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D E T E R M I N A T I O N O F [n0 ] B Y ITS S E Q U E N C E 
O F * D I F F E R E N C E S 

BY 

A. S. FRAENKEL, M. MUSHKIN, AND U. TASSA 

ABSTRACT. For any real number 6, let fe(
n)~ 

[(n + l)6]-[nd~\-[d] (n = l ,2 , . . . ) where [x] denotes the greatest 
integer not exceeding x. A method is given for computing fe from its 
first few terms. A similar method is given for computing the 
characteristic function gQ(n) of [n$]. The given methods converge 
rapidly, and generalize previous results of Bernoulli, Markorf, and 
Stolarsky. Note that either of the sequences fe and g0 determines 
the sequence [nO] in = 1, 2 , . . . ). 

1. Introduction. Johann Bernoulli and later André Markoff determined the 
values of a sequence of the form [nO] (n = 1, 2 , . . . ; 0 any irrational) by means 
of the differences f(n) = fe(n) = [(n + l)0]-[nO]-[0], where [x] is the integer 
part of x. Thus fe(n)e{0,1} for all n. They did this by using the partial 
quotients al9 a 2 , . . . of the simple continued fraction expansion of 6-
[0, al9 a2 . . . ], when 0 < 6 < 1. See [22]. 

In this note we shall compute these differences for any real number 6 by 
using the denominators qt of the convergents pjqt of 0. Since the qt grow 
exponentially faster than the partial quotients, convergence is that much faster. 
A related result is obtained for the characteristic function 

, v / v fl if there exists an integer m satisfying n = [m0~\ 
g(n) = ge(n) = \ 

l0 otherwise. 

2. Main results. If C = (cu c 2 , . . . ) is an infinite sequence, we denote its first 
t elements by (C, t) = ( c 1 ? . . . , ct). By (C, t)°° we denote the infinite concatena
tion of (C, t) with itself, namely (C, 0°° = ( c i , . . . , ct, c 1 ? . . . , c f , . . . ). Let O = 
(c{, c | , . . . ) be a family of sequences (/ = 1 , 2 , . . . ) . We say that lim,^, O = C, 
if for every i there exists j(i) such that c\ = c{ for all / > j(i). 

Let / be a positive integer, and T = {tb tl+1,...} a finite or infinite sequence 
of positive integers which is strictly increasing. Define Tn(C) recursively by 
T1(C) = (Qtir, Tn_ I + 1(O = ( T n _ l ( O , 0 " ( n > 0 . H T is infinite, let 7 ^ ( 0 = 
lim^oo Tn(C). The limit obviously exists. 

Let 0 = [ao, a l 9 . . . ] > 0 , where it is understood that aN is the last partial 
quotient if 6 = pNlqN is rational. Whenever we refer in the sequel to N, aN, pN 

or qN, it is understood that the corresponding 6 is rational, namely, 6 = pNlqN. 
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Since aN can be replaced by aN — 1,1 if aN > 1 and aN_1? 1 can be replaced by 
aN_! + l if aN = l (0^1) , we can choose N even or odd at will. Also /0(n + 
<ÏN) = /e(rc)> ge(n + pN) = ge(n) for every positive integer n, that is, fe,ge are 
periodic with periods qN, pN respectively (0 rational). Moreover, fe = fe+k for 
every integer k (0 real). In particular, fe = /0_[0]. If 0 is an integer, then clearly: 
(i) /e(n) = 0 for all n; (ii) g0(n) = l if and only if n = 0 (mod 0). Finally, 
g0(n) = l for all n if 0 < 1 . So /0 is non-trivial only if 0 is nonintegral and & 
only if 0 > 1 and 0 is non-integral. Hence we may assume without loss of 
generality that qN>l for computing /0, and pN, qN>l for computing g0. 
(Though we could assume p N > q N > l in the latter case, this will not be 
necessary.) 

For a given 0 > 0, let 

s = min{i : qt > 1}, r = min{i : pt > 1}. 

Note that s is well-defined if q N > 1 and r is well-defined if pN> 1. Of course 
both s and r are well-defined if 0 is irrational. Since 

P _ ! = l , P o = a 0 > P n = a n P n - l + P n - 2 ( « > 1 ) 

q _ l = 0 , < ? 0 = 1 , f̂n = ^ n ^ n - l + ^ n - 2 ( " ^ 1 ) , 

we have (for 0 > 0) s - 1 or 2, r = 0 , 1 , 2 or 3 (r = 0 or 1 for 0 > 1). We prove: 

THEOREM 1. Le? T=(qs, qs+1,... ) 6e a partial sequence of the denominators 
of the convergents of 0>O. 1/0 w irrational, then Too(/0) = /e. 1/ d = pNlqN is 
rational (qN>l) and N is even, then TN_s+1(fe) = fe. 

THEOREM 2. Lef T=(pr, p r + 1 , . . . ) 6e a partial sequence of the numerators of 
the convergents of 0>O. 7 / 0 is irrational, then Too(g0) = g0. If 0 = pN/qN is 
rational (pN, qN>l) and N is even, then Tn_r+1(g0) = g0. 

EXAMPLE. Let 0 = [1, 2, 3 ,1 , 2] = 36/25. Then 

p 0 = l , Pi = 3, p 2 = 1 0 , p 3 = 1 3 , p4 = 36 

q 0 = l , <7i = 2, q2 = 7, q3 = 9, q4 = 25, s = r = l , N = 4. 

n [n0] /0(n) g0(n) 
1 1 0 1 

2 2 1 1 

3 4 :. 0 

For fe we have T = (2, 7, 9, 25), and therefore Tt(f) = (01)°°, T2(/) = (OIOIOIO)", 
T3(/) = (010101001)°°, T4(/) = TN_s+1(f) = (0101010010101010010101010)00 = 
/. Similarly, for ge we have T= (3,10, 13,36), and so T^g) = (110)°°, 
T2(g) = (110110110ir , T3(g) = (1101101101110)", T4(g)=TN_r+1(g) = 
(11011011011101101101101110110110110ir = g. 

Theorem 1 was proved by K. B. Stolarsky [21] for the subset of irrational 
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algebraic numbers of the form 6 = [1, a, a,... ] = \{2 - a + Va2 + 4) (a any posi
tive integer), and Theorem 2 for the number 6 = [ 1 , 1 , 1 , . . . ] = \{\ + 75). Both 
results are extended here to all real numbers and short proofs are given. We 
remark that Stolarsky [21] gave two different proofs of his results and an 
extensive and useful bibliography on complementary sequences, especially 
those related to sequences of the form [na + y]. In the meantime we came 
across a few additional references. A subset of these are listed at the end at the 
suggestion of Stolarsky. 

3. Proofs. The proof of Theorem 1 is based on the fact that fe (q + qn ) = fe (q ) if q 
is not too large (see Corollary below). In fact for all q, fpjqn(q + qn) = fpjqn(q). 
This suggests use of approximation properties of the convergents of 6. 

LEMMA 1. Let pjqn(n > 0) be the n-th convergent of a real number 6 (n<N if 
6 is rational). Then 0<q<qn implies |q n _ 1 ^-p n _ 1 |< |<?0-p| for every integer p. 

This is a standard result in the theory of continued fractions. See e.g. [14, 
Theorem 7.13] (where it is stated for irrational 0). 

LEMMA 2. Suppose that n > 0 (n<N with N even if 6 is rational), and 
0<q<qn. Then [(q + tîn_1)0] = pn_1 + [ ^ ] . 

Proof. Consider the difference 8 = (q + qn-i)0-(pn_1 + [qd]). It suffices to 
show that 0 < 6 < 1, because then [ô] = 0, which is what the lemma claims. 

If n is even, Lemma 1 implies Q<pn_1-qn_16<q6-[q0'\<\. Thus 0<<5< 
l - ( p n _ 1 - q n _ 1 0 ) < l . If n is odd, then 0 < q n _ 1 ^ - p n _ 1 < l + [ q ( 9 ] - ^ , which 
implies 0 < 6 < 1 . If 0 is irrational, then 8<1. If 0 is rational, then n < N - l 
since N is even. Hence q + qn-i<qn + qn-i — <IN-I + <IN-2 — <?N- NOW 

s = x ± 0 = Pn-i + [qfl]+1
 = PN 

Since (pN, qN)=l, this implies q + qn_!>qN , a contradiction. Hence 8<1. 

COROLLARY. Suppose that n>0 ( n < N with N even if 6 is rational), and 
0<q<qn-l. Thenfe(q + qn_1) = fe(q). 

Proof. By Lemma 2, /o(9 + qn_1) = [(q + qn_1 + l)tf]-[(q + qn_1)fl]-[«] = 

P»-i + [(q + l ) e ] - P n - i - [ « 0 ] - [ » ] = /e(q). 

Proof of Theorem 1. By definition, Tx(/) = (/, qs)°°. Suppose that we showed 
already Tt_s+l(f) = (f, qj° for some i>s, where, by definition, Ti_s+1(f) = 
(Ti-s(f),qiT (i>s). By the Corollary, fe(q) is periodic with period qt for 
l < q < q i + q i + 1 - 2 , where 0 < i ( < N = 0 ( m o d 2 ) if 0 is rational). This implies 
(/, < i i + ^ + i - 2 ) = (T i_s+1(/), * + q i + i - 2 ) . Since q{>qs>2, we have, in particu
lar, ( / , 4 + i r = ( T l _ I + 1 ( / ) , 4 + i r = r i _ a + 2 ( / ) . So by induction, Tf_s+1(/) = (/, q^ 
for all i > s. 
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If 6 is irrational, Too(/0)= l i m ^ Tj_s+1(/0) = linv^o (/0, qd°° = fe
ll 6 = pNlqN is rational, then fe is periodic with period qN, and so 

TN-S+1 \Je ) = (Je? QN) = JO-

LEMMA 3. Suppose that n>0 (n^N with N even if 6 is rational), and 

0 < p < p „ - l . Then g0(p + pn_i) = ge(p). 

Proof. It is well-known from the theory of continued fractions [14] that 
^ = = P n + (-l)n/^n+i^ where 0<rc (<N if 0 is rational), q'n+1 = a'n+1qn + qn_1, 

<*n+i = K + i , "n+2, • • • J - Hence 

[qn0]=[Pn , « " i s e v e n 

lpn - 1 otherwise, 

for 0 < n (<N=0(mod 2) if 0 is rational). 
If there exists 0 < p < p n - l satisfying g0(p) = l, let p = [qO]. Then q > 0 . 

Moreover, [q0] = p<pn-l<[qn0]^>q<qn. By Lemma 2, [(q + qn_i)0] = 
p + p„_i. and so g0(p) = l=>g0(p + pn_i)= g0(p). 

Now let 0 < x < p n - l satisfy g0(jc) = O. Then x = p + i for some p = [qO], 
where 0 < * </0(q) + [0], so l<i<=[0] . Also, 

(1) [0]^fe(n)H0] = [(n + l)6]-[n0^[6]+l 

for all integers n. Since p < p 4- / < pn - 1 , we have q +1 < qn by the first part of 
the proof. 

It suffices to show that 

(2) i<fe(q + qn-i)HOl 

because then [(q + qn-i)0]<[(q + qn_1)0]+i = p + pn__1 + i (by Lemma 2) < 
l(q + qn-i +1)0] (by (2)), and thus also ge(p + î) = 0=> g0(p + î + pn_x) = ge(p + i). 

If q + l < q n , then /0(q + qn- i)=/e(q) by the Corollary. Since O < i < / 0 ( q ) + 
[0], this establishes (2). Also if *<[0] (^ / e (q + q n - i )+ [#]), then (2) is clear. So 
it suffices to show that q + 1 < qn for i = [0]. If n is even, this is immediate from 
the right-hand side of (1): [(q + l ) ô ] < p + i + l < p n = M ] ^ q + K q n . For 
O < n ( < N i f 0 i s rational) we have [(qn+qn- i)0] = pn+Pn-i + [ y l where 
y = l/q„ — 1/qn+i if n is odd, as we may assume. If n<N, then 

<7n = <*n4n- l + 4 n - 2 ^ (<*n + 1)<Ï„-1 + 4 n - 2 = <ïn + <7n-l ^ <?n + l 

<Zn+l = <* n + l 4 n + <Zn-l ^ «n-f l ^ n + <7n-l = <7n + l , 

so y > 0 . Thus 

(3) [(qn + qn_x)0]>pn+ pn_x (n odd). 

Now i = [O]<fe(q) + [0]^>f0(q) = l. Using Lemma 2 we write this in 
the form pn_1 + [(q + l )0 ] - [ (q + qn_1)0] = [ 0 ] + l . Since fe(q + qn-i)^h we 

https://doi.org/10.4153/CMB-1978-077-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1978-077-0


1978] DETERMINATION OF [n$] 445 

have [(q + q^ + lW-Kq + q^je^W+l. Subtracting, [(<} + <}„_!+ 1 )0 ]^ 
Pn-i + [(<7 +1)0] ^ pn_i + [qn0] (since q + 1 < qn) = pn_x + pn - 1 (since n is odd) < 
[(<ïn + 4n-i)0] (by (3)). Hence q + l < q n also for n odd. 

Proof of Theorem 2. We follow the proof of Theorem 1 verbatim, with 
Corollary, /, q, qi9 s replaced by Lemma 3, g, p, pi9 r respectively. 

NOTE. Had we confined ourselves to irrational 6 > 0, the proof could have 
been shortened considerably. For example, instead of Lemma 3, it would have 
been advantageous to prove: 0 > 1 irrational =>g0 =/1 / e , which has a one-line 
proof. This result, which is of independent interest, implies Theorem 2 im
mediately. If 0 is rational, ge(n) = f1/0(n) holds, except that n = 0(modpN)^ 
g0(n) = 1, f1/e(n) = 0, and n = - l(mod pN)4> g0(n) = 0, /i / e(n) = 1. This leads to 
a "proof by cases" of Theorem 2 and hence a somewhat different route was 
preferred. 
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