquely
described by(P(x, ξ S

k0
), Q(x, ξ S

k0
)) = (

cos k0x
L

, αk0cos k0x
L

)
. Also, (P(x, ξ ), Q(x, ξ )) − (

cos k0x
L

, αk0cos k0x
L

) ∈K
is valid. Now from (6), we know that (61) takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d1P′′ − ξ (φ(P∗)Q
′)′ − bc2P∗

(cP∗ + eQ∗)2
P +

[
dP∗ − bceP∗

(cP∗ + eQ∗)2

]
Q = λ1(ξ )P,

d2Q′′ −
[

dQ∗ + bceQ∗
(cP∗ + eQ∗)2

]
P − be2Q∗

(cP∗ + eQ∗)2
Q = λ1(ξ )Q,

P′ = Q′ = 0.

(63)

Differentiating (63) with respect to ξ and then setting ξ = ξ S
k0

, one has⎧⎪⎪⎪⎨⎪⎪⎪⎩
d1Ṗ′′ − αk0φ(P∗)

(
cos

k0x

L

)′′
− ξ S

k0
φ(P∗)Q̇

′′ + fPṖ + fQQ̇ = λ̇1(ξ
S
k0

)cos
k0x

L
,

d2Q̇′′
2 + gPṖ + gQQ̇ = λ̇1(ξ

S
k0

)αk0cos
k0x

L
,

Ṗ′ = Q̇′ = 0,

(64)

where

fP = − bc2P∗
(cP∗ + eQ∗)2

, fQ = dP∗ − becP∗

(cP∗ + eQ∗)2
, gP = −dQ∗ − bceQ∗

(cP∗ + eQ∗)2
, gQ = − be2Q∗

(cP∗ + eQ∗)2
.

As a result, multiplying (64) by cos k0x
L

, we have

(
fP − d1δ

2
k0

fQ + δ2
k0
ξ S

k0
φ(P∗)

gP gQ − d2δ
2
k0

)⎛⎜⎜⎝
∫ Lπ

0

Ṗcos
k0x

L
dx∫ Lπ

0

Q̇cos
k0x

L
dx

⎞⎟⎟⎠=
⎛⎜⎝ λ̇1(ξ

S
k0

)
Lπ

2
− δ2

k0
αk0φ(P∗)Lπ

2

λ̇1(ξ
S
k0

)αk0

Lπ

2

⎞⎟⎠ . (65)

Obviously, the coefficient matrix in (65) is singular since ξ = ξ S
k0

. This implies that

fP − d1δ
2
k0

gP

= λ̇1(ξ S
k0

) − δ2
k0
αk0φ(P∗)

λ̇1(ξ S
k0

)αk0

.

Consequently, one obtains

λ̇1(ξ
S
k0

) = − δ2
k0
αk0φ(P∗)gP

(fP − d1δ
2
k0

)αk0 − gP

< 0.

Using Theorem 1.16 of [9], λ2(ε) and −εξ ′S
k0

(ε)λ̇1(ξ S
k0

) have the same sign near ε = 0. As a result,
we can compute Sign(λ2(ε)) = Sign(−εξ ′S

k0
(ε)λ̇1(ξ S

k0
)) = Sign(−2ε2ξ2λ̇1(ξ S

k0
)) = Sign(ξ2). This means that

the bifurcating solution Sk0 (ε) = (Pk0 (ε, x), Qk0 (ε, x)) is asymptotically stable when ξ2 < 0 and it is
unstable when ξ2 > 0 for ε ∈ (−�, �). The proof readily follows.

4. Numerical simulations

In this section, we will describe the numerical solution algorithms to solve the IGP-type predator–prey
model (1). We shall conduct various computational simulations to confirm the validity of Theorem 1.4.
Our main aim is to perform simulations for the stable nonconstant steady states around the steady state
bifurcation onset ξ = ξ S

k0
. More precisely, we want to find not only the nonconstant steady states in

https://doi.org/10.1017/S0956792525000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000087


24 M. Chen et al.

traditional 1D and 2D domains but also on spherical and torus surfaces. Now, some specific parameters
in (1) are fixed

e = 1, α = 1.5, c = 1, β = 0.2, h = 0.05, d = 0.85, b = 0.65, d1 = 0.85, d2 = 0.5. (66)

4.1 Nonconstant steady states exist in 1D space

Let us consider a one-dimensional space � = (0, Lx). By using a cell-centered grid, the uniform discrete
computational domain is defined as �d = {

xi|(i − 0.5)�x, 1 ≤ i ≤ Nx

}
, where �x = Lx/Nx and Nx is the

number of discrete points. Numerical approximations P(xi, n�t) and Q(xi, n�t) are denoted by Pn
i and

Qn
i , respectively. Here, �t is time step size and n = 0, 1, · · · . On the discrete computational domain �d,

the IGP-type predator–prey model (1) can be discretized using the explicit Euler method as follows:⎧⎪⎪⎨⎪⎪⎩
Pn+1

i − Pn
i

�t
= d1�dPn

i − ∇d · (ξφ(Pn
i )∇dQn

i

)+ Pn
i

(
bc

cPn
i + eQn

i

+ dQn
i − α

)
,

Qn+1
i − Qn

i

�t
= d2�dQn

i + Pn
i

(
be

cPn
i + eQn

i

− dPn
i − β

)
− hQn

i ,

where �dPn
i = (Pn

i+1 − 2Pn
i + Pn

i−1)/�x2 and �dQn
i = (Qn

i+1 − 2Qn
i + Qn

i−1)/�x2 are the discrete
Laplacian operators [23]. We use the conservative discretization for the term ∇d · (ξφ(Pn

i )∇dQn
i

)
as

follows:

∇d · (ξφ(Pn
i )∇dQn

i

)= ξ

�x2

[
φ(Pn

i+ 1
2
)(Qn

i+1 − Qn
i ) − φ(Pn

i− 1
2
)(Qn

i − Qn
i−1,j)

]
,

where Pi+ 1
2
= (Pi+1,j + Pi)/2 and Pi− 1

2
= (Pi + Pi−1)/2.

We numerically solve the model (1) to validate the nonconstant steady-state solution in a one-
dimensional space � = (0, 8π ) with Nx = 256 points, a uniform spatial grid size of �x = 8π/Nx, and a
time step of �t = 0.2�x2. First, let us take the density function φ(P) = P. Clearly, the assumption (H2)
is satisfied. Next, we choose the parameters in (66) and the spatial domain � = (0, 8π ). Then, we know
that (H3) holds, namely, there is a unique positive equilibrium E∗ = (0.2259, 1.2447) and

ξ S
1 ≈ −41.2976, ξ S

2 ≈ −11.2173, ξ S
3 ≈ −5.7382, ξ S

4 ≈ −3.9282, ξ S
5 ≈ −3.2087,

ξ S
6 ≈ −2.9433, ξ S

7 ≈ −2.9140, ξ S
8 ≈ −3.0297, ξ S

9 ≈ −3.2469, ξ S
10 ≈ −3.5427,

ξ S
11 ≈ −3.9040, ξ S

12 ≈ −4.3231, ξ S
13 ≈ −4.7950, ξ S

14 ≈ −5.3165, · · · .

Consequently, we have ξ S
k0

= maxk∈N0\{0}ξ S
k = −2.9140. To display the stable nonconstant steady

states, we choose −3.5 = ξ < ξ S
k0

and the initial data (P0(x), Q0(x)) = (0.2259 − 0.02cos
(

7x
8

)
, 1.2447 −

0.02cos
(

7x
8

)
). Our numerical simulations indicate that there are stable nonconstant steady states, see

Figure 1, where pictures (a)–(b) for predator P(x, t) and prey Q(x, t) and picture (c) for their space series
diagrams.

In the sequel, we assume that the density function φ(P) satisfies the saturated effect, i.e., one takes
φ(P) = P

1+P
. We can show that φ(P) = P

1+P
< P and the condition (H2) is satisfied. For the parameters

performed in (66) and the spatial length � = (0, 8π ). Then, we know that (H3) holds, namely, there
exists a unique positive equilibrium E∗ = (0.2259, 1.2447) and

ξ S
1 ≈ −50.6260, ξ S

2 ≈ −13.7511, ξ S
3 ≈ −7.0343, ξ S

4 ≈ −4.8155, ξ S
5 ≈ −3.9335,

ξ S
6 ≈ −3.6082, ξ S

7 ≈ −3.5722, ξ S
8 ≈ −3.7141, ξ S

9 ≈ −3.9803, ξ S
10 ≈ −4.3429,

ξ S
11 ≈ −4.7858, ξ S

12 ≈ −5.2996, ξ S
13 ≈ −5.8781, ξ S

14 ≈ −6.5174, · · · .
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Figure 1. Taking the density function φ(P) = P, ξ = −3.5 and the other parameters are
fixed in (66), system (1) admits the stable nonconstant steady states, where the initial data
(P0(x), Q0(x)) = (0.2259 − 0.02cos( 7x

8
), 1.2447 − 0.02cos( 7x

8
)).

(a) (b)
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Figure 2. Taking the density function φ(P) = P
1+P

, ξ = −3.75 and the other parameters are
fixed in (66), system (1) admits the stable nonconstant steady states, where the initial data
(P0(x), Q0(x)) = (0.2259 − 0.02cos( 7x

8
), 1.2447 − 0.02cos( 7x

8
)).

Accordingly, ξ S
k0

= maxk∈N0\{0}ξ S
k = −3.5722. To display the stable nonconstant steady states, we choose

−3.75 = ξ < ξ S
k0

and the initial data (P0(x), Q0(x)) = (0.2259 − 0.02cos
(

7x
8

)
, 1.2447 − 0.02cos

(
7x
8

)
).

Then, the numerical simulations show that there are stable nonconstant steady states because the density
function φ(P) takes the saturated form, see Figure 2, where pictures (a)–(b) for predator P(x, t) and prey
Q(x, t) and picture (c) for their space series diagrams.

Next, let us suppose that the density function φ(P) with the Ricker effect, specifically, φ(P) = Pe−P.
Clearly, the condition (H2) is satisfied. Now, we maintain the same parameters and the spatial length as
in Figures 1 and 2. Then, the unique positive equilibrium E∗ = (0.2259, 1.2447) and

ξ S
1 ≈ −51.7636, ξ S

2 ≈ −14.0601, ξ S
3 ≈ −7.1924, ξ S

4 ≈ −4.9237, ξ S
5 ≈ −4.0219,

ξ S
6 ≈ −3.6892, ξ S

7 ≈ −3.6525, ξ S
8 ≈ −3.7975, ξ S

9 ≈ −4.0697, ξ S
10 ≈ −4.4405,

ξ S
11 ≈ −4.8934, ξ S

12 ≈ −5.4187, ξ S
13 ≈ −6.0102, ξ S

14 ≈ −6.6639, · · · .

It is found that ξ S
k0

= maxk∈N0\{0}ξ S
k = −3.6525. We choose −3.85 = ξ < ξ S

k0
and the initial data

(P0(x), Q0(x)) = (0.2259 − 0.02cos
(

7x
8

)
, 1.2447 − 0.02cos

(
7x
8

)
). Then, numerical simulations show

that there are stable nonconstant steady states, as shown in Figure 3, where pictures (a)–(b) for predator
P(x, t) and prey Q(x, t) and picture (c) for their space series diagrams.
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(a) (b)

0 5 10 15 20 25
0

0.5

1

1.5

2
(c)

Figure 3. Taking the density function φ(P) = Pe−P, ξ = −3.85 and the other parameters are
fixed in (66), system (1) admits the stable nonconstant steady states, where the initial data
(P0(x), Q0(x)) = (0.2259 − 0.02cos( 7x

8
), 1.2447 − 0.02cos( 7x

8
)).

4.2 Nonconstant steady states exist in 2D space

In this subsection, we investigate nonconstant steady states in the two-dimensional computa-
tional domain � = (0, Lx) × (0, Ly). We define the discrete computational domain �d = {

(xi, yj)|(
(i − 0.5)�x, (j − 0.5)�y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
, where �x = Lx/Nx and �y = Ly/Ny; and Nx and

Ny are the number of grid points in the x- and y-directions, respectively. Numerical approximations
P(xi, yj, n�t) and Q(xi, yj, n�t) are denoted by Pn

ij and Qn
ij, respectively. Here, �t is time step size

and n = 0, 1, · · · . By using the explicit Euler method, the IGP-type predator– prey model (1) in the
two-dimensional domain can be discretized as follows:⎧⎪⎪⎨⎪⎪⎩

Pn+1
ij − Pn

ij

�t
= d1�dPn

ij − ∇d · (ξφ(Pn
ij)∇dQn

ij) + Pn
ij

(
bc

cPn
ij + eQn

ij

+ dQn
ij − α

)
,

Qn+1
ij − Qn

ij

�t
= d2�dQn

ij + Qn
ij

(
be

cPn
ij + eQn

ij

− dPn
ij − β

)
− hQn

ij,
(67)

where the two-dimensional discrete Laplacian operators are defined as follows [24]:

�dPn
ij =

Pn
i+1,j − 2Pn

ij + Pn
i−1,j

�x2
+ Pn

i,j+1 − 2Pn
ij + Pn

i,j−1

�y2

and

�dQn
ij =

Qn
i+1,j − 2Qn

ij + Qn
i−1,j

�x2
+ Qn

i,j+1 − 2Qn
ij + Qn

i,j−1

�y2
.

We use the conservative form to define the term ∇d · (ξφ(Pn
ij)∇dQn

ij) as follows:

∇d · (ξφ(Pn
ij)∇dQn

ij) = ξ

[
1

�x2

{
φ(Pn

i+ 1
2 ,j

)(Qn
i+1,j − Qn

ij) − φ(Pn
i− 1

2 ,j
)(Qn

ij − Qn
i−1,j)

}
+ 1

�y2

{
φ(Pn

i,j+ 1
2
)(Qn

i,j+1 − Qn
ij) − φ(Pn

i,j− 1
2
)(Qn

ij − Qn
i,j−1)

}]
,

where Pi+ 1
2 ,j =

(
Pi+1,j + Pij

)
/2, Pi,j+ 1

2
= (

Pi,j+1 + Pij

)
/2, Pi− 1

2 ,j =
(
Pij + Pi−1,j

)
/2, Pi,j− 1

2
=(

Pij + Pi,j−1

)
/2. From Eqs. (67), we can obtain numerical solutions as⎧⎪⎪⎨⎪⎪⎩

Pn+1
ij = Pn

ij + �t

[
d1�dPn

ij − ∇d · (ξφ(Pn
ij)∇dQn

ij) + Pn
ij

(
bc

cPn
ij + eQn

ij

+ dQn
ij − α

)]
,

Qn+1
ij = Qn

ij + �t

[
d2�dQn

ij + Qn
ij

(
be

cPn
ij + eQn

ij

− dPn
ij − β

)
− hQn

ij

]
.
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Figure 4. From top to bottom rows, temporal evolutions of patterns for P and Q. Taking the density func-
tion φ(P) = P, ξ = −3.5 and the other parameters are fixed in (66), system (1) admits the nonconstant
steady states with the initial data (68).

For the two-dimensional numerical simulations, discrete l2-errors for P and Q are defined as

En
P =

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

(Pn
ij − Pn−1

ij )2 and En
Q =

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

(Qn
ij − Qn−1

ij )2,

respectively. We define the numerical steady states Ps and Qs when the average of errors is less than
a tolerance; 0.5(Es

P + Es
Q) < tol. In the following numerical experiments, we use a tolerance of tol =

1.953e-9. Now, we consider the following random perturbed initial condition:{
P(x, y, 0) = P∗ + 0.02rand(x, y),

Q(x, y, 0) = Q∗ + 0.02rand(x, y),
(68)

where rand(x, y) is a random variable between −1 and 1. We use a uniform mesh with Nx = Ny = 128,
�x = �y = 25/128 and time step �t = 0.2�x2 on the computational domain � = (0, 25) × (0, 25).

In Figure 4, we choose the density function φ(P) = P with the parameters in (66). As a consequence,
we have the critical value of the steady-state bifurcation as ξ S

k0
= −2.9140. Next, we set the prey-taxis

sensitivity constant ξ = −3.5 around the critical value ξ S
k0

. It is found that the spotted pattern occupies
the bounded domain � = (0, 25) × (0, 25) as time progresses.

Next, we suppose that the density function with the saturated form, φ(P) = P
1+P

in the IGP-type
predator–prey model (1). To observe the nonconstant steady state of the predator–prey model (1) under
this density function, we set the parameters as in (66). In this case, the critical value of the onset of steady
state bifurcation is ξ S

k0
= −3.5722. Now, we set the prey-taxis sensitivity coefficient as ξ = −3.75. Using

these parameters, a combination of stripe and spot patterns (mixed patterns) can be found in the bounded
domain � = (0, 25) × (0, 25), as shown in Figure 5.

We would like to mention that a similar pattern formation can be shown in Figure 6, where we choose
the density function φ(P) = Pe−P when choosing the parameter (66) and ξ = −3.85.
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Figure 5. From top to bottom rows, temporal evolutions of patterns for P and Q. Taking the density func-
tion φ(P) = P

1+P
, ξ = −3.75 and the other parameters are fixed in (66), system (1) admits the nonconstant

steady states with the initial data (68).

Figure 6. From top to bottom rows, temporal evolutions of patterns for P and Q. Taking the den-
sity function φ(P) = Pe−P, ξ = −3.85 and the other parameters are fixed in (66), system (1) admits the
nonconstant steady states with the initial data (68).
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Figure 7. Schematic visualizations: (a) triangulated mesh of discretized spherical surface Sd, (b) sur-
rounding one-ring surface points set for xi, (c) triangles Tj and Tj+ featuring the angles αij and βij+ and
(d) vertex xi and its corresponding area A(xi).

4.3 Nonconstant steady states on spherical and torus surfaces

In this subsection, we will perform the nonconstant steady states of the IGP-type predator–prey model
(1) on both spherical and torus surfaces. To this end, let us first illustrate the discrete computational
domains for the spherical and torus surfaces. On a closed smooth surface S, to numerically investigate
pattern formations of the governing system, a triangular surface mesh Sd is used, see Figure 7 (a). We
discretize the Laplace–Beltrami operator using an approach in [10, 17]. We define a surface point set
{xi}m

i=1 = {x1, x2, x3, . . . , xm} on a triangular surface mesh Sd. Then, each vertex point xi has one-ring
triangular surface points with an index set I(i) = {i1, i2, · · · , ip} with i1 = ip, see Figure 7(b).

The discrete numerical approximation is denoted as Pn
i = P(xi, n�t), where �t is the time step size.

We discretize the IGP-type predator–prey model (1) as follows:⎧⎪⎪⎨⎪⎪⎩
Pn+1

i − Pn
i

�t
= d1�SPn

i − ∇S · (ξφ(Pn
i )∇SQn

i

)+ Pn
i

(
bc

cPn
i + eQn

i

+ dQn
i − α

)
,

Qn+1
i − Qn

i

�t
= d2�SQn

i + Qn
i

(
be

cPn
i + eQn

i

− dPn
i − β

)
− hQn

i .

Here, we consider the discrete Laplace–Beltrami operator defined as

�SPi = 3

A(xi)

∑
j∈I(i)

cot αij + cot βij

2
(Pj − Pi) and �SQi = 3

A(xi)

∑
j∈I(i)

cot αij + cot βij

2
(Qj − Qi),

where A(xi) is the cumulative area for the individual triangles Tj centered around surface point xi

(Figure 7(d)):

A(xi) =
∑
j∈I(i)

√
||xj − xi||2||xj+ − xi||2 − (

xj − xi, xj+ − xi

)2

2
.

The discrete divergence term ∇S · (ξφ(Pi)∇SQi) is approximated using a conservative form as follows:

∇S · (ξφ(Pi)∇SQi) = 3ξ

A(xi)

∑
j∈I(i)

cot αij + cot βij

2
φ

(
Pj + Pi

2

)
(Qj − Qi).

In the following numerical experiments, for the numerical simulations on triangular surfaces, we use
the following randomly perturbed initial condition:{

P(xi, 0) = P∗ + 0.02rand(xi),

Q(xi, 0) = Q∗ + 0.02rand(xi),
(69)

where rand(xi) is the uniformly distributed random perturbation between −1 and 1.
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Figure 8. From top to bottom rows, temporal evolutions for patterns of P and Q on the spherical surface.
Taking the density function φ(P) = P, ξ = −3.65 and the other parameters are fixed in (66), system (1)
admits the nonconstant steady states with the initial data (69).

4.3.1 Nonconstant steady states on the spherical surface
We consider a triangulated spherical surface mesh Sd with a radius value r = 15 and the number of
triangulated spherical surface points is 16590.

In Figure 8, we choose the density function φ(P) = P and parameter (66) in the IGP-type predator–
prey model (1). Based on the theoretical analysis, we have the critical value of the steady state bifurcation
to be ξ S

k0
= −2.9140. Accordingly, we take the prey-taxis sensitivity parameter ξ = −3.65. Considering

these known parameters, we can observe that spot patterns can be formed on the spherical surface as
time progresses.

Next, let us consider the density function φ(P) = P
1+P

in the IGP predator–prey model (1) and fix
the parameters in (66) and d2 = 0.5. Through direct calculation, we have the steady-state bifurcation
threshold as ξ S

k0
= −3.5722. Thus, we take ξ = −3.75 in proximity to the onset ξ S

k0
= −3.5722. Our

numerical simulations demonstrate that the IGP-type predator–prey model (1) exhibits mixed stripe and
spot patterns on the spherical surface, as shown in Figure 9.

Finally, one takes the Ricker form density function φ(P) = Pe−P in the IGP predator–prey model (1).
Moreover, the parameters are set in (66). As a consequence, we obtain the threshold for the steady-
state bifurcation to be ξ S

k0
= −3.6525. Taking the prey-taxis coefficient to ξ = −3.85, our numerical

simulation results suggest that the IGP predator–prey model (1) exhibits mixed patterns on the spherical
surface, as shown in Figure 10.

4.3.2 Nonconstant steady states on the torus surface
Now, we will explore the nonconstant steady states of the IGP-type predator–prey model (1) on the tour’s
surface. To this end, let us consider a triangulated torus surface mesh Sd, which has a major radius (the
distance from the center of the tube to the center of the torus) value of R = 15, a minor radius (radius of
the tube) value of r = 20, and the number of triangulated spherical surface points is 16544.

In Figure 11, we take the density function φ(P) = P and the parameters fixed in (66) in the IGP
predator–prey model (1). We can get the critical value of the steady-state bifurcation as ξ S

k0
= −2.9140.

https://doi.org/10.1017/S0956792525000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000087


European Journal of Applied Mathematics 31

Figure 9. From top to bottom rows, temporal evolutions for patterns of P and Q on the spherical surface.
Taking the density function φ(P) = P

1+P
, ξ = −3.75 and the other parameters are fixed in (66), system

(1) admits the nonconstant steady states with the initial data(69).

Figure 10. From top to bottom rows, temporal evolutions for pattern formation of P and Q on the
spherical surface. Taking the density function φ(P) = Pe−P, ξ = −3.85 and the other parameters are
fixed in (66), system (1) admits the nonconstant steady states with the initial data (69).

Now, let us keep the prey-taxis sensitivity coefficient ξ = −3.65, then there exist the spot patterns of the
IGP predator–prey model (1) on the torus surface.

Figure 12 suggests that the IGP predator–prey model (1) possesses the mixed patterns on the torus
surface when choosing the saturated form density function φ(P) = P

1+P
and the parameter values in (66)

and ξ = −3.75.
Similar pattern formations on the torus surface can be found in Figure 13, where one adopts the

Ricker-type density function φ(P) = Pe−P and the parameter values in (66) and ξ = −3.85.
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Figure 11. From top to bottom rows, temporal evolutions for patterns of P and Q on the torus surface.
Taking the density function φ(P) = P, ξ = −3.65 and the other parameters are fixed in (66), system
(1)admits the nonconstant steady states with the initial data (69).

Figure 12. From top to bottom rows, temporal evolutions for patterns of P and Q on the torus surface.
Taking the density function φ(P) = P

1+P
, ξ = −3.75 and the other parameters are fixed in (66), system

(1) admits the nonconstant steady states with the initial data (69).

Figure 13. From top to bottom rows, temporal evolutions for patterns of P and Q on the torus surface.
Taking the density function φ(P) = Pe−P, ξ = −3.85 and the other parameters are fixed in (66), system
(1) admits the nonconstant steady states with the initial data (69).

4.4 Influence of the harvesting coefficient h

Now, we keep the same density function φ(P) and parameters in Figure 3 (see also Figures 6,10,13) but
change the harvesting coefficient h to display how the harvesting coefficient h will affect the pattern for-
mation dynamics of the IGP-type predator–prey model (1). When there is no harvesting effect, namely,
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(a) (b) (c)

(d) (e) (f)

Figure 14. Influence of the harvesting coefficient h when φ(P) = Pe−P, where we
choose e = 1.0, α = 1.5, c = 1, β = 0.2, d = 0.85, b = 0.65, d1 = 0.85, d2 = 0.5, ξ = −3.85 and the
initial data are (P0(x), Q0(x)) = (P∗ − 0.02cos( 7x

8
), Q∗ − 0.02cos( 7x

8
)).

h = 0, system (1) exhibits the nonconstant steady states (stripe patterns), see picture (a) of Figures 14–
16, respectively. Similar pictures can be found in pictures (b) and (c) of Figures 14–16. A clear fact
is that the stripe patterns (nonconstant steady states) gradually diminish as the harvesting coefficient h
progressively increases.

As the harvesting coefficient h increases, the stripe patterns gradually disappear, as shown in
Figures 14(d)–(f), 15(d)–(f), and 16(d)–(f). In fact, with the continuous increase of the harvesting coef-
ficient h, ξ = −3.85 gradually moves further away from the steady-state bifurcation threshold (see
Figures 3, 10, 13), this leads to the change of the patterns in Figure 14, Figure 15, and Figure 16.
Consequently, prey harvesting plays an important role in inducing spatial patterns. Ecologically, over-
harvesting for prey or predators is not advisable, it can lead to an ecological imbalance due to a significant
reduction in population numbers. However, harvesting within a certain range is a feasible approach. This
harvesting strategy is consistent with reality.

In summary, we have displayed the emergence of nonconstant steady states in 1D and 2D spaces,
as well as on the spherical and torus surfaces. These numerical results are in good agreement with
our previous theoretical analysis. Moreover, we can conclude that prey-taxis and harvesting effects will
induce wealthy pattern dynamics for the IGP-type predator–prey model.

5. Discussions

This paper reports the existence of the classical solution and spatiotemporal dynamics of an IGP-type
predator–prey model incorporating both harvesting and prey-taxis. First, we discuss the local-in time and
global existence of the classical solution (P(x, t), Q(x, t)) of the IGP-type predator–prey model (1) in
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(a) (b) (c)

(d) (e) (f)

Figure 15. Influence of the harvesting coefficient h on the spherical surface when φ(P) = Pe−P, where
e = 1.0, α = 1.5, c = 1, β = 0.2, d = 0.85, b = 0.65, d1 = 0.85, d2 = 0.5, ξ = −3.85 and the initial data
is (69).

(a) (b) (c)

(d) (e) (f)

Figure 16. Influence of the harvesting coefficient h on the torus surface when φ(P) = Pe−P, where
e = 1.0, α = 1.5, c = 1, β = 0.2, d = 0.85, b = 0.65, d1 = 0.85, d2 = 0.5, ξ = −3.85 and the initial data
is (69).

N-dimensional space by virtue of some estimates, Amann’s theorem, and Neumann heat semigroup
theory. Especially, it is found that the classical solution (P(x, t), Q(x, t)) of IGP-type predator–prey
model (1) exists for small prey-taxis sensitivity coefficient ξ as the dimension of space N is large, see
Theorem 1.1. Thereafter, we explore the steady-state bifurcation of the model (1). To this end, the sta-
bility analysis of the positive equilibrium E∗ is first discussed, see Theorem 1.2. Our theoretical result
demonstrates that the unique positive equilibrium E∗ is locally asymptotically stable for any ξ ≥ 0 and
the predator–prey model (1) suffers from the steady-state bifurcation when ξ = ξ S

k , where ξ S
k < 0 for all

k ∈N0. Accordingly, the repulsive prey-taxis could destabilize the spatial homogeneity of the IGP-type
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predator–prey model (1), while the attractive prey-taxis effect will stabilize the spatial homogeneity.
It is not difficult to find that there only is self-diffusion involved in the system (1) when ξ = 0. Self-
diffusion means that the movements of both predators and prey are random. For this case, the unique
positive equilibrium E∗ always keeps its local asymptotic stability. This implies that predators and prey
will coexist and random movement can not change the stable structure of the system (1). However, such
a homogeneous stable status can be destroyed by integrating the prey-taxis into the system (1).

In what follows, with the help of the Crandall–Rabinowitz local bifurcation theory, we respectively
establish the existence and stability of the bifurcating solution, which resulted from the steady state
bifurcation, see Theorem 1.3 and Theorem 1.4, respectively. Finally, numerical experiments are con-
ducted to verify our theoretical analysis by choosing the different density functions φ(P). In light of the
theoretical results, we find the stripe patterns of the IGP predator–prey model (1) in the 1D domain (see
Figures 1–3) and the spot patterns and stripe-spot mixed patterns in the 2D domain (see Figures 4–6).
Interestingly, these complicated pattern formations can also be observed on the spherical surface (see
Figures 8–10) and torus surface (see Figures 11–13). These numerical results are in good agreement
with the theoretical analysis. Of course, one plots Figures 14–16 to explore the influence of the harvest-
ing effect of the IGP-type predator–prey model (1). It is found that the spatial patterns will gradually
disappear with the continuous increase of the harvesting coefficient h. This phenomenon may enlighten
us that over-harvesting for prey or predators is not advisable, which will lead to ecological imbalance due
to the drastic reduction in population numbers. Overall, we can conclude that this IGP-type predator–
prey model with the prey-taxis and harvesting effects will perform the wealthy and interesting dynamic
profiles. These results may be useful for exploring and understanding the complex dynamical evolution
among different populations in a harvesting and prey-taxis environment.
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[4] Blé, G., Castellanos, V. & Hernandez, I. L. (2022) Stable limit cycles in an intraguild predation model with general functional

responses. Math. Meth. Appl. Sci 45, 2219–2233.
[5] Capone, F., Carfora, M. F., De Luca, R. & Torcicollo, I. (2018) On the dynamics of an intraguild predator-prey model. Math.

Comput. Simul 149, 17–31.
[6] Chen, M. X. & Srivastava, H. M. (2023) Existence and stability of bifurcating solution of a chemotaxis model. Proc. Amer.

Math. Soc. 151(11), 4735–4749.
[7] Chen, M. X. & Wu, R. C. (2023) Dynamics of a harvested predator-prey model with predator-taxis. Bull. Malay. Math. Soc

46(2), 76.
[8] Crandall, M. G. & Rabinowitz, P. H. (1971) Bifurcation for simple eigenvalus. J. Funct. Anal. 8(2), 321–340.
[9] Crandall, M. G. & Rabinowitz, P. H. (1973) Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch.

Ration. Mech. Anal. 52(2), 161–180.

https://doi.org/10.1017/S0956792525000087 Published online by Cambridge University Press

https://doi.org/10.1007/978-3-663-11336-2_1
https://doi.org/10.1017/S0956792525000087


36 M. Chen et al.

[10] Desbrun, M., Meyer, M., Schroder, P. & Barr, A. H. (1999) Implicit fairing of irregular meshes using diffusion and curvature
flow. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques.

[11] Du, Y., Niu, B. & Wei, J. (2022) A predator-prey model with cooperative hunting in the predator and group defense in the
prey. Discret. Contin. Dyn. Syst. B 27(10), 5845–5881.

[12] Faria, T. (2000) Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Amer. Math. Soc.
352(5), 2217–2238.

[13] Hillen, T., Painter, K. J. & Winkler, M. (2013) Convergence of a cancer invasion model to a logistic chemotaxis model.
Math. Model. Meth. Appl. Sci. 23(01), 165–198.

[14] Holt, R. D. & Polis, G. A., 1997) A theoretical framework for intraguild predation. Amer. Nat. 149, 745–764.
[15] Horstmann, D. & Winkler, M. (2005) Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107.
[16] Huang, Y., Shi, W., Wei, C., et al. (2021) A stochastic predator-prey model with Holling II increasing function in the predator.

J. Biol. Dyn 15(1), 1–18.
[17] Hwang, Y., Ham, S., Lee, C., Lee, G., Kang, S. & Kim, J. (2023) A simple and efficient numerical method for the Allen–Cahn

equation on effective symmetric triangular meshes. Electron. Res. Arch 31(8), 4557–4578.
[18] Ingeman, K. E. & Novak, M. (2022) Effects of predator novelty on intraguild predation communities with adaptive prey

defense. Theor. Ecol. 15, 147–163.
[19] Ji, J. P., Lin, G. H., Wang, L., et al. (2022) Spatiotemporal dynamics induced by intraguild predator diffusion in an intraguild

predation model. J. Math. Biol 85(1), 1.
[20] Jiang, W. H., Wang, H. B. & Cao, X. (2019) Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg

systems with gene expression time delay. J. Dyn. Differ. Equ. 31(4), 2223–2247.
[21] Jin, H.-Y. & Wang, Z.-A. (2016) Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differ.

Equ 260(1), 162–196.
[22] Kong, F. Z., Ward, M. J. & Wei, J. C. (2024) Existence, stability and slow dynamics of spikes in a 1D minimal Keller-Segel

model with logistic growth. J. Nonlinear Sci 34(3), 51.
[23] Kwak, S., Kang, S., Ham, S., Hwang, Y., Lee, G. & Kim, J. (2023) An unconditionally stable difference scheme for the

two-dimensional modified Fisher–Kolmogorov–Petrovsky–Piscounov equation. J. Math. 2023, 1–14.
[24] Lee, C., Kim, S., Kwak, S., et al. (2023) Semi-automatic fingerprint image restoration algorithm using a partial differential

equation. AIMS Math. 8(11), 27528–27541.
[25] Ma, Z. P., Huo, H. F. & Xiang, H. (2020) Spatiotemporal patterns induced by delay and cross-fractional diffusion in a

predator-prey model describing intraguild predation. Math. Meth. Appl. Sci 43(8), 5179–5196.
[26] Mishra, P. & Wrzosek, D. (2022) Indirect taxis drives spatio-temporal patterns in an extended Schoener’s intraguild predator-

prey model. Appl. Math. Lett 125, 107745.
[27] Ohm, L. & Shelley, M. J. (2022) Weakly nonlinear analysis of pattern formation in active suspensions. J. Fluid Mech. 942,

A53.
[28] Olivares, E. G., Figueroa, S. V. & Palma, A. R. (2019) A simple Gause-type predator-prey model considering social

predation. Math. Meth. Appl. Sci 42(17), 5668–5686.
[29] Raw, S. N. & Tiwari, B. (2022) A mathematical model of intraguild predation with prey pefuge and competitive predators.

Int. J. Appl. Comput. Math 8(4), 157.
[30] Sen, D., Ghorai, S. & Banerjee, M. (2018) Complex dynamics of a three species prey-predator model with intraguild

predation. Ecol. Complex 34, 9–22.
[31] Shchekinova, E. Y., Loder, M. G. J., Boersma, M., et al. (2014) Facilitation of intraguild prey by its intraguild predator in a

three-species Lotka-Volterra model. Theoret. Popul. Biol 92, 55–61.
[32] Shen, W. X. & Xue, S. W. (2022) Forced waves of parabolic-elliptic Keller-Segel models in shifting environments. J. Dyn.

Differ. Equ 34(4), 3057–3088.
[33] Shi, J. P. & Wang, X. (2009) On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ.

246(7), 2788–2812.
[34] Shu, H. Y., Hu, X., Wang, L. & Watmough, J. (2015) Delay induced stability switch, multitype bistability and chaos in an

intraguild predation model. J. Math. Biol 71(6-7), 1269–1298.
[35] Wang, G. S. & Wang, J. F. (2020) Pattern formation in predator prey systems with consuming resource and prey-taxis. Appl.

Math. Lett 111, 106681.
[36] Wang, X. F. & Xu, Q. (2013) Spiky and transition layer steady states of chemotaxis systems via global bifurcation and

Helly’s compactness theorem. J. Math. Biol. 66(6), 1241–1266.
[37] Wu, S. N., Shi, J. P. & Wu, B. Y. (2016) Global existence of solutions and uniform persistence of a diffusive predator-prey

model with prey-taxis. J. Differ. Equ. 260(7), 5847–5874.

https://doi.org/10.1017/S0956792525000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000087


European Journal of Applied Mathematics 37

Appendix A

R0 =1

2
fPPP2

∗ + fPQP∗Q∗ + 1

2
fQQQ2

∗ + 1

3! fQQQQ3
∗ + 1

2
fPPQP2

∗Q∗ + 1

2
fPQQP∗Q

2
∗ + 1

3! fPPPP3
∗,

R1(x) =
[

fP + fQαk + fPPP∗ + fPQ(P∗αk + Q∗) + fQQQ∗αk + 1

2
fQQQQ2

∗αk

+1

2
fPPQP∗(2Q∗ + P∗αk) + 1

2
fPQQQ∗(2P∗αk + Q∗) + 1

2
fPPPP2

∗

]
cos

kx

L
,

R2(x) =fPP1(x) + fQQ1(x) + 1

2
fPP

(
2P∗P1(x) + cos2 kx

L

)
+ fPQ

(
P∗Q1(x) + Q∗P1(x) + αkcos2 kx

L

)
+ 1

2
fQQ

(
2Q∗Q1(x) + α2

k cos2 kx

L

)
+ 1

2
fQQQQ∗

(
α2

k cos2 kx

L
+ Q∗Q1(x)

)
+ 1

2
fPPQ

(
2Q∗P∗P1(x) + 2αkP∗cos2 kx

L
+ cos2 kx

L
+ P2

∗Q1(x)

)
+ 1

2
fPQQ

(
2Q∗P∗Q1(x) + 2αkQ∗cos2 kx

L
+ P∗α

2
k cos2 kx

L
+ Q2

∗P1(x)

)
+ 1

2
fPPPP∗

(
P∗P1(x) + cos2 kx

L

)
,

R3(x) =fPP

(
P∗P2(x) + P1(x)cos

kx

L

)
+ fPQ

(
P∗Q2(x) + Q1(x)cos

kx

L
+ αkP1(x)cos

kx

L
+ Q∗P2(x)

)
+ fQQ

(
αkQ1(x)cos

kx

L
+ Q∗Q2(x)

)
+ 1

3! fQQQ

(
3Q2

∗Q2(x) + α3
k cos3 kx

L
+ 5Q∗αkQ1(x)cos

kx

L

)
+ 1

2
fPPQ

[
2P∗Q∗P2(x) + 2Q∗P1(x)cos

kx

L
+ αkcos

kx

L

(
2P∗P1(x) + cos2 kx

L

)
+ 2P∗Q1(x)cos

kx

L

+P2
∗Q2(x)

]+ 1

2
fPQQ

[
2P∗Q∗Q2(x) + 2αkP∗Q1(x)cos

kx

L
+ cos

kx

L

(
2Q∗Q1(x) + α2

k cos2 kx

L

)
+2Q∗αkP1(x)cos

kx

L
+ Q2

∗P2(x)

]
+ 1

3! fPPP

[
3P∗P1(x)cos

kx

L
+ cos

kx

L

(
2P∗P1(x) + cos2 kx

L

)
+3P2

∗P2(x)
]+ fPP2(x) + fQQ2(x).

Appendix B

V0 =1

2
gPPP2

∗ + gPQP∗Q∗ + 1

2
gQQQ2

∗ + 1

3!gQQQQ3
∗ + 1

2
gPPQP2

∗Q∗ + 1

2
gPQQP∗Q2

∗ + 1

3!gPPPP3
∗,

V1(x) =
[

gP + gQαk + gPPP∗ + gPQ(P∗αk + Q∗) + gQQQ∗αk + 1

2
gQQQQ2

∗αk

+1

2
gPPQP∗(2Q∗ + P∗αk) + 1

2
gPQQQ∗(2P∗αk + Q∗) + 1

2
gPPPP2

∗

]
cos

kx

L
,

https://doi.org/10.1017/S0956792525000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000087


38 M. Chen et al.

V2(x) =gPP1(x) + gQQ1(x) + 1

2
gPP

(
2P∗P1(x) + cos2 kx

L

)
+ gPQ

(
P∗Q1(x) + Q∗P1(x) + αkcos2 kx

L

)
+ 1

2
gQQ

(
2Q∗Q1(x) + α2

k cos2 kx

L

)
+ 1

2
gQQQQ∗

(
α2

k cos2 kx

L
+ Q∗Q1(x)

)
+ 1

2
gPPQ

(
2Q∗P∗P1(x) + 2αkP∗cos2 kx

L
+ cos2 kx

L
+ P2

∗Q1(x)

)
+ 1

2
gPQQ

(
2Q∗P∗Q1(x) + 2αkQ∗cos2 kx

L
+ P∗α

2
k cos2 kx

L
+ Q2

∗P1(x)

)
+ 1

2
gPPPP∗

(
P∗P1(x) + cos2 kx

L

)
,

V3(x) =gPP

(
P∗P2(x) + P1(x)cos

kx

L

)
+ gPQ

(
P∗Q2(x) + Q1(x)cos

kx

L
+ αkP1(x)cos

kx

L
+ Q∗P2(x)

)
+ gQQ

(
αkQ1(x)cos

kx

L
+ Q∗Q2(x)

)
+ 1

3!gQQQ

(
3Q2

∗Q2(x) + α3
k cos3 kx

L
+ 5Q∗αkQ1(x)cos

kx

L

)
+ 1

2
gPPQ

[
2P∗Q∗P2(x) + 2Q∗P1(x)cos

kx

L
+ αkcos

kx

L

(
2P∗P1(x) + cos2 kx

L

)
+ 2P∗Q1(x)cos

kx

L

+P2
∗Q2(x)

]+ 1

2
gPQQ

[
2P∗Q∗Q2(x) + 2αkP∗Q1(x)cos

kx

L
+ cos

kx

L

(
2Q∗Q1(x) + α2

k cos2 kx

L

)
+2Q∗αkP1(x)cos

kx

L
+ Q2

∗P2(x)

]
+ 1

3!gPPP

[
3P∗P1(x)cos

kx

L
+ cos

kx

L

(
2P∗P1(x) + cos2 kx

L

)
+3P2

∗P2(x)
]+ gPP2(x) + gQQ2(x),

where

fPQ = d + ebc(cP∗ − eQ∗)

(cP∗ + eQ∗)3
, fQQ = 2e2bcP∗

(cP∗ + eQ∗)3
, fPP = − 2ebc2Q∗

(cP∗ + eQ∗)3
, fPPP = 6ebc3Q∗

(cP∗ + eQ∗)4
,

fPPQ = 2ebc2(2eQ∗ − cP∗)

(cP∗ + eQ∗)4
, fPQQ = 2e2bc(eQ∗ − 2cP∗)

(cP∗ + eQ∗)4
, fQQQ = − 6e3bcP∗

(cP∗ + eQ∗)4
,

gPP = 2ebc2Q∗
(cP∗ + eQ∗)3

, gPQ = ebc(eQ∗ − cP∗)

(cP∗ + eQ∗)3
− d, gQQ = − 2e2bcP∗

(cP∗ + eQ∗)3
, gPPP = − 6ebc3Q∗

(cP∗ + eQ∗)4
,

gPPQ = 2ebc2(cP∗ − 2eQ∗)

(cP∗ + eQ∗)4
, gPQQ = 2e2bc(2cP∗ − eQ∗)

(cP∗ + eQ∗)4
, gQQQ = 6e3bcP∗

(cP∗ + eQ∗)4
.

Cite this article: Chen M., Tian C., Ham S., Kim H. and Kim J. Impact of prey-taxis on a harvested intraguild predation predator–
prey model. European Journal of Applied Mathematics, https://doi.org/10.1017/S0956792525000087

https://doi.org/10.1017/S0956792525000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000087
https://doi.org/10.1017/S0956792525000087

	Introduction
	Existence and boundedness of classical solution
	Steady-state bifurcation
	Stability analysis
	Bifurcating solution: nonconstant steady state
	Existence
	Stability


	Numerical simulations
	Nonconstant steady states exist in 1D space
	Nonconstant steady states exist in 2D space
	Nonconstant steady states on spherical and torus surfaces
	Nonconstant steady states on the spherical surface
	Nonconstant steady states on the torus surface

	Influence of the harvesting coefficient h

	Discussions
	References
	Appendix A
	Appendix B

