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A classification of Shimura curves in𝒜𝑔

Ben Moonen

Abstract. We give a precise classification, in terms of Shimura data, of all 1-dimensional Shimura
subvarieties of a moduli space of polarized abelian varieties.

1 Introduction

1.1

The goal of this note is to give a classification of the 1-dimensional Shimura subvarieties
of𝒜𝑔 , the moduli space of 𝑔-dimensional (polarized) abelian varieties. My motivation
to write this up comes partly from the fact that at some places in the literature there
seem to be misconceptions about this. (See 5.8 for an example.)

In terms of Shimura data, what we want to classify are triples (𝐺,𝒴, 𝜌), where
(𝐺,𝒴) is a Shimura datum such that 𝒴 is a 1-dimensional complex manifold, and
𝜌 : (𝐺,𝒴) ↩→ (GSp2𝑔,ℌ

±
𝑔 ) is an embedding into a Siegel modular Shimura datum.

The adjoint Shimura datum (𝐺ad,𝒴ad) is then easy to describe: Take a 4-dimensional
central simple algebra 𝐷 over a totally real field 𝐹 which splits at precisely one of the
real places of 𝐹 , and let𝒢𝐷 = PGL1,𝐷 . There is a unique𝒢𝐷 (R)-conjugacy class𝒴𝐷 of
homomorphisms S → 𝒢𝐷,R such that (𝒢𝐷 ,𝒴𝐷) is a Shimura datum (see Section 4.5),
and for every triple (𝐺,𝒴, 𝜌) as above, (𝐺ad,𝒴ad) is isomorphic to a datum of this
form (𝒢𝐷 ,𝒴𝐷).

The problemat hand can be reduced to the situationwhere the generic abelian variety
over the Shimura curve given by (𝐺,𝒴) is simple. If the endomorphism algebra is of Al-
bert type I, II or III, whichmeans that its centre is a totally real field, knowing the adjoint
Shimura datum essentially solves the whole problem, as the connected centre of𝐺 then
equals Gm and the representation 𝜌 can only be the so-called corestriction representa-
tion. Typical examples of what we obtain are the 1-dimensional Shimura subvarieties
of𝒜4 constructed byMumford [8], § 4; what seems less well-known is that there is also
a quaternionic version of Mumford’s construction that gives rise to abelian varieties of
Albert types II and III.

Themost interesting part of the problem is the case where the generic abelian variety
is of Albert type IV, so that the centre of the endomorphism algebra is a CM field. In this
case, if we fix 𝐹 and 𝐷 as above such that (𝐺ad,𝒴ad) � (𝒢𝐷 ,𝒴𝐷), the derived group
of𝐺 is a finite cover of𝒢𝐷 , and the possibilities for 𝜌 |𝐺der correspond to theGal(Q/Q)-
orbits of nonempty subsets of the set Emb(𝐹) = Hom(𝐹,Q). The main point is that
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the representation of 𝐺der needs to be combined with a nontrivial representation of
the centre of 𝐺 in order to obtain a Shimura datum that embeds into a Siegel modular
datum.We carry out a precise analysis of the data involved. For the final resultwe refer to
Propositions 4.4 and 4.5, and thenTheorem5.1 states that the descriptionwe have found
covers all cases. An interesting feature is that we are naturally led to introduce a notion
of a ‘partial CM type’, and that our classification involves a condition that generalizes
the classical notion of primitivity of a CM type. (The notionwe consider ismore specific
than the one used in [10].)

1.2

In Sections 2 and 3 we review the results from representation theory that we need, fol-
lowing Tits’s paper [15], and we discuss two examples of representations that play a key
role. In Section 4we study simple complex abelian varieties 𝑋 whose associated Shimura
datum is 1-dimensional. This is the main part of the paper. As mentioned, the most in-
teresting case to analyse is when 𝑋 is of Albert type IV. In Section 5 we explain how the
analysis carried out in Section 4 gives a complete solution to the classification problem
in the case when the generic abelian variety is simple, and in Section 6 we extend this to
the general case.

1.3

There are several papers that discuss the classification of Shimura (sub)varieties, and
one may wonder to what extent the results in the present paper are already covered
in the literature. To my knowledge, the precise classification carried out here is new,
though I suspect, based on Remarque 2.3.11 in [5], that the results have been long known
to Deligne. The work of Satake [12] and the subsequent work of Addington [1] does
discuss the representation theory involved but does not contain the results that we ob-
tain. (These papers focus on the representation theory of the semisimple part of the
Mumford–Tate group, whereas in our work it is the interplay between the representa-
tion theory of the semisimple part and the centre that plays a main role. The ‘chemistry
terminology’ of [1] is not commonly used; we use root data instead.)

1.4 Notation and conventions.

(1) Throughout,Q is viewed as a subfield ofC and we write ΓQ = Gal(Q/Q). If 𝐾 is a
number field, we write Emb(𝐾) = Hom(𝐾,Q), which is identified with the set of
complex embeddings of 𝐾 or, in case 𝐾 is totally real, the set of real embeddings
of 𝐾 .

(2) If 𝐺 is a reductive group, we denote by 𝐺der its derived group, by 𝐺ad the adjoint
group, and by𝐺sc the simply connected cover of𝐺ad.

(3) If 𝑋 is an abelian variety, we denote byEnd0 (𝑋) = End(𝑋) ⊗Q its endomorphism
algebra.
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2 Some results from representation theory

Throughout this section, 𝑘 denotes a field of characteristic 0 with algebraic closure 𝑘 ⊂
�̄� .

2.1 Basic notions.

If 𝐺 is an algebraic group over 𝑘 then by a representation 𝜌 of 𝐺 we mean a represen-
tation on a finite dimensional 𝑘-vector space. If we say that 𝜌 is irreducible, we mean it
is irreducible over 𝑘 . If 𝑘 ⊂ 𝐿 is a field extension, we denote by 𝜌𝐿 the representation
of𝐺𝐿 obtained by extension of scalars.

If 𝐷 is a 𝑘-algebra and 𝑉 is a right 𝐷-module of finite 𝑘-dimension, we denote
by GL𝐷 (𝑉) the algebraic group over 𝑘 of 𝐷-linear automorphisms of 𝑉 , and by
restr𝐷/𝑘 : GL𝐷 (𝑉) → GL𝑘 (𝑉) the canonical homomorphism. (Instead of GL𝑘 (𝑉) also
the notation GL(𝑘𝑉) is used, where 𝑘𝑉 denotes the underlying 𝑘-vector space of 𝑉 .) If
𝐺 → GL𝐷 (𝑉) is a homomorphism, we refer to𝑉 as a 𝐷-𝐺-module, and we denote by
End𝐷-𝐺 (𝑉) the algebra of 𝐷-linear endomorphisms of𝑉 that are𝐺-equivariant.

For𝐷 a central simple 𝑘-algebra, we defineGL𝑛,𝐷 = GL𝐷 (𝐷𝑛), where𝐷𝑛 is viewed
as a right 𝐷-module. We write SL1,𝐷 ⊂ GL1,𝐷 for the kernel of the norm homomor-
phism GL1,𝐷 → Gm,𝑘 and PGL1,𝐷 for the cokernel of Gm,𝑘 → GL1,𝐷 . Note that if
dim𝑘 (𝐷) = 𝑑2, the groups SL1,𝐷 and PGL1,𝐷 are 𝑘-forms of SL𝑑 , resp. PGL𝑑 .

If 𝑘 ⊂ 𝐿 is a finite field extension and 𝑅 : 𝐺𝐿 → GL(𝑉) is a representation
of 𝐺𝐿 over 𝐿, we denote by res𝐿/𝑘 (𝑅) the representation of 𝐺 (over 𝑘 ) given by the
composition

res𝐿/𝑘 (𝑅) : 𝐺
can−−−→ Res𝐿/𝑘 (𝐺𝐿)

Res𝐿/𝑘 (𝑅)−−−−−−−−−→ Res𝐿/𝑘
(
GL(𝑉)

) restr𝐿/𝑘
↩−−−−−−→ GL𝑘 (𝑉) .

2.2 Representations of tori.

If 𝑇/𝑘 is a torus, let X∗ (𝑇) = Hom(𝑇�̄� ,Gm, �̄�) be the character group of 𝑇 and
X∗ (𝑇) = Hom(Gm, �̄� , 𝑇�̄�) the cocharacter group. These are freeZ-modules of finite rank
equipped with a continuous action of Gal( �̄�/𝑘). We have a Galois-equivariant perfect
pairing X∗ (𝑇) × X∗ (𝑇) → Z. For 𝜉 ∈ X∗ (𝑇), write �̄� 𝜉 for the vector space �̄� on which
𝑇�̄� acts through the character 𝜉 , and let 1𝜉 ∈ �̄� 𝜉 be the identity element.

The irreducible representations of𝑇 correspond to the Gal( �̄�/𝑘)-orbits inX∗ (𝑇). If
Ξ ⊂ X∗ (𝑇) is such an orbit, the corresponding representation 𝜌Ξ can be constructed by
considering the �̄�-vector space𝑉Ξ, �̄� = ⊕𝜉 ∈Ξ �̄� 𝜉 , on which Gal( �̄�/𝑘) acts by the rule

𝛾 ·
(∑︁
𝜉 ∈Ξ

𝑐 𝜉 ·1𝜉
)
=

∑︁
𝜉 ∈Ξ

𝛾(𝑐𝛾−1 ·𝜉 ) ·1𝜉 (for 𝛾 ∈ Gal( �̄�/𝑘) and coefficients 𝑐 𝜉 ∈ �̄� ).
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(In particular, 𝛾 sends 𝑐 · 1𝜉 to 𝛾(𝑐) · 1𝛾 ·𝜉 .) The representation of 𝑇�̄� on𝑉Ξ, �̄� descends
to a representation of 𝑇 on the 𝑘-vector space 𝑉Ξ = (𝑉Ξ, �̄�)Gal( �̄�/𝑘 ) , and this gives the
representation 𝜌Ξ. By construction, 𝜌Ξ, �̄� � 𝑉Ξ, �̄� as representations of 𝑇�̄� .

For 𝜉 ∈ Ξ, define 𝑘 (𝜉) = �̄�Stab( 𝜉 ) , where Stab(𝜉) ⊂ Gal( �̄�/𝑘) is the stabilizer of 𝜉 .
The choice of an element 𝜉0 ∈ Ξ gives an isomorphism 𝑘 (𝜉0)

∼−→ End(𝜌Ξ). Concretely,
if 𝑦 ∈ 𝑘 (𝜉0) and 𝜉 ∈ Ξ, choose 𝛾 ∈ Gal( �̄�/𝑘) such that 𝜉 = 𝛾 · 𝜉0 and let 𝑦 act
on �̄� 𝜉 as multiplication by 𝛾(𝑦), which is independent of the choice of 𝛾. Moreover,
one readily checks that the action of 𝑘 (𝜉0) on 𝑉Ξ, �̄� thus obtained commutes with the
action of Gal( �̄�/𝑘) and is 𝑇�̄�-equivariant; hence it descends to a homomorphism of 𝑘-
algebras 𝑘 (𝜉0) → End(𝜌Ξ). To see that this is an isomorphism, it suffices to note that
both sides have the same 𝑘-dimension because 𝑘 (𝜉0) ⊗𝑘 �̄� �

∏
𝜉 ∈Ξ �̄� � End(𝜌Ξ, �̄�).

2.3 Example.

If 𝐸 is a number field, let 𝑇𝐸 = Res𝐸/Q Gm,𝐸 , which is a torus over Q of rank equal to
[𝐸 : Q]. The character group is given by X∗ (𝑇𝐸) =

⊕
𝜑∈Emb(𝐸 ) Z · e𝜑 , where e𝜑 de-

notes the character induced by the embedding 𝜑. The Galois group ΓQ = Gal(Q/Q)
acts on X∗ (𝑇𝐸) through its action on Emb(𝐸). The cocharacter group is X∗ (𝑇𝐸) =

⊕𝜑∈Emb(𝐸 ) Z · ě𝜑 , where {ě𝜑}𝜑∈Emb(𝐸 ) is the dual basis.
The set of elements {e𝜑}𝜑∈Emb(𝐸 ) is a ΓQ-orbit in X∗ (𝑇𝐸). We denote the corre-

sponding irreducible representation by St𝐸 , and we refer to it as the standard represen-
tation of 𝑇𝐸 . It is given by the canonical homomorphism 𝑇𝐸 = Res𝐸/Q GL1,𝐸 −→
GL(Q𝐸), where Q𝐸 denotes the Q-vector space underlying 𝐸 . The endomorphism
algebra of St𝐸 is 𝐸 .

2.4 Review of some results of Tits.

We briefly review some results by Tits [15]. (What we have discussed in 2.2 is a very
special case of this.)

Let𝐺/𝑘 be a reductive group. This group gives rise, in a canonicalway, to a based root
datum (X,Φ,Δ,X∨,Φ∨,Δ∨) with an action of Gal( �̄�/𝑘); see for instance [2], especially
Remark 7.1.2. As in the case of a torus, X and X∨ are free Z-modules with Gal( �̄�/𝑘)-
action and we have a Galois-equivariant perfect pairing ⟨ , ⟩ : X × X∨ → Z. The sub-
lattices Z · Φ ⊂ X and Z · Φ∨ ⊂ X∨ are called the root lattice and the co-root lattice.
Define

X+ =
{
𝜉 ∈ X

�� ⟨𝜉, 𝜛∨⟩ ≥ 0 for all𝜛∨ ∈ Δ∨} .
For 𝜉 ∈ X+, let 𝜌�̄�, 𝜉 denote the irreducible representation of𝐺 �̄� with highest weight 𝜉 .

Let X0 ⊂ X be the subgroup that is generated by Φ and by the elements that are
perpendicular toΦ∨. Following [15], define

𝒞
∗ (𝐺) = X/X0 ,

which is a finite group that only depends on 𝐺der. It comes equipped with an action of
Gal( �̄�/𝑘).
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If 𝜉 ∈ X+ is invariant under Gal( �̄�/𝑘), there exists a division algebra 𝐷 = 𝐷 𝜉 with
centre 𝑘 and a representation 𝑟 𝜉 : 𝐺 → GL𝐷 (𝑉), for some right 𝐷-module𝑉 of finite
type, such that:

• the representation 𝜌𝜉 = restr𝐷/𝑘 ◦ 𝑟 𝜉 : 𝐺 → GL(𝑉) is irreducible (notation as in
2.1);

• if 𝑑 = deg(𝐷) is the degree of 𝐷 (i.e., dim𝑘 (𝐷) = 𝑑2), the representation 𝜌𝜉 ,�̄� is
isomorphic to the sum of 𝑑 copies of 𝜌�̄�, 𝜉 .

(Note that 𝜌𝜉 ,�̄� = (𝜌𝜉 )�̄� is not the same as 𝜌�̄�, 𝜉 .) The division algebra 𝐷 𝜉 is unique up
to isomorphism, and given 𝐷 𝜉 the representation 𝑟 𝜉 is unique up to 𝐷 𝜉 -equivalence.
(See [15], Théorème 3.3.) If the context requires it, we write 𝜌𝑘, 𝜉 to indicate the ground
field.

Let Br(𝑘) be the Brauer group of 𝑘 . There exists a homomorphism

𝛽𝐺,𝑘 : 𝒞∗ (𝐺)Gal( �̄�/𝑘 ) → Br(𝑘)

that only depends on 𝐺der, with the property that for a Galois-invariant dominant
weight 𝜉 ∈ (X+)Gal( �̄�/𝑘 ) as above, 𝛽𝐺,𝑘 (𝜉 mod X0) = [𝐷 𝜉 ].

With this notation, the general description of the irreducible representations of𝐺 is
as follows. For 𝜉 ∈ X+, let 𝑘 (𝜉) ⊂ �̄� be the field extension of 𝑘 that corresponds to the
stabilizer of 𝜉 inGal( �̄�/𝑘). Bywhatwehave just explained, there exists a division algebra
𝐷 = 𝐷 𝜉 with centre 𝑘 (𝜉) and a representation 𝑟𝑘 ( 𝜉 ) , 𝜉 : 𝐺𝑘 ( 𝜉 ) → GL𝐷 (𝑉) over 𝑘 (𝜉)
such that 𝜌𝑘 ( 𝜉 ) , 𝜉 = restr𝐷/𝑘 ( 𝜉 ) ◦ 𝑟𝑘 ( 𝜉 ) , 𝜉 : 𝐺𝑘 ( 𝜉 ) → GL𝑘 ( 𝜉 ) (𝑉) is an irreducible
representation of 𝐺𝑘 ( 𝜉 ) which after extension of scalars to �̄� becomes a sum of copies
of 𝜌�̄�, 𝜉 . Then

𝜌𝜉 = res𝑘 ( 𝜉 )/𝑘
(
𝜌𝑘 ( 𝜉 ) , 𝜉

)
: 𝐺 −→ GL𝑘 (𝑉)

(notation as in 2.1) is an irreducible representation of 𝐺 . If necessary we write 𝜌𝑘, 𝜉
instead of 𝜌𝜉 to indicate the ground field, and again we note that if 𝑘 ⊂ 𝐿 is a field
extension, 𝜌𝐿, 𝜉 is in general not the same as 𝜌𝜉 ,𝐿 , the extension of scalars of 𝜌𝜉 to 𝐿.
The isomorphism class of the representation 𝜌𝜉 only depends on the Gal( �̄�/𝑘)-orbit
of 𝜉 , and every irreducible representation of 𝐺 is of the form 𝜌𝜉 for some 𝜉 ∈ X+. If
𝑑 = deg(𝐷 𝜉 ) and Gal( �̄�/𝑘) · 𝜉 = {𝜉1, . . . , 𝜉𝑟 } then(

𝜌𝜉
)
�̄�
�

(
𝜌�̄�, 𝜉1

)⊕𝑑 ⊕ · · · ⊕
(
𝜌�̄�, 𝜉𝑟

)⊕𝑑
.

The endomorphism algebra of 𝜌𝜉 is isomorphic to 𝐷op
𝜉
. (See the proof of Théorème 7.2

in [15].)

3 Examples

We discuss two examples that play an important role in the next sections. As before, 𝑘 is
a field with char(𝑘) = 0.

3.1 Example.

Let 𝐿 = 𝐿1×· · ·×𝐿𝑠 be a product of finite field extensions of 𝑘 . Let𝐷 = 𝐷1×· · ·×𝐷𝑠 ,
where 𝐷 𝑗 is a 4-dimensional central simple 𝐿 𝑗-algebra ( 𝑗 = 1, . . . , 𝑠). With notation as

2024/12/17 20:08

https://doi.org/10.4153/S0008414X24001159 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001159


6

in 2.1, let𝒢𝑗 = Res𝐿 𝑗/𝑘 SL1,𝐷 𝑗
, and take𝒢 = Res𝐿/𝑘 SL1,𝐷 = 𝒢1 × · · · ×𝒢𝑠 . We have

𝒢�̄� �
∏

𝜎∈Hom𝑘 (𝐿,�̄� )
SL2, �̄� . (3.1)

The weight lattice of 𝒢 is given by X =
⊕

𝜎∈Hom𝑘 (𝐿,�̄� ) Z, on which Gal( �̄�/𝑘) acts
through its action onHom𝑘 (𝐿, �̄�). We normalise this in such amanner that a weight 𝜉 =
(𝜉𝜎)𝜎∈Hom𝑘 (𝐿,�̄� ) is dominant if and only if 𝜉𝜎 ≥ 0 for all 𝜎. Let 𝜌cor be the irreducible
representation of𝒢 corresponding to theweight 𝜉 with 𝜉𝜎 = 1 for all𝜎 ∈ Hom𝑘 (𝐿, �̄�).
We call 𝜌cor the corestriction representation of𝒢 over 𝑘 ; it can be described as follows.

For 𝜎 ∈ Hom𝑘 (𝐿, �̄�), write 𝐷𝜎 = 𝐷 ⊗𝐿,𝜎 �̄� , which is isomorphic to the ma-
trix algebra 𝑀2 ( �̄�). On the ring ⊗𝜎∈Hom𝑘 (𝐿,�̄� ) 𝐷𝜎 (tensor product over �̄� ) we have a
natural action of Gal( �̄�/𝑘), which extends the action on �̄� (which is the centre). The
corestriction of 𝐷 , notation Cor𝐿/𝑘 𝐷 , is defined as the 𝑘-algebra of Galois-invariants:

Cor𝐿/𝑘 𝐷 =

( ⊗
𝜎∈Hom𝑘 (𝐿,�̄� )

𝐷𝜎

)Gal( �̄�/𝑘 )
,

which is a central simple 𝑘-algebra. (See [15], Section 5.3, or [11]; for a more intrinsic
approach, see [6].) If 𝑞 = dim𝑘 (𝐿) =

∑𝑠
𝑗=1 [𝐿 𝑗 : 𝑘] then Cor𝐿/𝑘 𝐷 has degree 2𝑞

over 𝑘 . The canonical homomorphism Cor𝐿/𝑘 𝐷 ⊗𝑘 �̄� → ⊗𝜎∈Hom𝑘 (𝐿,�̄� ) 𝐷𝜎 is an
isomorphism of �̄�-algebras. On Brauer groups, the class

[
Cor𝐿/𝑘 𝐷

]
∈ Br(𝑘) is the

image of [𝐷] ∈ Br(𝐿) under the corestriction map in Galois cohomology.
Writing 𝐶 = Cor𝐿/𝑘 𝐷 , we have a homomorphism 𝛼 : Res𝐿/𝑘 GL1,𝐷 → GL1,𝐶 ,

which on �̄�-valued points is given by the natural homomorphism∏
𝜎∈Hom𝑘 (𝐿,�̄� )

𝐷∗
𝜎 →

( ⊗
𝜎∈Hom𝑘 (𝐿,�̄� )

𝐷𝜎

)∗
.

Let𝑊 be the unique (up to isomorphism) simple left 𝐶-module, viewed as a 𝑘-vector
space, so that we have a representation GL1,𝐶 → GL(𝑊). Then the corestriction
representation is given by the composition

𝜌cor : 𝒢 ↩→ Res𝐿/𝑘 GL1,𝐷
𝛼−−→ GL1,𝐶 → GL(𝑊) .

In more detail, let ℰ = End𝐶 (𝑊) = End(𝜌cor) be the division algebra with cen-
tre 𝑘 that is Brauer equivalent to 𝐶op. (For the identityℰ = End(𝜌cor), cf. the end of
Section 2.4.) There are two cases.

• First case:ℰ = 𝑘 . Then 𝐶 � 𝑀2𝑞 (𝑘); so we find that 𝑊 = 𝑘2𝑞 and GL1,𝐶 �
GL2𝑞 ,𝑘 , and 𝜌cor : 𝒢 → GL(𝑊) is given by the homomorphism 𝛼. In this case,
𝜌cor, �̄� � ⊠𝜎∈Hom𝑘 (𝐿,�̄� ) St𝜎 , where by St𝜎 wemean the irreducible 2-dimensional
representation of the factor SL2, �̄� in (3.1) indexed by 𝜎.

• Second case:ℰ is a quaternion algebra over 𝑘 . In this case, 𝐶 � 𝑀2𝑞−1 (ℰop). Fix-
ing such an isomorphism, we obtain 𝑊 = (ℰop)⊕2𝑞−1

� 𝑘2𝑞+1 and GL1,𝐶 �
GL2𝑞−1 ,ℰop . The representation 𝜌cor is the composition

𝒢
𝛼−−→ GL2𝑞−1 ,ℰop

restrℰop/𝑘−−−−−−−−→ GL2𝑞+1 ,𝑘 ,
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and 𝜌cor, �̄� is isomorphic to a sum of two copies of ⊠𝜎∈Hom𝑘 (𝐿,�̄� ) St𝜎 .

3.2 Example.

Let 𝐹 be a number field and 𝐷 a 4-dimensional central simple algebra over 𝐹 . Consider
the algebraic group𝒢 = Res𝐹/Q SL1,𝐷 overQ, which is a simply connected semisimple
group. The weight lattice of𝒢 is given byX = ⊕𝜎∈Emb(𝐹 ) Z, on which ΓQ = Gal(Q/Q)
acts through its action on Emb(𝐹). Again we normalise this such that a weight 𝜉 =

(𝜉𝜎)𝜎∈Emb(𝐹 ) is dominant if and only if 𝜉𝜎 ≥ 0 for all 𝜎.
If 𝐼 ⊂ Emb(𝐹) is a subset, let 𝜉𝐼 be the weight given by the rule that 𝜉𝜎 = 1 if 𝜎 ∈ 𝐼

and 𝜉𝜎 = 0 otherwise. Let 𝜌𝐼 be the irreducible representation of𝒢 that corresponds
to the ΓQ-orbit of 𝜉𝐼 . (In particular, 𝜌𝐼 � 𝜌𝛾 (𝐼 ) for 𝛾 ∈ ΓQ.) This representation can be
described as follows.

Let �̃� ⊂ Q be the normal closure of 𝐹 . Writing 𝐷𝜎 = 𝐷 ⊗𝐹,𝜎 �̃� , we have𝒢�̃� �∏
𝜎∈Emb(𝐹 ) SL1,𝐷𝜎

, and hence𝒢Q �
∏
𝜎∈Emb(𝐹 ) SL2,Q.

Let 𝑘 𝐼 ⊂ �̃� be the subfield of elements that are invariant under Stab(𝐼) =
{
𝛾 ∈

Gal(�̃�/Q)
�� 𝛾(𝐼) = 𝐼}. (This field 𝑘 𝐼 takes the role of what in 2.4 was called 𝑘 (𝜉).) The

𝑘 𝐼-algebra 𝐹⊗Q 𝑘 𝐼 is a product of field extensions of 𝑘 𝐼 .We have a natural isomorphism

𝐹 ⊗Q 𝑘 𝐼 =
(
𝐹 ⊗Q �̃�)Stab(𝐼 ) �

( ∏
𝜎∈Emb(𝐹 )

�̃�

)Stab(𝐼 )
=

(∏
𝜎∈𝐼

�̃� ×
∏
𝜎∉𝐼

�̃�

)Stab(𝐼 )
.

Defining

𝐿𝐼 =

(∏
𝜎∈𝐼

�̃�

)Stab(𝐼 )
, 𝐿′𝐼 =

(∏
𝜎∉𝐼

�̃�

)Stab(𝐼 )

we get a decomposition 𝐹 ⊗Q 𝑘 𝐼 = 𝐿𝐼 × 𝐿′𝐼 . Define 𝐷 𝐼 = 𝐷 ⊗𝐹 𝐿𝐼 and 𝐷′
𝐼
= 𝐷 ⊗𝐹 𝐿′𝐼 .

Then
𝒢𝑘𝐼 =

(
Res𝐿𝐼/𝑘𝐼 SL1,𝐷𝐼

)
×

(
Res𝐿′

𝐼
/𝑘𝐼 SL1,𝐷′

𝐼

)
.

Let 𝜌cor : Res𝐿𝐼/𝑘𝐼 SL1,𝐷𝐼
→ GL(𝑊) be the corestriction representation over 𝑘 𝐼 as

in Example 3.1, applied with 𝐿 = 𝐿𝐼 and 𝐷 = 𝐷 𝐼 . The representation 𝜌𝐼 is then the
composition

𝒢
can−−→ Res𝑘𝐼/Q (𝒢𝑘𝐼 )

pr
−−→ Res𝑘𝐼/Q

(
Res𝐿𝐼/𝑘𝐼 SL1,𝐷𝐼

)
Res(𝜌cor )−−−−−−−−→ Res𝑘𝐼/Q GL(𝑊)

restr𝑘𝐼 /Q−−−−−−−→ GL(Q𝑊) .

(In other words, 𝜌𝐼 = res𝑘𝐼/Q (𝜌cor), where we view 𝜌cor as a representation of𝒢𝑘𝐼 .)
The endomorphism algebraℰ𝐼 = End(𝜌𝐼 ) is a division algebra with centre 𝑘 𝐼 which

is Brauer equivalent to Cor𝐿𝐼/𝑘𝐼 𝐷 𝐼 . Either ℰ𝐼 = 𝑘 𝐼 or ℰ𝐼 is a quaternion algebra
over 𝑘 𝐼 . The representation 𝜌𝐼,Q is isomorphic to⊕

𝐽∈ΓQ ·𝐼

(
⊠
𝜎∈𝐽

St𝜎
)⊕ deg(ℰ𝐼 )

, (3.2)

where St𝜎 denotes the 2-dimensional irreducible representation of 𝒢Q given by the
standard irreducible representationof the factor indexedby𝜎. For later usewenote that,
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because Gal(Q/�̃�) acts trivially on X, the summands that appear here are already de-
fined over �̃�; more precisely: 𝜌𝐼,�̃� decomposes as a direct sum of representations 𝑅�̃�,𝐽 ,
for 𝐽 ∈ ΓQ · 𝐼 , such that

(
𝑅�̃�,𝐽

)
Q is isomorphic to a sum of deg(ℰ𝐼 ) copies of⊠𝜎∈𝐽 St𝜎 .

3.3 Remark.

In the above description of the representation 𝜌𝐼 , we have broken the symmetry by
choosing a representative 𝐼 for the Galois-orbit ΓQ · 𝐼 . For what follows, it is important
to restore the symmetry. We shall use the symbol I for a ΓQ-orbit of nonempty subsets
of Emb(𝐹), and we write 𝜌I : 𝒢 → GL(𝑊I ) for the corresponding irreducible repre-
sentation of𝒢 = Res𝐹/Q SL1,𝐷 over Q (as in 3.2). DefineℰI = End𝒢 (𝜌I ), and let 𝑘I
be the centre ofℰI . Then Emb(𝑘I ) is in natural bijection with I , in such a way that if
𝐼 ∈ I corresponds to the embedding 𝜏, the subfield 𝜏(𝑘I ) ⊂ Q is the field 𝑘 𝐼 of Exam-
ple 3.2 andℰI ⊗𝑘I ,𝜏 𝑘 𝐼

∼−→ ℰ𝐼 . The normal closure of 𝑘I is a subfield of �̃� . We denote
by ℓ(I) the cardinality of the sets 𝐼 ∈ I , so that dimQ (𝑊I ) = [𝑘I : Q] ·deg(ℰI ) ·2ℓ (I ) .

Lemma 3.1 Let 𝐹 , 𝐷 and𝒢 = Res𝐹/Q SL1,𝐷 be as in Example 3.2. Let I be a ΓQ-orbit
of subsets of Emb(𝐹), and let 𝜌I : 𝒢 → GL(𝑊I ) be the corresponding irreducible represen-
tation of𝒢 over Q. (Notation as in the previous remark.) Assume the following two conditions
are satisfied:

(a) there is a unique embedding𝜎 ∈ Emb(𝐹) such that𝐷⊗𝐹,𝜎R is isomorphic to𝑀2 (R);
(b) the sets 𝐼 ∈ I are nonempty and I ≠

{
Emb(𝐹)

}
.

Then the endomorphism algebraℰI of 𝜌I is a quaternion algebra over its centre 𝑘I .

Proof As explained above, we have a bijection I
∼−→ Emb(𝑘I ), and if 𝐼 ↦→ 𝜏 then

𝜏(𝑘I ) is the field 𝑘 𝐼 as in Example 3.2, which is a subfield of R. With notation as in that
example, the image in Br(R) of the class [ℰI ] ∈ Br(𝑘I ) under 𝜏 is the class of

Cor(𝐿𝐼⊗𝑘𝐼
R)/R

(
𝐷 𝐼 ⊗𝑘𝐼 R

)
=

⊗
𝜎∈𝐼

𝐷𝜎 ,

where 𝐷𝜎 = 𝐷 ⊗𝐹,𝜎 R. This class is the sum over the elements 𝜎 ∈ 𝐼 of the classes
[𝐷𝜎] ∈ Br(R). Let 𝜎nc ∈ Emb(𝐹) be the unique real embedding at which 𝐷 splits.
Assumption (b) implies that we can find 𝐼1, 𝐼2 ∈ I such that 𝜎nc ∈ 𝐼1 and 𝜎nc ∉ 𝐼2. The
corresponding two classes in Br(R) are unequal, so the class [ℰI ] ∈ Br(𝑘I ) cannot be
trivial. ■

4 Abelian varieties whose associated Shimura datum is
1-dimensional

4.1 Notation related to Hodge structures.

As usual in Hodge theory, we define S = ResC/R Gm. The character group of this torus
is given by X∗ (S) = Z ⊕ Z, with complex conjugation acting by (𝑝, 𝑞) ↦→ (𝑞, 𝑝).
The norm homomorphism Nm : S → Gm,R (on R-points: 𝑧 ↦→ 𝑧𝑧) corresponds to the
character (1, 1). Define w : Gm,R → S (on R-points: the inclusion R∗ ↩→ C∗) to be
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the unique homomorphism such that Nm ◦ w is 𝑧 ↦→ 𝑧2, and let 𝑖 : Gm,C ↩→ SC be
the morphism given on C-valued points by 𝑧 ↦→ (𝑧, 1); in terms of the natural pairing
between characters and cocharacters, 𝑖 is described by its property that

〈
(1, 0), 𝑖

〉
= 1

and
〈
(0, 1), 𝑖

〉
= 0.

A Q-Hodge structure of weight 𝑛 is given by a finite dimensional Q-vector space 𝑉
together with a homomorphism ℎ : S→ GL(𝑉)R such that ℎ ◦w : Gm,R → GL(𝑉)R is
given by 𝑧 ↦→ 𝑧−𝑛·id.We follow the convention that an element (𝑧, 𝑤) ∈ C∗×C∗ = S(C)
acts on the summand𝑉 𝑝,𝑞 ⊂ 𝑉C in the Hodge decomposition of𝑉C asmultiplication by
𝑧−𝑝𝑤−𝑞 . Instead of giving the homomorphism ℎ, we can also describe the Hodge stru-
cuture on 𝑉 by giving the corresponding cocharacter 𝜇 = (ℎC ◦ 𝑖) : Gm,C → GL(𝑉)C
that is given by the rule that 𝑧 ∈ C∗ acts on𝑉 𝑝,𝑞 as multiplication by 𝑧−𝑝 .

4.2

By a Shimura datum we mean a pair (𝐺,𝒴) where 𝐺 is a connected reductive group
over Q and𝒴 is a 𝐺 (R)-conjugacy class of homomorphisms S → 𝐺R, such that the
conditions (2.1.1.1–3) of [5], Section 2.1 are satisfied. The weight of a Shimura datum is
the homomorphism ℎ ◦ w : Gm,R → 𝐺R, which in fact takes values in the connected
centre of 𝐺R and is independent of ℎ ∈ 𝒴. In all cases of interest for us, this weight
cocharacter is defined overQ.

If (𝐺1,𝒴1) and (𝐺2,𝒴2) are Shimura data then by an embedding 𝑗 : (𝐺1,𝒴1) ↩→
(𝐺2,𝒴2) we mean an injective homomorphism 𝑗 : 𝐺1 ↩→ 𝐺2 such that composition
with 𝑗 gives a map𝒴1 →𝒴2.

4.3

Let 𝑋 be a complex abelian variety. Write 𝑉 = 𝐻1 (𝑋,Q), and let ℎ : S → GL(𝑉)R be
the homomorphism that gives the Hodge structure on 𝑉 . By definition, the Mumford–
Tate group of 𝑋 is the smallest algebraic subgroup 𝐻 ⊂ GL(𝑉) such that ℎ factors
through 𝐻R.

Let 𝐺 be the Mumford–Tate group of 𝑋 . If 𝒴 is the 𝐺 (R)-conjugacy class of the
homomorphism ℎ : S → 𝐺R, the pair (𝐺,𝒴) is a Shimura datum whose weight is
defined overQ. We refer to it as the Shimura datum given by 𝑋 . The goal of this section
is to study complex abelian varieties 𝑋 with associated Shimura datum (𝐺,𝒴) such that
dim(𝒴) = 1.

4.4

Let 𝑍 = 𝑍 (𝐺)0 be the identity component of the centre of 𝐺 , which is a torus over Q.
The natural homomorphism 𝑍 ×𝐺sc → 𝐺 is an isogeny. We view𝑉 as a representation
of 𝑍×𝐺sc. The naturalmapEnd0 (𝑋) → End(𝑉) induces an isomorphismEnd0 (𝑋) ∼−→
End𝑍×𝐺sc (𝑉).

Let 𝐻1, . . . , 𝐻𝑠 be the simple factors of 𝐺C, so that 𝐺C = 𝑍C · 𝐻1 · · ·𝐻𝑟 . Every
irreducible 𝐺C-submodule of 𝑉C is isomorphic to a representation 𝜒 ⊠ 𝑟1 ⊠ · · · ⊠ 𝑟𝑠 ,
where 𝜒 is a character of 𝑍C and 𝑟 𝑗 is an irreducible representation of𝐻 𝑗 ( 𝑗 = 1, . . . , 𝑠).
By a result of Deligne ([5], Section 1.3) and Serre ([13], § 3), the highest weight of every
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nontrivial representation 𝑟 𝑗 that occurs is a minuscule weight. In particular, if 𝐻 𝑗 is of
Lie type A1, we must have 𝐻 𝑗 � SL2, and if 𝑟 𝑗 is nontrivial, it is the 2-dimensional
standard representation.

4.5

Let 𝑋 be a complex abelian variety such that the associated Shimura datum (𝐺,𝒴) has
the property that dim(𝒴) = 1, which is equivalent to the assumption that

𝐺ad
R � PGL2,R × compact factors . (4.1)

If this holds, there exists a totally real field 𝐹 and a 4-dimensional central simple 𝐹-
algebra 𝐷 (unique up to isomorphism) such that

𝐷 ⊗Q R � 𝑀2 (R) × a product of factorsH ,

and such that 𝐺sc � Res𝐹/Q SL1,𝐷 . Let 𝜎nc ∈ Emb(𝐹) be the unique embedding with
the property that 𝐷 ⊗𝐹,𝜎nc R � 𝑀2 (R). Then

𝐺sc
R � SL2,R ×

∏
𝜎∈Emb(𝐹 )
𝜎≠𝜎nc

SL1,H , 𝐺ad
R � PGL2,R ×

∏
𝜎∈Emb(𝐹 )
𝜎≠𝜎nc

PGL1,H . (4.2)

(Here SL1,H = SU(2) is the compact real form of SL2.) In the adjoint Shimura datum
(𝐺ad,𝒴ad), the space𝒴ad is the 𝐺ad (R)-conjugacy class of the homomorphism S →
𝐺ad
R that on the first factor is given on R-valued points by

𝑎 + 𝑏𝑖 ↦→
[
𝑎 −𝑏
𝑏 𝑎

]
(4.3)

and that is trivial on the compact factors.
Because the centre of𝐺sc is 2-torsion, so is the kernel of the isogeny 𝑍 × 𝐺sc → 𝐺 .

Hence, there exists a unique homomorphism ℎ̃ = ( ℎ̃c, ℎ̃s) : S→ 𝑍R ×𝐺sc
R such that the

diagram

S 𝑍R × 𝐺sc
R

S 𝐺R

𝑧 ↦→𝑧2

ℎ̃

ℎ

(4.4)

is commutative. Define �̃� = ℎ̃C ◦ 𝑖, and write it as �̃� = ( �̃�c, �̃�s) : Gm,C → 𝑍C × 𝐺sc
C
.

(c = centre, s = semisimple.)

4.6

In addition to the assumptions made in 4.5, assume that 𝑋 is a simple abelian variety
of dimension 𝑔. The endomorphism algebra End0 (𝑋) is a division algebra of finite di-
mension over Q. Let 𝐸 be the centre of End0 (𝑋), which is either a totally real field
(Albert Types I, II and III) or a CM field (Albert Type IV). Then 𝑉C is a module over
𝐸 ⊗Q C =

∏
𝜑∈Emb(𝐸 ) C; correspondingly, we have a decomposition

𝑉C =
⊕

𝜑∈Emb(𝐸 )
𝑉𝜑 , (4.5)
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with𝑉𝜑 = 𝑉 ⊗𝐸,𝜑C. With the notation𝑉 𝑝,𝑞𝜑 = 𝑉 𝑝,𝑞∩𝑉𝜑 (intersection taken inside𝑉C)
we then have

𝑉𝜑 = 𝑉−1,0
𝜑 ⊕ 𝑉0,−1

𝜑 , 𝑉 𝑝,𝑞 =
⊕

𝜑∈Emb(𝐸 )
𝑉
𝑝,𝑞
𝜑 (for (𝑝, 𝑞) = (−1, 0) or (0,−1)) ,

and complex conjugation on 𝑉C interchanges the summands 𝑉−1,0
𝜑 and 𝑉0,−1

�̄� . The
function

𝔣 : Emb(𝐸) → N given by 𝔣(𝜑) = dimC (𝑉−1,0
𝜑 )

satisfies 𝔣(𝜑) + 𝔣(�̄�) = dim𝐸 (𝑉) =
2𝑔

[𝐸:Q] for all 𝜑 ∈ Emb(𝐸). In particular, if 𝐸 is
totally real then [𝐸 : Q] divides 𝑔 and 𝔣 is constant with value 𝑔

[𝐸:Q] . We refer to 𝔣 as the
multiplication type of 𝑋 .

The action of 𝐸 on 𝑉 gives a representation 𝑇𝐸 → GL(𝑉), which is isomorphic to
a sum of dim𝐸 (𝑉) copies of the standard representation St𝐸 (see Example 2.3). View-
ing 𝑇𝐸 as a subgroup of GL(𝑉) via this homomorphism, the connected centre 𝑍 of the
Mumford–Tate group𝐺 is a subgroup of𝑇𝐸 . With notation as in Example 2.3, the char-
acter group X∗ (𝑍) of 𝑍 is therefore a quotient of X∗ (𝑇𝐸) = ⊕𝜑∈Emb(𝐸 ) Z · e𝜑 , and the
cocharacter group X∗ (𝑍) is a primitive subgroup of X∗ (𝑇𝐸) = ⊕𝜑∈Emb(𝐸 ) Z · ě𝜑 .

Proposition 4.1 Let the notation and assumptions be as above.

(1) The cocharacter �̃�c : Gm,C → 𝑍C ⊂ 𝑇𝐸,C corresponds to the element∑︁
𝜑∈Emb(𝐸 )

2 · 𝔣(𝜑)
𝑛

· ě𝜑 =
∑︁

𝜑∈Emb(𝐸 )

[𝐸 : Q] · 𝔣(𝜑)
𝑔

· ě𝜑

of X∗ (𝑇𝐸), where 𝑛 = dim𝐸 (𝑉) = 2𝑔
[𝐸:Q] .

(2) With identifications as in (4.2), the homomorphism �̃�s : Gm,C → 𝐺sc
C
is conjugate

under 𝐺ad (R) to the homomorphism given on C-valued points by

𝑧 ↦→
((

𝑧2+1
2𝑧 𝑖 · 𝑧2−1

2𝑧
−𝑖 · 𝑧2−1

2𝑧
𝑧2+1

2𝑧

)
, 1, . . . , 1

)
. (4.6)

(3) The representation 𝑍 → GL(𝑉) is a direct sum of copies of (the restriction to 𝑍 ⊂ 𝑇𝐸
of) the standard representation St𝐸 . (Notation as in Example 2.3.)

(4) There exists a ΓQ-orbit I of nonempty subsets of Emb(𝐹) such that the representation
𝐺sc → GL(𝑉) is isotypical of type 𝜌I . (Notation as in Example 3.2 and Remark 3.3,
applied with𝒢 = 𝐺sc.)

In (2), note that𝐺ad acts by conjugacy on the space of cocharacters of𝐺sc.

Proof (1) We have 𝐺 ⊂ GL𝐸 (𝑉). Let det𝐸 : GL𝐸 (𝑉) → 𝑇𝐸 be the 𝐸-linear
determinant. The composition

𝑇𝐸 × 𝐺sc → 𝐺𝐸
det𝐸−−−−→ 𝑇𝐸 (4.7)
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is given by (𝑡, 𝑦) ↦→ 𝑡𝑛. Next consider the composition

𝑓 : Gm,C
�̃�
−−→ 𝑇𝐸,C × 𝐺sc

C → GL𝐸 (𝑉)C =
∏

𝜑∈Emb(𝐸 )
GL(𝑉𝜑) .

By definition of the function 𝔣, the action of 𝑧 ∈ C∗ on𝑉𝜑 through this homomorphism
is conjugate to the homomorphism

𝑧 ↦→ diag
(
𝑧2, . . . , 𝑧2︸     ︷︷     ︸
𝔣 (𝜑) terms

, 1, . . . , 1
)
.

(The 𝑧2 comes from the fact that �̃� is a lift of the square of 𝜇, cf. diagram (4.4).) In partic-
ular, det𝐸 ◦ 𝑓 : Gm,C → 𝑇𝐸,C =

∏
𝜑∈Emb(𝐸 ) Gm,C is given on the factor indexed by 𝜑

by 𝑧 ↦→ 𝑧2·𝔣 (𝜑) . By our description of the map (4.7), if �̃�c corresponds to the element∑
𝜑∈Emb(𝐸 ) 𝑎𝜑 · ě𝜑 ∈ X∗ (𝑇𝐸), we find the relation 𝑛 · 𝑎𝜑 = 2 · 𝔣(𝜑).
(2) On C-valued points, the homomorphism S→ PGL2,R of (4.3) is given by

(𝑧, 𝑤) ↦→
[

𝑧+𝑤 𝑖 (𝑧−𝑤)
−𝑖 (𝑧−𝑤) 𝑧+𝑤

]
and therefore the homomorphism ad◦ �̃�s : Gm,C → 𝐺ad

C
is conjugate to the cocharacter

that, under the identification (4.2), is given by

𝑧 ↦→
( [

𝑧2+1 𝑖 (𝑧2−1)
−𝑖 (𝑧2−1) 𝑧2+1

]
, 1, . . . , 1

)
.

Because a cocharacter of 𝐺ad
C
admits at most one lift to 𝐺sc

C
, it now suffices to remark

that (4.6) indeed lifts the latter homomorphism.
(3) This is obvious.
(4) This follows from what was explained in Section 4.4. ■

Proposition 4.2 Let 𝑋 be a 𝑔-dimensional simple complex abelian variety such that in the
associated Shimura datum (𝐺,𝒴) we have dim(𝒴) = 1. Assume that 𝑋 is of Albert type I,
II or III. Let notation be as in Sections 4.5–4.6.

(1) We have 𝑍 = Gm · id𝑉 .
(2) With 𝐺sc = Res𝐹/Q SL1,𝐷 as in 4.5, the representation 𝐺sc → GL(𝑉) is irreducible

and is the corestriction representation as in Example 3.1, with𝒢 = 𝐺sc. (In other words,
it is the irreducible representation 𝜌𝐼 of Example 3.2 with 𝐼 = Emb(𝐹).) The centre
of 𝐺sc is the finite group scheme 𝑍 (𝐺sc) = Res𝐹/Q 𝜇2,𝐹 , on which we have a norm
character 𝑁 : 𝑍 (𝐺sc) → 𝜇2,Q whose kernel is a group scheme of order 2[𝐹 :Q]−1. The
derived subgroup𝐺der of theMumford–Tate group is the image of𝐺sc in the corestriction
representation, which is isomorphic to 𝐺sc/Ker(𝑁).

(3) Let 𝑚 = [𝐹 : Q]. We are in one of the following three cases:
(I) 𝑚 is odd, Cor𝐹/Q (𝐷) � 𝑀2𝑚 (Q) and End0 (𝑋) � Q;
(II) 𝑚 is odd, Cor𝐹/Q (𝐷) � 𝑀2𝑚 (Q) and End0 (𝑋) is a quaternion algebra over Q

that splits over R;
(III) 𝑚 is even, Cor𝐹/Q (𝐷) � 𝑀2𝑚 (Q) and End0 (𝑋) is a quaternion algebra over Q

that does not split over R.
We have 𝑔 = 2𝑚−1 in case (I) and 𝑔 = 2𝑚 in cases (II) and (III).
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(In (3), the labels correspond to the Albert type of 𝑋 .)

Proof (1) This is well-known; see for instance [14], Lemma 1.4. We can also see it
directly: because 𝐸 is totally real, the function 𝔣 is constant, and it follows from Propo-
sition 4.1(1) that the cocharacter �̃�c is defined over Q. Now use that 𝑍 is the smallest
subtorus of 𝑇𝐸 such that �̃�c factors through 𝑍C.

(2) Because 𝑋 is simple, 𝑉 is irreducible as a representation of 𝑍 × 𝐺sc, and then it
follows from (1) that it is irreducible as a representation of𝐺sc. By Proposition 4.1(4),𝑉
is therefore a representation of the form 𝜌I for some ΓQ-orbit I of nonempty subsets
of Emb(𝐸). We need to show that only I =

{
Emb(𝐸)

}
is possible. To see this, first

note (see Example 3.2, and use that 𝐹 is totally real) that𝑉R, as a representation of 𝐺sc
R ,

decomposes as a sum of representations 𝑅R,𝐼 , for 𝐼 ∈ I , such that (𝑅R,𝐼 )C is a sum
of copies of ⊠𝜎∈𝐼 St𝜎 . If I ≠

{
Emb(𝐹)

}
then there exists some 𝐼 ∈ I such that

𝜎nc ∉ 𝐼 , wherewe recall that𝜎nc ∈ Emb(𝐹) is the unique embedding such that𝐷⊗𝐹,𝜎nc

R � 𝑀2 (R). Because the homomorphism ℎ : S→ 𝐺R that defines the Hodge structure
on 𝑉 projects trivally onto the compact factors of 𝐺ad

R , it follows that the (real) Hodge
structure on the direct summand of𝑉R that corresponds to the representation 𝑅R,𝐼 is of
Tate type. This is impossible, as𝑉R is a real Hodge structure of type (−1, 0) + (0,−1).

For the last assertion of (2), we only have to remark that on the centre of 𝐺sc, the
corestriction representation is given by the norm character.

(3) By (2), we are in the situation of Example 3.1 with 𝑘 = Q and 𝐿 = 𝐹 . If ℰ is
the division algebra with centre 𝑘 = Q that represents the class of Cor𝐹/Q 𝐷 (as in
that example), we haveℰ = End(𝜌) = End0 (𝑋). But we have seen that eitherℰ = Q
or ℰ is a quaternion algebra over Q. On the other hand, by looking at the invariants
of 𝐷 at the infinite places of 𝐹 , we see that inv∞ (ℰ) = 0 ∈ Br(R) if 𝑚 is odd and
inv∞ (ℰ) = 1

2 ∈ Br(R) if 𝑚 is even. It readily follows that the listed cases (I)–(III) are
the only three possibilities. Finally, the given recipe for 𝑔 is just the calculation of the
dimension of the corestriction representation. ■

4.7 Remark.

If 𝐹 = Q, we may have 𝐷 = 𝑀2 (Q), in which case 𝑋 is an elliptic curve with End(𝑋) =
Z. In all other cases, 𝐷 is a quaternion algebra with centre 𝐹 .

4.8

Returning to the setting of 4.5, we now assume that 𝑋/C is a simple abelian variety of
Albert Type IV, whichmeans that 𝐸 , the centre ofEnd0 (𝑋), is a CM field. Let 𝐸0 ⊂ 𝐸 be
the maximal totally real subfield. As before, we fix 𝐹 and 𝐷 and an identification of𝐺sc

with Res𝐹/Q SL1,𝐷 .
It will be convenient to view𝑉 as a representation of𝑇𝐸×𝐺sc. Because 𝐸 is the centre

of End0 (𝑋) and 𝑍 ⊂ 𝑇𝐸 , we have End0 (𝑋) = End𝑍×𝐺sc (𝑉) = End𝑇𝐸×𝐺sc (𝑉).
Let notation be as in Example 3.2 and Remark 3.3, with 𝒢 = 𝐺sc. By Propo-

sition 4.1(4), there exists a ΓQ-orbit I of nonempty subsets of Emb(𝐹) such that 𝑉
is isotypical of type 𝜌I as a 𝐺sc-module. Realise this representation as 𝜌I : 𝐺sc →
GL(𝑊I ) for some Q-vector space 𝑊I . Recall (see Remark 3.3) that we write ℰI =
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End𝐺sc (𝑊I ), and that the centre ofℰI is called 𝑘I . The field 𝑘I is totally real (it is a
subfield of the Galois closure of 𝐹), and eitherℰI = 𝑘I orℰI is a quaternion algebra
over 𝑘I .

With this notation, 𝑊I has the structure of a left ℰI-module. This induces the
structure of a rightℰI-module on the space

𝐻 = Hom𝐺sc (𝑊I , 𝑉) .

The torus𝑇𝐸 acts on𝐻 byℰI-linear automorphisms, through its action on𝑉 . The eval-
uation map gives a𝑇𝐸 ×𝐺sc-equivariant isomorphism𝐻 ⊗ℰI

𝑊I
∼−→ 𝑉 , where𝐺sc acts

on𝐻 ⊗ℰI
𝑊I via id𝐻 ⊗ 𝜌I and𝑇𝐸 acts via its action on𝐻. This gives us an isomorphism

EndℰI
(𝐻) ∼−→ End𝐺sc (𝑉) . (4.8)

Note that EndℰI
(𝐻) is a central simple 𝑘I-algebra.

Lemma 4.3 Notation and assumptions as above.

(1) Identify End0 (𝑋) with the Q-subalgebra End𝑇𝐸×𝐺sc (𝑉) of End𝐺sc (𝑉), and view the
latter as a 𝑘I-algebra via the isomorphism (4.8). Then 𝑘I ⊂ 𝐸0, and hence 𝐸0, 𝐸
and End0 (𝑋) are 𝑘I-subalgebras of End𝐺sc (𝑉). Further, End0 (𝑋) is the centralizer
of 𝐸 in End𝐺sc (𝑉), and 𝐸 is the centralizer of End0 (𝑋).

(2) The multiplication type 𝔣 : Emb(𝐸) → N is not constant.

Proof (1) The action of 𝑇𝐸 on 𝑉 commutes with the action of 𝐺sc, and End0 (𝑋) ⊂
End𝐺sc (𝑉) is the subalgebra of elements that commute with the action of 𝑇𝐸 . There-
fore, the centre of End𝐺sc (𝑉), which is 𝑘I , is contained in the centre of End0 (𝑋), which
is 𝐸 . Since 𝑘I is totally real, even 𝑘I ⊂ 𝐸0. Moreover, the centralizer of 𝐸 is con-
tained in End0 (𝑋); but 𝐸 is the centre of End0 (𝑋), so in fact the centralizer of 𝐸 equals
End0 (𝑋). The last assertion then follows by the double centralizer theorem.

(2) Suppose 𝔣 were constant. As in the proof of Proposition 4.2(1), this would give
𝑍 = Gm, and hence End0 (𝑋) � End𝐺sc (𝑉). But the centre of End𝐺sc (𝑉) is 𝑘I , which is
totally real and therefore cannot be equal to 𝐸 ; contradiction. ■

4.9

Let notation and assumptions be as in 4.8. In addition to its rightℰI-module structure,
𝐻 has the structure of an 𝐸-vector space through the action of 𝐸 on 𝑉 . Clearly, the
𝐸-action on 𝐻 commutes with theℰI-action. The embedding 𝜄 : 𝑘I ↩→ 𝐸0 ⊂ 𝐸 of
Lemma 4.3(1) is such that 𝑓 ◦ 𝑎 = 𝜄(𝑎) ◦ 𝑓 for every 𝑎 ∈ 𝑘I and 𝑓 ∈ 𝐻, so theℰI-
action and the 𝐸-action induce the same structure of a 𝑘I-vector space on 𝐻. Hence, 𝐻
has the structure of a right 𝐸 ⊗𝑘I ℰI-module. Note that 𝐸 ⊗𝑘I ℰI is a central simple 𝐸-
algebra; if wewrite 𝐸ℰI ⊂ End𝑘I (𝐻) for the 𝑘I-subalgebra generated by 𝐸 andℰI , the
natural map 𝐸 ⊗𝑘I ℰI ↠ 𝐸ℰI is therefore an isomorphism. Via the isomorphism (4.8),
we find that End0 (𝑋) � End𝐸ℰI

(𝐻), and because End0 (𝑋) is a division algebra, only
three cases are possible:

Case 0. ℰI = 𝑘I and dim𝐸 (𝐻) = 1;
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Case 1. ℰI is a quaternion algebra over 𝑘I and 𝐸ℰI � 𝑀2 (𝐸), in which case
dim𝐸 (𝐻) = 2;

Case 2. ℰI is a quaternion algebra over 𝑘I and 𝐸ℰI is a quaternion algebra over 𝐸 , in
which case 𝐻 is free of rank 1 over 𝐸ℰI , and hence dim𝐸 (𝐻) = 4.

(As we shall see below, Case 0 in fact does not occur.)
Write 𝑛 = dim𝐸 (𝑉) =

2𝑔
[𝐸:Q] . Recall (see Remark 3.3) that Emb(𝑘I ) is in bijection

with I . The inclusions 𝑘I ⊂ 𝐸0 ⊂ 𝐸 give rise to naturalmapsEmb(𝐸) → Emb(𝐸0) →
Emb(𝑘I ). For 𝜑 in Emb(𝐸) or Emb(𝐸0), we write 𝜑 |𝑘I for its image in Emb(𝑘I ), and
we write 𝐼𝜑 ∈ I for the corresponding subset. Recall that ℓ(I) denotes the cardinality
of the sets 𝐼 ∈ I . We find the following:

Case 0. 𝑉 � St𝐸 ⊠𝑘I 𝑊I as representations of 𝑇𝐸 × 𝐺sc;
End0 (𝑋) = 𝐸 , with 𝑛 = 2ℓ (I ) and 𝑔 = [𝐸 : Q] · 2ℓ (I )−1.

Case 1. 𝑉⊕2 � St𝐸 ⊠𝑘I 𝑊I as representations of 𝑇𝐸 × 𝐺sc;
End0 (𝑋) = 𝐸 , with 𝑛 = 2ℓ (I ) and 𝑔 = [𝐸 : Q] · 2ℓ (I )−1.

Case 2. 𝑉 � St𝐸 ⊠𝑘I 𝑊I as representations of 𝑇𝐸 × 𝐺sc;
End0 (𝑋) = 𝐸ℰI , with 𝑛 = 2ℓ (I )+1 and 𝑔 = [𝐸 : Q] · 2ℓ (I ) .

We have

(St𝐸 ⊠𝑘I 𝑊I ) ⊗Q C =
⊕
𝐼∈I

(
⊕

𝜑∈Emb(𝐸 )
𝐼𝜑=𝐼

C
)
⊗
C

(
⊠
𝜎∈𝐼

St𝜎
)⊕ deg(ℰI )

=
⊕

𝜑∈Emb(𝐸 )

(
⊠

𝜎∈𝐼𝜑
St𝜎

)⊕ deg(ℰI )
. (4.9)

We consider the action ofGm,C on this space via the homomorphism �̃� : Gm,C → 𝑇𝐸,C×
𝐺sc
C
, which is described by Proposition 4.1. Note that the cocharacter (4.6) is 𝐺sc (C)-

conjugate to the cocharacter given by

𝑧 ↦→
((
𝑧 0
0 𝑧−1

)
, 1, . . . , 1

)
.

It follows that in the decomposition (4.9), theGm,C-action on the summand indexed by
𝜑 ∈ Emb(𝐸) has weights 2·𝔣 (𝜑)

𝑛
+ 1 and 2·𝔣 (𝜑)

𝑛
− 1 if 𝜎nc ∈ 𝐼𝜑 , and has weight 2·𝔣 (𝜑)

𝑛
if

𝜎nc ∉ 𝐼𝜑 . (Recall that 𝜎nc ∈ Emb(𝐹) is the unique embedding for which 𝐷 ⊗𝐹,𝜎nc R �
𝑀2 (R).) Note that whether or not 𝜎nc is in 𝐼𝜑 only depends on 𝜑 |𝑘I , and is therefore
invariant under complex conjugation.

Since we know thatGm,C acts on𝑉 with weights 0 and 2, we find that{
𝔣(𝜑), 𝔣(�̄�)

}
= {0, 𝑛} if 𝜎nc ∉ 𝐼𝜑 , 𝔣(𝜑) = 𝔣(�̄�) = 𝑛

2 if 𝜎nc ∈ 𝐼𝜑 . (4.10)

It follows from Lemma 4.3(2) that I ≠ {Emb(𝐹)}. By Lemma 3.1, Case 0 is therefore
excluded.

The following proposition summarizes what we have found.

Proposition 4.4 Let 𝑋 be a 𝑔-dimensional simple complex abelian variety with associated
Shimura datum (𝐺,𝒴) such that dim(𝒴) = 1. Assume that 𝑋 is of Albert type IV. Let
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notation be as in Sections 4.5–4.6, and recall that we write 𝑛 = 2𝑔/[𝐸 : Q]. There exists a
ΓQ-orbit I of nonempty proper subsets 𝐼 ⊊ Emb(𝐹) such that, with notation as in 4.8–4.9,
𝐸0 is a field extension of 𝑘I , and such that we are in one of the following cases:

1. ℰI is a quaternion algebra over 𝑘I such that 𝐸 ⊗𝑘I ℰI � 𝑀2 (𝐸), in which case
End0 (𝑋) = 𝐸 and 𝑔 = [𝐸 : Q] · 2ℓ (I )−1;

2. ℰI is a quaternion algebra over 𝑘I such that 𝐸 ⊗𝑘I ℰI is a quaternion algebra over 𝐸 ,
in which case End0 (𝑋) � 𝐸 ⊗𝑘I ℰI and 𝑔 = [𝐸 : Q] · 2ℓ (I ) .

Moreover, if Φ0 =
{
𝜑0 ∈ Emb(𝐸0)

�� 𝜎nc ∉ 𝐼𝜑0

}
, there exists a subset Φ ⊂ Emb(𝐸) with

the property that the restriction map End(𝐸) ↠ Emb(𝐸0) induces a bijection Φ
∼−→ Φ0,

and such that the multiplication type 𝔣 : Emb(𝐸) → N is given by

𝔣(𝜑) =


𝑛 if 𝜑 ∈ Φ;
0 if �̄� ∈ Φ;
𝑛
2 otherwise.

(4.11)

4.10 Remark.

The following explanation may help to understand what is going on. We have the de-
composition 𝑉C = ⊕𝜑∈Emb(𝐸 ) 𝑉𝜑 as in (4.5), with dimC (𝑉𝜑) = 𝑛, which is even. The
Hodge decomposition of𝑉C is described by the action of Gm,C via the homomorphism
�̃� = ( �̃�c, �̃�s). Here �̃�c is a homomorphism Gm,C → 𝑇𝐸,C =

∏
𝜑∈Emb(𝐸 ) Gm,C, and we

see that the �̃�c-action of 𝑧 ∈ C∗ on the summand 𝑉𝜑 ⊂ 𝑉C is multiplication by 𝑧𝑚(𝜑)

for some integer 𝑚(𝜑). If 𝜑 is such that 𝜎nc ∉ 𝐼𝜑 , the action of Gm,C on𝑉𝜑 via the ho-
momorphism �̃�s is trivial; hence,𝑉𝜑 is entirely of Hodge type (−1, 0) or entirely of type
(0,−1). Since �̃� is the square of the usual cocharacter 𝜇, this means that 𝑚(𝜑) = 0 or
𝑚(𝜑) = 2, which by Proposition 4.1(1) is equivalent to: 𝔣(𝜑) = 0 or 𝔣(𝜑) = 𝑛. As we
shall discuss below, the setΦ in Proposition 4.4may be thought of as a ‘partial CM type’;
it keeps track of whether, for embeddings 𝜑 with 𝜎nc ∉ 𝐼𝜑 , the type of𝑉𝜑 is (−1, 0) or
(0,−1).

If 𝜎nc ∈ 𝐼𝜑 the situation is very different: in this case, the action of Gm,C on 𝑉𝜑 via
the homomorphism �̃�s is nontrivial and has weights 1 and −1, both with multiplicity 𝑛2 .
(Informally speaking, the Hodge decomposition of𝑉𝜑 comes from the semisimple part
of the Mumford–Tate group.) In this case, the �̃�c-action ofGm,C on𝑉𝜑 only shifts these
weights, which means that 𝑚(𝜑) = 𝑚(�̄�) = 1 (equivalently: 𝔣(𝜑) = 𝔣(�̄�) = 𝑛

2 ), and
there is no further bookkeeping to be done.

4.11 Remark.

The derived subgroup 𝐺der of the Mumford–Tate group is the image of 𝐺sc =

Res𝐹/Q SL1,𝐷 under the representation 𝜌I . (This is analogous to Proposition 4.2(2).)
The centre of𝐺sc is 𝑍 (𝐺sc) = Res𝐹/Q 𝜇2,𝐹 , so that

𝑍 (𝐺sc)Q =
∏

𝜑∈Emb(𝐹 )
𝜇2 .
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The kernel of the isogeny 𝐺sc → 𝐺der is the subgroup scheme of 𝑍 (𝐺sc) whose Q-
points are the tuples (𝜀𝜑)𝜑∈Emb(𝐹 ) such that

∏
𝜑∈𝐼 𝜀𝜑 = 1 for every 𝐼 ∈ I .

4.12 Example.

Let 𝑔 be an even positive integer. Let (𝑋, 𝜆) be a 𝑔-dimensional polarised complex
abelian variety such that End0 (𝑋) = 𝐸 is a CM field of degree 𝑔 over Q, with maximal
totally real subfield 𝐸0. Let 𝑉 = 𝐻1 (𝑋,Q), which is a 2𝑔-dimensional Q-vector space
on which 𝐸 acts, and which can therefore also be viewed as a 2-dimensional 𝐸-vector
space.

There is a unique (−1)-hermitian formΨ : 𝑉 ×𝑉 → 𝐸 such that the Riemann form
of 𝜆 equals Tr𝐸/Q ◦ Ψ. Let ∗ be the involution of End𝐸 (𝑉) such that Ψ

(
𝑓 (𝑥), 𝑦

)
=

Ψ
(
𝑥, 𝑓 ∗ (𝑦)

)
for all 𝑓 ∈ End𝐸 (𝑉) and 𝑥, 𝑦 ∈ 𝑉 . Then

𝐷 =
{
𝑓 ∈ End𝐸 (𝑉)

�� 𝑓 ∗ = 𝑓
}

is a quaternion algebra over 𝐸0. The natural homomorphism 𝐸 ⊗𝐸0 𝐷 → End𝐸 (𝑉)
is an isomorphism, and under this isomorphism ∗ corresponds to 𝜄 ⊗ †, where 𝜄 is
complex conjugation on 𝐸 and † is the canonical involution of 𝐷. Define U(𝑉,Ψ) =

Res𝐸0/Q U(𝑉/𝐸,Ψ), where by U(𝑉/𝐸,Ψ) ⊂ GL𝐸 (𝑉) we mean the unitary group
ofΨ, which is a form of GL2 over 𝐸0. Further define GU(𝑉,Ψ) = Gm ·U(𝑉,Ψ), where
Gm = Gm,Q · id𝑉 ⊂ GL(𝑉). The isomorphism 𝐸 ⊗𝐸0 𝐷

∼−→ End𝐸 (𝑉) gives rise to an
isomorphism Res𝐸0/Q GL1,𝐷

∼−→ U(𝑉,Ψ).
For 𝜎 ∈ Emb(𝐸0), write 𝐸𝜎 = 𝐸 ⊗𝐸0 ,𝜎 R, which is non-canonically isomorphic

toC. LetΨ𝜎 be the𝐸𝜎-valued (−1)-hermitian formon𝑉𝜎 = 𝑉⊗𝐸0 ,𝜎R that is obtained
from Ψ by extension of scalars via 𝜎, and let 𝐷𝜎 = 𝐷 ⊗𝐸0 ,𝜎 R. We then have

U(𝑉,Ψ)R �
∏

𝜎∈Emb(𝐸0 )
U(𝑉𝜎 ,Ψ𝜎)

and isomorphisms of real algebraic groups GL1,𝐷𝜎

∼−→ U(𝑉𝜎 ,Ψ𝜎).
We now assume that there is a unique 𝜎nc ∈ Emb(𝐸0) such that Ψ𝜎 is indefinite

for 𝜎 = 𝜎nc and is definite otherwise. (Indefinite here means that U(𝑉𝜎 ,Ψ𝜎) is non-
compact.) TheMumford–Tate group𝐺 is a subgroup of GU(𝑉,Ψ), and the two groups
have the same adjoint group. If (𝐺,𝒴) is the associated Shimura datum, dim(𝒴) = 1.
We are therefore in the situation studied above, with 𝐹 = 𝐸0. The representation of
𝐺sc = Res𝐸0/Q SL1,𝐷 on 𝑉 is isotypical of type 𝜌I , where I ⊂ 𝒫

(
Emb(𝐸0)

)
is the set

of singletons, which gives 𝑘I � 𝐸0 = 𝐹 andℰI = 𝐷. Because 𝐸 ⊗𝐸0 𝐷
∼−→ End𝐸 (𝑉)

(so: 𝐸 is a splitting field of 𝐷), we are in Case 1 of Proposition 4.4.
The subset Φ ⊂ Emb(𝐸) is such that the restriction map Emb(𝐸) → Emb(𝐸0)

gives a bijectionΦ → Emb(𝐸0) \ {𝜎nc}. In other words, for each 𝜎 ≠ 𝜎nc in Emb(𝐸0)
there is a unique embedding 𝜑 ∈ Emb(𝐸) above 𝜎 with the property that 𝑉−1,0

𝜑 ≠ 0,
andΦ is the collection of these 𝜑.

From the description of the cocharacter 𝜇c given in Proposition 4.1(1), we can deduce
that 𝑍 ⊂ 𝑇𝐸 is the subtorus of elements 𝑦 ∈ 𝐸∗ such that 𝑦�̄� ∈ Q∗, and it follows that
𝐺 = GU(𝑉,Ψ).
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4.13

In the situation described in Proposition 4.4, the subset Φ ⊂ Emb(𝐸) determines
the multiplication type 𝔣, which by Proposition 4.1(1) determines the cocharacter
�̃�c : Gm,C → 𝑇𝐸,C. Because 𝑍 ⊂ 𝑇𝐸 (the identity component of the centre of the
Mumford–Tate group) is the smallest subtorus such that �̃�c factors through 𝑍C, we con-
clude that Φ determines 𝑍 . This centre cannot be too small; for instance, we have seen
that End𝑍×𝐺sc (𝑉) = End𝑇𝐸×𝐺sc (𝑉). This gives a nontrivial condition onΦ. To state it,
we introduce the notion of a partial CM type.

Definition 4.1 Let 𝐸 be aCM fieldwithmaximal totally real subfield 𝐸0. Let 𝑘 ⊂ 𝐸0 be
a subfield and let Σ be a subset of Emb(𝑘). Then by a partial CM type relative to (𝑘, Σ)
we mean a subsetΦ ⊂ Emb(𝐸) such that the map 𝜑 ↦→ 𝜑 |𝐸0 gives a bijection

Φ
∼−→

{
𝜑0 ∈ Emb(𝐸0)

�� 𝜑0 |𝑘 ∈ Σ
}
.

We say that a partial CM typeΦ ⊂ Emb(𝐸) relative to (𝑘, Σ) is primitive if for every
𝜑 ≠ 𝜑′ in Emb(𝐸) with 𝜑|𝑘 = 𝜑′ |𝑘 , there exists an element 𝛾 ∈ ΓQ such that 𝛾 ◦ 𝜑 ∈ Φ

while 𝛾 ◦ 𝜑′ ∉ Φ.

Note that in other places in the literature (e.g., [10], Section 3.1) the term ‘partial CM
type’ is used for any subset Φ ⊂ Emb(𝐸) with Φ ∩ Φ = ∅. Of course, any such Φ is a
partial CM type in our sense for some choice of (𝑘, Σ), as we can just take 𝑘 = 𝐸0 and
Σ =

{
𝜑|𝐸0

�� 𝜑 ∈ Φ
}
; but the condition for Φ to be primitive depends on the choice

of (𝑘, Σ), see the next examples.

4.14 Examples.

(1) If we take 𝑘 = Q and Σ = Emb(Q), we recover the usual notion of a CM type.
As we shall show, such a CM type Φ is primitive in the above sense if and only if it is
primitive in the classical sense, i.e., ifΦ is not induced from a proper CM subfield of 𝐸 .
See Remark 4.15.

(2) Supposewe take 𝑘 = 𝐸0. Then a partial CMtypeΦ ⊂ Emb(𝐸) relative to (𝑘, Σ) is
primitive whenever Σ ≠ ∅. Indeed, if 𝑘 = 𝐸0 and Σ ≠ ∅ then for any 𝜑 ≠ 𝜑′ in Emb(𝐸)
with 𝜑 |𝐸0 = 𝜑0 = 𝜑′ |𝐸0 , we can find an element 𝛾 ∈ ΓQ such that 𝛾 ◦ 𝜑0 ∈ Σ. Then
𝛾 ◦𝜑 and 𝛾 ◦𝜑′ are the only two elements of Emb(𝐸) that restrict to 𝛾 ◦𝜑0, so precisely
one of them lies inΦ. Possibly after composing 𝛾 with complex conjugationwe find that
𝛾 ◦ 𝜑 ∈ Φ and 𝛾 ◦ 𝜑′ ∉ Φ.

(3) In the situation considered inProposition 4.4,wehave a partialCMtypeΦ relative
to 𝑘 = 𝑘I and Σ =

{
𝐼 ∈ I

�� 𝜎nc ∉ 𝐼
}
. (Here we identify Emb(𝑘I ) with I .)

Proposition 4.5 Let notation and assumptions be as in Proposition 4.4. Then the partial CM
typeΦ relative to

(
𝑘I , {𝐼 ∈ I |𝜎nc ∉ 𝐼}

)
is primitive.

Proof Recall from 2.3 that St𝐸 denotes the standard representation of 𝑇𝐸 . The char-
acter groupX∗ (𝑍) of 𝑍 is a quotient ofX∗ (𝑇𝐸) = ⊕𝜑∈Emb(𝐸 ) Z · e𝜑 . Write ē𝜑 ∈ X∗ (𝑍)
for the image of e𝜑 . Because ΓQ acts transitively on the set of elements e𝜑 , the index
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𝜈 =
[
Stab(ē𝜑) : Stab(e𝜑)

]
is independent of 𝜑. Let 𝐾 be the centre of End𝑍 (St𝐸); then

𝐾 is a subfield of 𝐸 with [𝐸 : 𝐾] = 𝜈. Further, End𝑍 (St𝐸) � 𝑀𝜈 (𝐾), and the embed-
ding 𝐸 = End𝑇𝐸 (St𝐸) ↩→ End𝑍 (St𝐸) realizes 𝐸 as a maximal commutative subalgebra
of End𝑍 (St𝐸).

Let 𝐾𝑘I ⊂ 𝐸 be the compositum of the subfields 𝐾 and 𝑘I . We first show that the
equalityEnd𝑍×𝐺sc (𝑉) = End𝑇𝐸×𝐺sc (𝑉) holds if and only if𝐾𝑘I = 𝐸 . The isomorphism
(4.8) restricts to an isomorphism

End𝑍×𝐺sc (𝑉) � EndℰI
(𝐻) ∩ End𝑍 (𝐻) . (4.12)

In either of the cases distinguished in Proposition 4.4, 𝐻 is isomorphic, as a representa-
tion of 𝑇𝐸 , to a direct sum of copies of the standard representation St𝐸 . The inclusion
𝐾 ↩→ 𝐸 gives 𝐻 the structure of a 𝐾-vector space, and the relation End𝑍 (St𝐸) �
𝑀𝜈 (𝐾) implies that End𝑍 (𝐻) = End𝐾 (𝐻). Therefore, the right hand side of (4.12)
equals End𝐾ℰI

(𝐻), where 𝐾ℰI is the subalgebra of 𝐸ℰI generated by 𝐾 andℰI . Re-
call thatℰI is a quaternion algebra over 𝑘I , so 𝐾ℰI � 𝐾𝑘I ⊗𝑘I ℰI is a 4-dimensional
central simple algebra over 𝐾𝑘I . On the other hand, End𝑇𝐸×𝐺sc (𝑉) = End𝐸ℰI

(𝐻). By
the double centraliser theorem, we have End𝑍×𝐺sc (𝑉) = End𝑇𝐸×𝐺sc (𝑉) if and only if
𝐾ℰI = 𝐸ℰI . Because 𝐸ℰI is a 4-dimensional central simple algebra over 𝐸 , this is in
turn equivalent to 𝐾𝑘I = 𝐸 .

Next we show that we have an equality 𝐾𝑘I = 𝐸 if and only if Φ is primitive. For
𝜑 ∈ Emb(𝐸), write 𝑃(𝜑) =

{
𝜑′ ∈ Emb(𝐸)

�� 𝜑 |𝑘I = 𝜑′ |𝑘I
}
, which is the fibre of the

restriction map Emb(𝐸) → Emb(𝑘I ) that contains 𝜑. Then

Gal
(
Q/𝜑(𝐸)

)
= Stab(𝜑) = Stab(e𝜑) ⊂ Gal

(
Q/𝜑(𝑘I )

)
= Stab

(
𝑃(𝜑)

)
.

(By Stab
(
𝑃(𝜑)

)
⊂ ΓQ we mean the stabilizer of 𝑃(𝜑) as a set, not the pointwise sta-

bilizer. Note that the ΓQ-action permutes the sets of the form 𝑃(𝜑), so that indeed
Stab(𝜑) ⊂ Stab

(
𝑃(𝜑)

)
.) On the other hand, it follows from Proposition 4.1(1) to-

gether with the characterisation of 𝑍 as the smallest subtorus of𝑇𝐸 such that 𝜇c factors
through 𝑍C, that

Stab(ē𝜑) =
{
𝛿 ∈ ΓQ

�� 𝔣(𝛾 ◦ 𝛿 ◦ 𝜑) = 𝔣(𝛾 ◦ 𝜑) for all 𝛾 ∈ ΓQ
}
.

The equality 𝐾𝑘I = 𝐸 is equivalent to the condition that for some (equivalently: for
every) 𝜑 ∈ Emb(𝐸), the inclusion Stab(𝜑) ⊂ Stab

(
𝑃(𝜑)

)
∩ Stab(ē𝜑) is an equality. In

other words,

𝐾𝑘I ⊊ 𝐸 ⇐⇒ Stab(𝜑) ⊊ Stab
(
𝑃(𝜑)

)
∩ Stab(ē𝜑)

⇐⇒ ∃ 𝜑′ = 𝛿 ◦ 𝜑 ∈ 𝑃(𝜑) such that 𝜑′ ≠ 𝜑 and
𝔣(𝛾 ◦ 𝜑′) = 𝔣(𝛾 ◦ 𝜑) for all 𝛾 ∈ ΓQ.

This proves the proposition. ■

4.15 Remark.

Suppose we take 𝑘 = Q and Σ = Emb(Q). In this case,Φ is a CM type on 𝐸 in the usual
sense, and we claim that it is primitive in the sense of Definition 4.1 if and only if Φ is
not induced from a proper CM subfield of 𝐸 . To see this, let 𝜇 : Gm,C → 𝑇𝐸,C be the
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cocharacter defined byΦ, i.e., 𝜇 =
∑
𝜑∈Φ ě𝜑 , and let 𝑍 ⊂ 𝑇𝐸 be the smallest subtorus

such that 𝜇 factors through 𝑍C. If 𝑋 is a complex abelian variety of CM type (𝐸,Φ)
(which is uniquely determined up to isogeny), 𝑍 is the Mumford–Tate group of 𝑋 . With
notation as in the proof of Proposition 4.5, Φ is primitive if and only if Stab(ē𝜑) =

Stab(e𝜑) = Stab(𝜑), which is equivalent to the condition that End𝑍 (St𝐸) = 𝐸 , which
in turn is equivalent to the condition that End0 (𝑋) = 𝐸 . It is classical that this happens
if and only ifΦ is not induced from a proper CM subfield of 𝐸 .

5 A classification result

5.1

Let 𝑔 be a positive integer. If (𝑉, 𝜑) is a symplectic space of dimension 2𝑔 over Q, let
ℌ(𝑉, 𝜑) denote the space of homomorphisms ℎ : S→ GSp(𝑉, 𝜑)R that define a Hodge
structure of type (−1, 0) + (0,−1) on 𝑉 for which ±(2𝜋𝑖) · 𝜑 is a polarisation. The
group GSp(𝑉, 𝜑)

(
R
)
acts transitively onℌ(𝑉, 𝜑) and the pair

(
GSp(𝑉, 𝜑),ℌ(𝑉, 𝜑)

)
is

a Shimura datum, which is usually called a Siegel modular Shimura datum. To simplify
notation, we denote this datum by𝔖(𝑉, 𝜑).

The associated tower of Shimura varieties Sh𝐾
(
𝔖(𝑉, 𝜑)

)
, for𝐾 running through the

set of compact open subgroups of GSp2𝑔 (𝑉, 𝜑)
(
Af

)
, is isomorphic to the tower 𝒜𝑔,𝐾

of moduli spaces of 𝑔-dimensional principally polarized abelian varieties with a level 𝐾
structure; see for instance [4], § 4.

If (𝑉1, 𝜑1) and (𝑉2, 𝜑2) are symplectic spaces and 𝑓 : (𝑉1, 𝜑1) → (𝑉2, 𝜑2) is a simili-
tude, 𝑓 induces an isomorphism of Shimura data𝔖(𝑉1, 𝜑1)

∼−→ 𝔖(𝑉2, 𝜑2). Conversely,
every such isomorphism is induced by a similitude. In particular, all automorphisms of
the Shimura datum 𝔖(𝑉, 𝜑) are inner, i.e., are given by conjugation with an element
of GSp(𝑉, 𝜑)

(
Q
)
. (Note that GSp(𝑉, 𝜑) has non-inner automorphisms, but these do

not mapℌ(𝑉, 𝜑) into itself.)

5.2

Let 𝐹 be a totally real number field,𝐷 a 4-dimensional central simple 𝐹-algebra, and as-
sume there exists a unique embedding 𝜎nc ∈ Emb(𝐹) such that 𝐷 ⊗𝐹,𝜎nc R � 𝑀2 (R).
Define𝒢𝐷 = Res𝐹/Q PGL1,𝐷 , and let𝒴𝐷 be the𝒢𝐷 (R)-conjugacy class of the homo-
morphism S → 𝒢𝐷,R that on the unique noncompact factor PGL2 of𝒢𝐷,R is given by
𝑎 + 𝑏𝑖 ↦→

[
𝑎 −𝑏
𝑏 𝑎

]
and that is trivial on the compact factors. The pair (𝒢𝐷 ,𝒴𝐷) is a 1-

dimensional adjoint Shimura datum. Because𝒢𝐷 is a Q-simple group, it is the generic
Mumford–Tate group on𝒴𝐷 .

We claim that all automorphisms of the Shimura datum (𝒢𝐷 ,𝒴𝐷) are inner, i.e.,
𝐷∗/𝐹∗ ∼−→ Aut(𝒢𝐷 ,𝒴𝐷). The automorphism group of𝒢𝐷 is the group of pairs (𝛼, 𝑓 )
where 𝛼 ∈ Aut(𝐹) and 𝑓 : PGL1,𝐷

∼−→ PGL1,𝛼∗𝐷 is an isomorphism of groups over 𝐹 .
(See [3], Proposition A.5.14; the result is stated there for simply connected groups but
the same argument works for adjoint groups.) As 𝛼 has to preserve 𝜎nc, only 𝛼 = id is
possible. Since all automorphisms of PGL1,𝐷 are inner, this gives the claim.

2024/12/17 20:08

https://doi.org/10.4153/S0008414X24001159 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001159


A classification of Shimura curves in𝒜𝑔 21

5.3

Our goal is to classify the 1-dimensional Shimura subvarieties of 𝒜𝑔 . This leads us to
consider triples (𝐺,𝒴, 𝜌), where (𝐺,𝒴) is a Shimura datum with dim(𝒴) = 1 such
that 𝐺 is the generic Mumford–Tate group on𝒴, and 𝜌 : (𝐺,𝒴) ↩→ 𝔖(𝑉, 𝜑) is an
embedding of (𝐺,𝒴) into a Siegel modular Shimura datum.

If we have two such triples
(
𝐺𝑖 ,𝒴𝑖 , 𝜌𝑖 : (𝐺𝑖 ,𝒴𝑖) ↩→ 𝔖(𝑉𝑖 , 𝜑𝑖)

)
, for 𝑖 = 1, 2, we

say these are equivalent if there exist isomorphisms of Shimura data 𝛼 : (𝐺1,𝒴1)
∼−→

(𝐺2,𝒴2) and 𝛽 : 𝔖(𝑉1, 𝜑1)
∼−→ 𝔖(𝑉2, 𝜑2) with 𝛽 ◦ 𝜌1 = 𝜌2 ◦ 𝛼.

If (𝐺,𝒴, 𝜌) is a triple as above, the adjoint Shimura datum of (𝐺,𝒴) is of the
form described in 5.2. In what follows, we fix 𝐹 and 𝐷 as in 5.2 and study only triples
(𝐺,𝒴, 𝜌) such that (𝐺ad,𝒴ad) � (𝒢𝐷 ,𝒴𝐷). Let 𝑚 = [𝐹 : Q] , and continue to write
𝜎nc ∈ Emb(𝐹) for the unique embedding such that 𝐷 ⊗𝐹,𝜎nc R � 𝑀2 (R). We write
𝒢

sc
𝐷

= Res𝐹/Q SL1,𝐷 for the simply connected cover of𝒢𝐷 , and we fix identifications
as in (4.2) (with𝒢𝐷 in place of 𝐺). If I is a ΓQ-orbit of nonempty subsets of Emb(𝐹),
we denote by 𝜌I : 𝒢sc

𝐷
→ GL(𝑊I ) the corresponding irreducible representation.

5.4

The following summarizeswhat is explained in [5], Section 1.1. Let (𝐺,𝒴) be a Shimura
datum whose weight is defined overQ, and such that for some (equivalently: all) ℎ ∈ 𝒴

the involution Inn
(
ℎ(𝑖)

)
of (𝐺/w(Gm))R is a Cartan involution.

Let ℎ0 ∈ 𝒴, and let 𝜌 : 𝐺 → GL(𝑉) be a representation such that 𝜌 ◦ ℎ0 defines a
Hodge structure of weight 𝑛 on𝑉 , for some 𝑛 ∈ Z. Then there exist:

• a character 𝜈 : 𝐺 → Gm such that 𝜈 ◦w : Gm → Gm is given by 𝑧 ↦→ 𝑧−2𝑛,
• a bilinear form 𝜑 : 𝑉 ×𝑉 → Q(−𝑛),

such that 𝜑(𝑔𝑣, 𝑔𝑣′) = 𝜈(𝑔) · 𝜑(𝑣, 𝑣′) for all 𝑔 ∈ 𝐺 and 𝑣, 𝑣′ ∈ 𝑉 , and such that 𝜑 is a
polarization of the Hodge structure on𝑉 given by 𝜌◦ℎ0. The form 𝜑 is symmetric (resp.
symplectic) if the weight 𝑛 is even (resp. odd). If ℎ = 𝑔 · ℎ0 ∈ 𝒴 is any other element,
either 𝜑 or −𝜑 (depending on the sign of 𝜈(𝑔)) is a polarization of the Hodge structure
defined by 𝜌 ◦ ℎ.

For our purposes, it suffices to consider the case where𝒴 is 1-dimensional and the
Hodge structure on𝑉 is of type (−1, 0) + (0,−1). From now on, we assume this. Let ℎ0,
𝜈 and 𝜑 be as above. Then 𝜌 defines an embedding of (𝐺,𝒴) into the Siegel modular
datum𝔖(𝑉, 𝜑) and

(
𝐺,𝒴, 𝜌 : (𝐺,𝒴) ↩→ 𝔖(𝑉, 𝜑)

)
is a triple as in 5.3.

For a given representation 𝜌, the form 𝜑 is not unique in general. To analyse this, we
firstmake the simplifying assumption that 𝜌 is isotypical, i.e., 𝜌 is isomorphic to a sumof
copies of an irreducible representation. (We shall return to the general case in Section 6.)
The endomorphism algebra 𝐴 = End(𝜌) is then a matrix algebra over a finite dimen-
sional division algebra overQ. The involution † on 𝐴 that is induced by 𝜑 is positive, so
that (𝐴, †) is a pair of the type classified by Albert. (See [9], § 21, for instance.) The set
𝐴s =

{
𝑓 ∈ 𝐴

�� 𝑓 = 𝑓 †
}
of symmetric elements in 𝐴 is a formally real Jordan algebra

for the product given by 𝑓1 ★ 𝑓2 = ( 𝑓1 𝑓2 + 𝑓2 𝑓1)/2, and the totally positive elements
in 𝐴s form an open cone 𝐴s,+. (Note that 𝐴s is a Jordan algebra over Q, so by ‘cone’ we
here mean a cone in a Q-vector space. Further, writing 𝐸0 for the field of †-symmetric
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elements in the centre of 𝐴, which is a totally real field, we call an element 𝑓 ∈ 𝐴s totally
positive if its image in the Jordan algebra (𝐴 ⊗𝐸0 , 𝜄 R)s is positive for every embedding
𝜄 : 𝐸0 → R.) With this notation, if ℎ0 ∈ 𝒴 is Hodge generic, every other polarization
form for theHodge structure given by 𝜌◦ℎ0 is of the form𝜓(𝑣, 𝑣′) = 𝜑(𝑎𝑣, 𝑣′) for some
𝑎 ∈ 𝐴s,+. Conversely, for every such 𝑎 the form 𝜓𝑎 (𝑣, 𝑣′) = 𝜑(𝑎𝑣, 𝑣′) is a polarization,
and

(
𝐺,𝒴, 𝜌 : (𝐺,𝒴) ↩→ 𝔖(𝑉, 𝜓𝑎)

)
is again a triple as in 5.3.

In general, it is somewhat complicated to say under what conditions on 𝑎 ∈ 𝐴s,+ the
forms 𝜑 and 𝜓𝑎 give rise to equivalent triples. A sufficient condition for these triples to
be equivalent is that there exists a 𝐺-equivariant similitude (𝑉, 𝜑) → (𝑉, 𝜓𝑎), which
happens if and only if 𝑎 = 𝜈 · 𝑏†𝑏 for some 𝑏 ∈ 𝐴∗ and 𝜈 ∈ Q∗. (Note that a Siegel
modular datum𝔖(𝑉, 𝜑) does not change if we multiply 𝜑 by a scalar inQ∗.) If all auto-
morphisms of the Shimura datum (𝐺,𝒴) are inner, this is also a necessary condition;
but in general (𝐺,𝒴) can have non-inner automorphisms.

After these preliminaries, we now discuss two constructions that, together, describe
all possible triples (𝐺,𝒴, 𝜌) as in 5.3 for which the representation 𝜌 is isotypical. (See
Theorem 5.1.) This is essentially Section 4 in reverse. We fix (𝒢𝐷 ,𝒴𝐷) as in 5.3.

5.5 Construction 1.

Let �̃�s : 𝒢sc
𝐷

→ GL(𝑉) be the corestriction representation; this is the case I =

{Emb(𝐹)} that was discussed in Example 3.1, applied with 𝐿 = 𝐹 . Let �̃� = Gm,Q×𝒢sc
𝐷
,

and let �̃� : �̃� → GL(𝑉) be given by (𝑐, 𝑔) ↦→ 𝑐 · �̃�s (𝑔). Let 𝐺 = Im( �̃�) be the image
of �̃�, and let 𝜌 : 𝐺 ↩→ GL(𝑉) be the induced representation.

Let �̃� : Gm,C → �̃�C be the cocharacter given by 𝑧 ↦→ 𝑧 on the first factor of �̃� and by
formula (4.6) on the factor𝒢sc

𝐷,C
. Asµ2 =

{
±1

}
⊂ Gm,C lies in the kernel of �̃� ◦ �̃�, there

exists a unique cocharacter 𝜇 : Gm,C → 𝐺C such that �̃� ◦ �̃� lifts the square of 𝜌 ◦ 𝜇. Let
ℎ : Gm,R → 𝐺R be the homomorphism such that ℎC = 𝜇 · �̄�, and let𝒴 be the 𝐺 (R)-
conjugacy class of ℎ. The pair (𝐺,𝒴) is a Shimura datumwhoseweight is definedoverQ
such that (𝐺ad,𝒴ad) � (𝒢𝐷 ,𝒴𝐷). (See also 5.1.) It is clear from the construction that
𝐺/w(Gm) = 𝐺ad and that𝐺 is the generic Mumford–Tate group on𝒴.

Let 𝑟 be a positive integer, and consider the representation 𝜌⊕𝑟 . By what was ex-
plained in 5.4, there exists a polarization form 𝜑 on 𝑉⊕𝑟 such that 𝜌⊕𝑟 factors through
GSp(𝑉⊕𝑟 , 𝜑); we choose one. Then

(
𝐺,𝒴, 𝜌 : (𝐺,𝒴) ↩→ 𝔖(𝑉⊕𝑟 , 𝜑)

)
is a triple as

in 5.3.
The endomorphism algebra 𝐴0 of the representation 𝜌 is described as in Proposi-

tion 4.2(3). The endomorphism algebra 𝐴 of 𝜌⊕𝑟 is the matrix algebra𝑀𝑟 (𝐴0). Let † be
the involution of 𝐴 given by the chosen form 𝜑, and let the notation 𝐴s,+ ⊂ 𝐴s be as
in 5.4. For 𝑎 ∈ 𝐴s,+ the form 𝜓𝑎 given by 𝜓𝑎 (𝑣, 𝑣′) = 𝜑(𝑎𝑣, 𝑣′) has the property that
𝜌 factors through GSp(𝑉⊕𝑟 , 𝜓𝑎), and

(
𝐺,𝒴, 𝜌 : (𝐺,𝒴) ↩→ 𝔖(𝑉⊕𝑟 , 𝜓𝑎)

)
is again a

triple as in 5.3.

5.6 Construction 2.

Let I be a ΓQ-orbit of nonempty subsets of Emb(𝐹), with I ≠
{

Emb(𝐹)
}
, and let

𝜌I : 𝒢sc
𝐷

→ GL(𝑊I ) be the corresponding irreducible representation. Let ℓ(I) be the
cardinality of the sets in I , let ℰI = End(𝜌I ), and let 𝑘I be the centre of ℰI , which
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is a totally real field. As explained in Remark 3.3, there is a natural identification I =

Emb(𝑘I ), and we use this to view Σ =
{
𝐼 ∈ I

�� 𝜎nc ∉ 𝐼
}
as a subset of Emb(𝑘I ).

Let 𝑘I ⊂ 𝐸0 be a finite totally real field extension and 𝐸0 ⊂ 𝐸 a totally imaginary
quadratic extension (so 𝐸 is a CM field). Let Φ ⊂ Emb(𝐸) be a primitive partial CM
type relative to (𝑘I , Σ). (Note that such a typeΦmay not exist for all choices of 𝐸 .) Let
𝐻 be the unique simple right (𝐸 ⊗𝑘I ℰI )-module, and define𝑉 = 𝐻 ⊗ℰI

𝑊I , viewed as
aQ-vector space.

Define a multiplication type 𝔣 as in (4.11). Let �̃�c : Gm,C → 𝑇𝐸,C be the cocharacter
that is given, as element ofX∗ (𝑇𝐸), by �̃�c =

∑
𝜑∈Emb(𝐸 )

2·𝔣 (𝜑)
𝑛

·ě𝜑 , where 𝑛 = dim𝐸 (𝑉),
which equals 2ℓ (I ) if the class of 𝐸 ⊗𝑘I ℰI in Br(𝐸) is trivial, and else equals 2ℓ (I )+1.
Let 𝑍 ⊂ 𝑇𝐸 be the smallest subtorus such that �̃�c factors through 𝑍C. Let �̃�s : Gm,C →
𝒢

sc
𝐷,C

be as in Proposition 4.1(2) (here with 𝐺 = 𝒢𝐷 ), and let �̃� = ( �̃�c, �̃�s) : Gm,C →
𝑍C ×𝒢𝐷,C.

We have a natural action of 𝑇𝐸 on 𝐻 byℰI-linear automorphisms. This gives a rep-
resentation of 𝑇𝐸 on 𝑉 which commutes with the action of𝒢sc

𝐷
and therefore defines a

representation �̃� : 𝑇𝐸 ×𝒢
sc
𝐷
→ GL(𝑉). Let

𝐺 = �̃�
(
𝑍 ×𝒢

sc
𝐷

)
⊂ GL(𝑉)

be the image of 𝑍 × 𝒢
sc
𝐷

under �̃�, and write 𝜌 : 𝐺 ↩→ GL(𝑉) for the induced
representation.

We claim that µ2 ⊂ Gm,C lies in the kernel of �̃� ◦ �̃�. To see this, we observe that
(depending on the structure of 𝐸 ⊗𝑘I ℰI ) either𝑉 or𝑉⊕2 is isomorphic to St𝐸 ⊠𝑘I 𝑊I

as a representation of 𝑇𝐸 × 𝒢
sc
𝐷
. It therefore suffices to show that the action of −1 ∈

C∗ = Gm (C) on (St𝐸 ⊠𝑘I 𝑊I ) ⊗Q C is trivial. We have a decomposition (4.9). For a
given 𝜑 ∈ Emb(𝐸), if 𝜎nc ∈ 𝐼𝜑 then �̃�c (−1) and �̃�s (−1) both act on the summand
⊠𝜎∈𝐼𝜑 St𝜎 as −id; if 𝜎nc ∉ 𝐼𝜑 then both elements acts as the identity. In either case,
therefore, we see that −1 ∈ C∗ = Gm (C) acts as the identity, which proves our claim. It
follows that there exists a unique cocharacter 𝜇 : Gm,C → 𝐺C such that �̃� ◦ �̃� lifts the
square of 𝜌 ◦ 𝜇. Let ℎ : Gm,R → 𝐺R be the homomorphism such that ℎC = 𝜇 · �̄�, and let
𝒴 be the𝐺 (R)-conjugacy class of ℎ. The pair (𝐺,𝒴) is a Shimura datumwhose weight
is defined over Q (see 5.1), and 𝜌 ◦ w : Gm,R → GL(𝑉)R is given by 𝑧 ↦→ 𝑧 · id𝑉 . By
construction, the adjoint Shimura datum (𝐺ad,𝒴ad) is isomorphic to (𝒢𝐷 ,𝒴𝐷).

Let 𝑟 be a positive integer, and consider the representation 𝜌⊕𝑟 . It follows from its
definition that 𝑍 is contained in the torus𝑈𝐸 ⊂ 𝑇𝐸 given by𝑈𝐸 =

{
𝑥 ∈ 𝐸∗ �� 𝑥𝑥 ∈ Q∗}.

As (𝑈𝐸/Gm)R is compact, Inn
(
ℎ(𝑖)

)
is aCartan involution of (𝐺/w(Gm))R. It therefore

follows from what was explained in 5.4 that there exists a polarization form 𝜑 on 𝑉⊕𝑟

such that 𝜌⊕𝑟 factors through GSp(𝑉⊕𝑟 , 𝜑); we choose one.
By Lemma 3.1, the assumption that Φ is primitive implies that ℰI is a quaternion

algebra over 𝑘I . The endomorphism algebra of �̃� is isomorphic to End𝐸⊗𝑘I
ℰI

(𝐻). The
proof of Proposition 4.5 shows that End(𝜌) = End( �̃�); hence the representation 𝜌 is
irreducible.More precisely, if wewrite 𝐴0 = End(𝜌) then either 𝐸 ⊗𝑘IℰI � 𝑀2 (𝐸), in
which case 𝐴0 = 𝐸 , or𝐸⊗𝑘IℰI is a quaternion algebra over𝐸 , inwhich case 𝐴0 = 𝐸⊗𝑘I
ℰI . The endomorphism algebra 𝐴 of 𝜌⊕𝑟 is the matrix algebra 𝑀𝑟 (𝐴0), on which 𝜑
induces an involution. For 𝑎 ∈ 𝐴s,+, let𝜓𝑎 (𝑣, 𝑣′) = 𝜑(𝑎𝑣, 𝑣′); then 𝜌⊕𝑟 factors through
GSp(𝑉⊕𝑟 , 𝜓𝑎), and

(
𝐺,𝒴, 𝜌 : (𝐺,𝒴) ↩→ 𝔖(𝑉⊕𝑟 , 𝜓𝑎)

)
is a triple as in 5.3.
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Theorem 5.1 The constructions in 5.5 and 5.6 give triples (𝐺,𝒴, 𝜌) as in 5.3 with the
property that the representation 𝜌 is isotypical. Every such triple is obtained in this way.

Proof In either case, the construction yields aQ-group𝐺 , a homomorphism ℎ : S→
𝐺R, and an embedding 𝜌 : 𝐺 ↩→ GL(𝑉) such that

• the Hodge structure on𝑉 defined by 𝜌 ◦ ℎ is of type (−1, 0) + (0,−1);
• 𝐺ad � 𝒢𝐷 , and ad ◦ ℎ ∈ 𝒴𝐷 ;
• Inn

(
ℎ(𝑖)

)
is a Cartan involution of (𝐺/w(Gm))R.

With 𝒴 = 𝐺 (R) · ℎ, these properties imply that (𝐺,𝒴) is a Shimura datum whose
weight is defined overQ, such that (𝐺ad,𝒴ad) � (𝒢𝐷 ,𝒴𝐷).

In either construction, it is clear that the triples (𝐺,𝒴, 𝜌) that we obtain satisfy the
conditions of 5.3. In Construction 1 it is clear that the representation 𝜌 is irreducible,
and as explained in 5.6, in Construction 2 the irreducibility follows from the assumption
thatΦ is primitive.

The last assertion follows from the results in Section 4. ■

5.7 Remark.

In the situation considered in 5.5 (Construction 1), all automorphisms of (𝐺,𝒴) are
inner. To see this, we use that 𝐺ad � 𝐺/Gm, so that the map 𝐺 (Q) → 𝐺ad (Q) is sur-
jective. As explained in 5.2, all automorphisms of the adjoint Shimura datum are inner.
Therefore, if 𝛼 is an automorphism of (𝐺,𝒴) then possibly after changing 𝛼 by an in-
ner automorphism, we may assume 𝛼 induces the identity on𝐺der. The only non-inner
automorphism of 𝐺 with this property is the one given by 𝑧 ↦→ 𝑧−1 on the centre Gm
and by the identity on 𝐺der; but this automorphism does not give an automorphism of
(𝐺,𝒴) (it does not even preserve the weight).

As discussed at the end of Section 5.4, the fact that all automorphisms of (𝐺,𝒴)
are inner implies that the forms 𝜑 and 𝜓𝑎 give rise to equivalent triples if and only if
𝑎 = 𝜈 · 𝑏†𝑏 for some 𝜈 ∈ Q∗ and 𝑏 ∈ 𝐴∗. Let us also note that if 𝑟 = 1 and the
Albert type is I or III (i.e., either 𝑚 = [𝐹 : Q] is even or the Brauer class of Cor𝐹/Q (𝐷)
is trivial) then in fact 𝜑 is, up to scalars, the unique symplectic form on 𝑉 such that 𝜌
factors through GSp(𝑉, 𝜑).

In Construction 2 (Albert type IV), it is in general more complicated to say when
different polarization forms give rise to equivalent triples, as in this case (𝐺,𝒴) may
have non-inner automorphisms. It is of course still true that 𝜑 and 𝜓𝑎 give equivalent
triples if 𝑎 = 𝜈 · 𝑏†𝑏 for some 𝜈 ∈ Q∗ and 𝑏 ∈ 𝐴∗, but this may in general not be a
necessary condition.

5.8 Remark.

As mentioned in the introduction, it appears that at some places in the literature there
are misconceptions about the classification of ‘Shimura curves’. As a concrete example,
we explain why Theorem 0.7 of [16] is not true. We briefly recall the setting. The au-
thors start (op. cit., Example 0.6) by considering a quaternion algebra 𝐴 over a number
field 𝐹 such that 𝐴 splits at precisely one real place. If 𝐿 ⊂ 𝐹 is a subfield, there exists
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an embedding 𝑗 : Cor𝐹/𝐿 (𝐴) ↩→ 𝑀2𝜇 (𝐿) with 𝜇 = [𝐹 : 𝐿] if Cor𝐹/𝐿 (𝐴) has trivial
Brauer class and 𝜇 = [𝐹 : 𝐿] + 1 otherwise. Next the authors say there exists a com-
plex Shimura curve 𝑌 ′ such that 𝑗 gives rise to a local system V𝐿 of 𝐿-vector spaces
on𝑌 ′ whose underlyingQ-local systemX𝐴,𝐿 is irreducible. The algebraic monodromy
group of X𝐴,𝐿 has𝒢𝐴 = Res𝐹/QPGL1,𝐴 as its adjoint group, so up to isomorphism, 𝐴
is determined byX𝐴,𝐿 .

It is not so hard to relate the construction of 𝑌 ′ and X𝐴,𝐿 to our classification. Let
us do this in the cases 𝐿 = Q and 𝐿 = 𝐹 . For 𝐿 = Q, the Shimura curve 𝑌 ′ that is
constructed in [16] corresponds to the Shimura datum of our Construction 1 (see 5.5),
and the local systemX𝐴,Q is the one that corresponds to the embedding 𝜌 : (𝐺,𝒴) ↩→
𝔖(𝑉, 𝜑) as in our construction; in other words, the monodromy representation is the
corestriction representation as in Example 3.1. If 𝐿 = 𝐹 , the Shimura curve that is
obtained corresponds to the example we have discussed in 4.12; in this case the mon-
odromy representation is as in Example 3.2, where we take for I the set of singletons
in Emb(𝐹).

In [16], Theorem 0.7, the authors consider a complete nonsingular curve 𝑌 and an
abelian scheme 𝑓 : 𝑋 → 𝑌 that reaches the Arakelov bound. The assertion is that there
exists a quaternion algebra 𝐴 as above and an étale covering 𝑌 ′ → 𝑌 , for some 𝑌 ′ as
above, such that 𝑋 ′ = 𝑋 ×𝑌 𝑌 ′ decomposes, up to isogeny, as a product of a constant
factor 𝐵 and abelian schemes ℎ𝑖 : 𝑍𝑖 → 𝑌 ′ (𝑖 = 1, . . . , ℓ) whose generic fibres are
simple, and such that each 𝑅1ℎ𝑖,∗Q𝑍𝑖 is a direct sumof copies ofX𝐴,𝐿𝑖 for some subfield
𝐿𝑖 ⊂ 𝐹 .

According to [7], Theorem 1.2, if𝑌 ↩→ 𝒜𝑔 is an irreducible component of a Shimura
curve, the corresponding abelian scheme over𝑌 reaches the Arakelov bound. Therefore,
ifwe take an example as inConstruction 2 (see 5.6)with𝐹 of primedegree overQ (so that
𝐹 has no subfields other thanQ and 𝐹) and with I not the set of singletons in Emb(𝐹)
(and of course also I ≠ {Emb(𝐹)}), we obtain a counterexample to [16], Theorem 0.7.

6 The nonsimple case

6.1

In Section 4 we have discussed simple abelian varieties with 1-dimensional associated
Shimura datum. We now consider the general case.

Let 𝑋 be a complex abelian variety. Let (𝐺,𝒴) be the Shimura datum given by 𝑋 ,
and assume dim(𝒴) = 1. There exists an isogeny 𝑓 : 𝑋 → 𝑋0×𝑋𝑚1

1 ×· · ·×𝑋𝑚𝑡

𝑡 , where
𝑋0 is an abelian variety of CM type, 𝑋1, . . . , 𝑋𝑡 (with 𝑡 ≥ 1) are simple complex abelian
varieties that are not of CM type, no two of which are isogenous, and 𝑚1, . . . , 𝑚𝑡 are
positive integers. Write 𝑉 = 𝐻1 (𝑋,Q) and 𝑉𝑖 = 𝐻1 (𝑋𝑖 ,Q). The isogeny 𝑓 induces an
isomorphism𝑉

∼−→ 𝑉0 ⊕ 𝑉⊕𝑚1
1 ⊕ · · · ⊕ 𝑉⊕𝑚𝑡

𝑡 , and we use this to view
∏𝑡
𝑖=0 GL(𝑉𝑖) as

a subgroup of GL(𝑉), with GL(𝑉𝑖) for 𝑖 ≥ 1 acting diagonally on𝑉⊕𝑚𝑖

𝑖
.

Let (𝐺𝑖 ,𝒴𝑖) be the Shimura datum given by 𝑋𝑖 . Then 𝐺 = MT(𝑋) ⊂ GL(𝑉) is a
subgroupof𝐺0×𝐺1×· · ·×𝐺𝑡 . The projectionspr𝑖 : 𝐺 → 𝐺𝑖 are surjective and for 𝑖 ≥ 1
they induce isomorphisms of adjoint Shimura data prad

𝑖
: (𝐺ad,𝒴ad) ∼−→ (𝐺ad

𝑖
,𝒴ad

𝑖
).

The datum (𝐺,𝒴) can be recovered from (𝐺ad,𝒴ad) together with the data (𝐺𝑖 ,𝒴𝑖)
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and the isomorphisms prad
𝑖
, as follows. We have

𝒴
∼−−−−→∏
𝑝𝑖

{
(ℎ0, ℎ1, . . . , ℎ𝑡 ) ∈

𝑡∏
𝑖=0

𝒴𝑖

��� (prad
1 )−1 ◦ ℎ1 = · · · = (prad

𝑡 )−1 ◦ ℎ𝑡
}
, (6.1)

where we recall that the adjoint map𝐺𝑖 → 𝐺ad
𝑖
identifies𝒴𝑖 with a union of connected

components of𝒴ad
𝑖
. (Note that𝒴0 is a singleton.) The group𝐺 can be recovered as the

smallest subgroup of
∏𝑡
𝑖=0 𝐺𝑖 such that all ℎ ∈ 𝒴 factor through𝐺R.

6.2

For the general classification of triples (𝐺,𝒴, 𝜌) as in 5.3, the solution is obtained as
follows. First we fix 𝐹 and𝐷 as in 5.2, so that we have an adjoint datum (𝒢𝐷 ,𝒴𝐷). Next
we choose a triple (𝐺0,𝒴0, 𝜌0) where (𝐺0,𝒴0) is a 0-dimensional Shimura datum (so
𝐺0 is a torus and𝒴0 is a singleton), and 𝜌0 is an embedding (𝐺0,𝒴0) ↩→ 𝔖(𝑉0, 𝜑0) into
a Siegel modular datum. All such triples are described in terms of classical CM theory.
As a next step, we fix finitely many triples (𝐺𝑖 ,𝒴𝑖 , 𝜌𝑖 : (𝐺𝑖 ,𝒴𝑖) ↩→ 𝔖(𝑉𝑖 , 𝜑𝑖))𝑖=1,...,𝑡
as in 5.3 such that 𝜌𝑖 is an isotypical representation, and such that there exist isomor-
phisms 𝑝𝑖 : (𝒢𝐷 ,𝒴𝐷)

∼−→ (𝐺ad
𝑖
,𝒴ad

𝑖
). For each 𝑖we fix such an isomorphism 𝑝𝑖 (which,

as remarked in 5.2, is unique up to inner automorphisms of𝒢𝐷 .) Via these choices we
can view 𝜌𝑖 : 𝐺𝑖 → GL(𝑉𝑖) as a representation of𝒢sc

𝐷
. We make these choices in such a

manner that there are no indices 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 such that 𝜌𝑖 and 𝜌 𝑗 , viewed as represen-
tations of𝒢sc

𝐷
, have isomorphic underlying irreducible representations. This condition

is independent of how we choose the isomorphisms 𝑝𝑖 .
Define 𝑉 = 𝑉0 ⊕ 𝑉1 ⊕ · · · ⊕ 𝑉𝑡 and define a symplectic form 𝜑 on 𝑉 by 𝜑 = 𝜑0 ⊥

𝜑1 ⊥ · · · ⊥ 𝜑𝑡 . This gives an embedding 𝜌♯ :
∏𝑡
𝑖=0 𝐺𝑖 ↩→ GSp(𝑉, 𝜑). Define𝒴 as in

the right hand side of (6.1) (with 𝑝𝑖 instead of prad
𝑖
), let 𝐺 ⊂ ∏𝑡

𝑖=0 𝐺𝑖 be the smallest
Q-subgroup such that all ℎ ∈ 𝒴 factor through 𝐺R, and let 𝜌 be the restriction of 𝜌♯
to 𝐺 . This gives us a triple (𝐺,𝒴, 𝜌) as in 5.3 and it follows from what was explained
in 6.1 that every such triple is obtained in this way.
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