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Abstract

Over time, several competing approaches to parallel Haskell programming have emerged.

Different approaches support parallelism at various different scales, ranging from small

multicores to massively parallel high-performance computing systems. They also provide

varying degrees of control, ranging from completely implicit approaches to ones providing full

programmer control. Most current designs assume a shared memory model at the programmer,

implementation and hardware levels. This is, however, becoming increasingly divorced from

the reality at the hardware level. It also imposes significant unwanted runtime overheads in

the form of garbage collection synchronisation etc. What is needed is an easy way to abstract

over the implementation and hardware levels, while presenting a simple parallelism model

to the programmer. The PArallEl shAred Nothing runtime system design aims to provide a

portable and high-level shared-nothing implementation platform for parallel Haskell dialects.

It abstracts over major issues such as work distribution and data serialisation, consolidating

existing, successful designs into a single framework. It also provides an optional virtual shared-

memory programming abstraction for (possibly) shared-nothing parallel machines, such as

modern multicore/manycore architectures or cluster/cloud computing systems. It builds on,

unifies and extends, existing well-developed support for shared-memory parallelism that is

provided by the widely used GHC Haskell compiler. This paper summarises the state-of-

the-art in shared-nothing parallel Haskell implementations, introduces the PArallEl shAred

Nothing abstractions, shows how they can be used to implement three distinct parallel Haskell

dialects, and demonstrates that good scalability can be obtained on recent parallel machines.

1 Introduction

This paper studies how to implement parallelism portably and abstractly for different

dialects of parallel Haskell targeting modern multicore/manycore/cluster/cloud
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systems. In order to improve energy efficiency and performance, there is a strong

trend towards reducing sharing in the underlying parallel hardware (Lameter, 2013).

However, exposing sharing concerns to the programmer moves away from the

traditional functional programming strengths of increasing programmability and

maintaining very high levels of abstraction. In this paper, we describe a runtime

system (RTS) approach that enables us to separate sharing at the language,

implementation and hardware levels. In this way, we can provide a possibly shared-

nothing implementation for a possibly logically shared language design, for example.

We can thus obtain the benefits of reducing or eliminating sharing at the hardware

level, without losing the benefits of high-level abstraction at the language level. By

providing a coherent framework of sophisticated RTS operations, it becomes possible

to develop implementations of new language extensions quickly and robustly. The

same approach also enables extensibility of the RTS. This helps overcome two of

the key obstacles to developing new parallel RTSs, while maintaining functional

programming properties of abstraction and ease of use at the language level. Our

approach is evaluated against three existing and contrasting dialects of Parallel

Haskell: Glasgow parallel Haskell (GpH) (Hammond & Peyton Jones, 1990; Trinder

et al., 1995), Eden (Loogen et al., 2005) and EdI (Berthold & Loogen, 2007; Berthold,

2008).

1.1 Contributions

This paper makes the following contributions:

• We expose and evaluate the key design decisions underlying the GpH, Eden

and EdI Parallel Haskell dialects, focusing particularly on sharing, parallelism

control and load distribution;

• We describe a high-level, portable RTS framework, PAEAN (PArallEl shAred-

Nothing), that builds on the widely used GHC1 implementation and that can

be used to implement a variety of parallel dialects of Haskell, for possibly

shared-nothing parallel systems;

• We demonstrate how PAEAN can be used to implement different dialects of

Parallel Haskell, in particular GpH and Eden, capturing all of the requirements

of the previously-constructed specialised GRAPH on a Unified Memory Model

(GUM) and DREAM RTSs;

• We evaluate the performance and scalability of the parallel Haskell implemen-

tations that follow PAEAN ideas and principles and

• We discuss the state-of-the-art for distributed-memory parallel Haskell imple-

mentations, relating different programming models to the respective runtime

support and assessing the merits of RTS versus library support for coordinating

parallel programs.

1 The Glorious Haskell Compiler, https://www.haskell.org/ghc/
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Table 1. Library-based and runtime-system-based parallel Haskell

Library RTS

Code bloat High Low

Abstraction level Low High

Language integration Poor Good

Communication abstraction Pervasive Localised

Performance Hard to tune Easily tunable

Implementation cost Low High

Extensibility Easy Hard

1.2 Library versus runtime system

A number of recent designs have chosen to implement parallel Haskell constructs

exclusively at the library level, e.g. (Foltzer et al., 2012; Maier & Trinder, 2012). In

contrast, we have deliberately taken a RTS approach. As summarised in Table 1,

there are many advantages to our approach. First, less coordination code is required

to manage parallelism and load distribution because an underlying RTS will take

care of all the details without programmer intervention. This significantly improves

programmability and productivity. RTS-based approaches can abstract most of

the coordination into language constructs, which simplifies programming, reduces

code clutter and gives better integration with the programming language. This

is especially true for communication abstractions, which are pervasive in any

library-based approach for shared-nothing approaches. Second, performance-critical

code is much easier to fine-tune and avoids the functionality limitations that are

inherent to a library approach (for instance, custom memory management is simple

and direct). The key disadvantages to an RTS approach are: first, that the cost

of implementation can be significantly higher, since features must be considered

throughout the language implementation; and second, that it can be difficult to

incorporate new features. By taking a modular approach, PAEAN addresses both

of these problems, making it easier to design and build new parallel RTSs.

1.3 Why sharing matters

In Haskell, the sharing of the program and its data through graph reduction is

fundamental to achieving lazy evaluation. In a parallel setting, this creates a tension

since inter-thread sharing can impose unwanted synchronisation. At a hardware

level, shared memory is increasingly a performance bottleneck. In order to improve

time and energy efficiency, there is therefore a strong trend towards non-uniform

memory architectures (NUMA) in multicore/manycore processors (Lameter, 2013),

where memory is not treated as a single homogeneous, easily addressable array. At

a software level, there is a correspondingly strong trend to avoid locks, wherever

possible, and to minimise expensive cache coherency by exploiting non-shared

memory. We can obtain a more efficient and more scalable implementation by

not assuming the existence of shared memory at a hardware or implementation
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level. Scalability is enhanced by reducing shared hotspots and memory bottlenecks.

Such a shared-nothing approach (Gray, 1985) is also easier to deploy on large-scale

systems, including clusters and distributed systems. We would also argue that it is

easier to implement such an approach, even on a relatively small scale, since issues

of cache coherency, synchronisation etc. are exposed in the implementation, and not

hidden through shared memory accesses.

If memory cannot be assumed to be shared, then a number of implementation

issues need to be addressed. These include:

1. how to serialise data;

2. how to logically share values between physically disjoint heaps;

3. how to manage global garbage collection (GC) while minimising synchronisa-

tion costs;

4. how to migrate data, potential parallelism and threads.

Some recent approaches such as Cloud Haskell (Epstein et al., 2011) and HdPH

(Maier & Trinder, 2012) delegate much of this work to the applications programmer,

making parallelism control fully explicit in the program. While this minimises the

work of the systems implementor, such an approach is likely to suffer from replica-

tion, errors and unexpected feature interaction, as well as to cause incompatibilities

between applications. In our opinion, fully explicit parallelism control entangled with

the application flies in the face of the usual functional programming philosophy of

good abstraction, effectively “throwing out the baby with the bathwater”. This paper

takes the opposite approach, by focusing on a mostly implicit model of parallelism

at the source level, where parallelism is specified in an abstract, declarative way and

by supporting this with a sophisticated, well-engineered and flexible RTS.

1.4 Paper structure

The remainder of the paper is structured as follows. Section 2 describes the

high-level programming models for Parallel Haskell that provide the requirements

for the PAEAN implementation. Section 3 describes the PAEAN design and

implementation. Section 4 evaluates the utility and scalability of the PAEAN

approach. Section 5 covers related work, including extensions to PAEAN. Finally,

Section 6 concludes.

2 Parallel programming models for Haskell

A wide variety of parallel extensions to Haskell have been proposed. A key design

question is how explicit to make the coordination of the parallel execution. One

extreme is a purely implicit approach, as taken by pH (Aditya et al., 1995), where

there are no extensions to the language and all parallelisation is performed by the

compiler. Data parallel extensions to Haskell, such as DpH (Chakravarty et al.,

2007), take a similar approach, but are limited to data-parallelism on specific data

structures. While implicit parallelism is appealing to the programmer, it also limits

the scope for performance tuning. The other extreme is to make most aspects of the
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sumEuler :: Int → Int
sumEuler = sum [ euler | ← [n, n−1..1] ]

euler :: Int → Int −− Euler phi function
euler = length ( filter (relprime ) [1.. −1])

relprime :: Int → Int → Bool −− are x and y coprime
relprime = hcf == 1

hcf :: Int → Int → Int −− highest common factor of x and y
hcf 0 = x

hcf = hcf (rem )

n ii

n n n

x y x y

x

x y x yy

Fig. 1. The basic Euler totient function, sumEuler.

coordination explicit in the program and thus give the programmer more control

on how the parallelism is used. In the Haskell world, examples of this approach

include the Par-Monad (Marlow et al., 2011) and Cloud Haskell (Epstein et al.,

2011). While they are easier to implement and tune than implicit approaches, such

approaches have the disadvantage of introducing all the complexities and lack of

abstraction from mainstream parallel programming models. In such an approach,

applications programmers must become systems programmers. The approach that

we will mainly focus on is therefore a middle one of semi-explicit parallelism,

where the programmer only needs to identify (potential) parallelism, but where

synchronisation and communication is managed by the RTS. This greatly simplifies

the parallel programming task, but still gives the programmer a concrete handle

on how to improve parallel performance. Supporting such an approach requires an

elaborate RTS, however. The focus of this paper is on how to design such a RTS in

a generic, flexible and reusable way. A more detailed discussion of related systems,

including ones taking both more explicit and more implicit approaches, is given in

Section 5.

In this paper, we will consider three Haskell dialects: GpH, Eden and EdI (the

implementation language for Eden). The approach taken by GpH uses programmer

specified annotations (par) to create “sparks” that may, or may not, be subsequently

transformed into parallel threads. In contrast, in Eden and EdI, parallelism is

introduced by process constructs that always create new threads. While Eden

provides a purely functional interface, EdI uses monadic constructs in a similar

fashion to the Par-Monad. We will use the sumEuler function to characterise these

three dialects. For a given n, sumEuler computes the Euler ϕ-function2 for values

up to n, and sums the results. The sequential Haskell code for this is shown in

Figure 1.

2 ϕ(i) counts how many numbers smaller than i are coprime to i. It can of course be computed more
efficiently using a prime factorisation of i. The näıve version shown here is just for benchmarking.
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type Strategy a = ... −− evaluation strategy abstraction

rseq :: Strategy a −− normal sequential evaluation
rpar :: Strategy a −− spark a closure

rdeepseq :: NFData a ⇒ Strategy a −− full evaluation

parList :: Strategy a → Strategy [a] −− parallel evaluation of a list

using :: a → Strategy a → a −− strategy application

Fig. 2. Basic evaluation strategies.

2.1 GpH

GpH (Hammond & Peyton Jones, 1990; Trinder et al., 1995) uses a semi-explicit

parallelism model, where the programmer simply indicates potentially parallel

closures and all synchronisation, coordination etc. issues are delegated to the RTS.

It uses two basic primitives: par and pseq.

par, pseq :: a -> b -> b -- parallel/sequential composition

The par primitive identifies potential parallelism using lazy futures (Mohr et al.,

1991). Its first argument is a closure that is marked for possible parallel execution

(sparked ). It returns the value of its second argument. So, x ‘par‘ e marks x for

parallel execution, and then returns e. The pseq primitive sequences the evaluation

of its arguments, returning the value of its second argument. So, x ‘pseq‘ e first

evaluates x, and then returns e.

Experience has shown that unstructured use of par and pseq can quickly obscure

programs. A higher level of abstraction is provided by evaluation strategies (Trinder

et al., 1998; Marlow et al., 2010), which cleanly separate coordination from com-

putation. Evaluation strategies are lazy, polymorphic, higher order functions that

control the evaluation degree and parallelism of a Haskell expression. Some primitive

strategies are shown in Figure 2. The rseq and rpar strategies are analogous to pseq

and par. The rdeepseq strategy is similar to rseq, except that it fully evaluates its

argument3. The parList strategy is an example of a higher order strategy. This takes

another, possibly parallel, strategy as its argument, and applies it in parallel to all

elements of a list. So, for example, parList rdeepseq is the strategy that evaluates

a list in parallel, forcing all the results to be completely evaluated. Finally, the

using function applies a strategy to a Haskell expression. So, e ‘using‘ parList

rdeepseq will evaluate e using the parList rdeepseq strategy.

Our first GpH version of sumEuler, sumEulerGpH0 (Figure 3), simply uses

parList rdeepseq to compute every application of euler in parallel. However,

the granularity of the parallelism is too fine, since each spark only describes a

single function application. sumEulerGpH therefore uses chunking to overcome this.

3 i.e. it evaluates to full normal form rather than the Haskell default of weak head normal form. The
NFData class defines the recursive evaluation strategy to implement this full evaluation.
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sumEulerGpH0 :: Int → Int
sumEulerGpH0 = sum (map euler [n, n−1..1]

‘using‘ parList rdeepseq)

sumEulerGpH :: Int → Int → Int
sumEulerGpH = sum (map workF (unshuffle [n, n−1..1])

‘using‘ parList rdeepseq)
where workF = sum ◦ map euler

n

nz z

Fig. 3. GpH versions of sumEuler.

splitAtN :: Int → [a] → [[a]]
splitAtN n [] = []
splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

unshuffle :: Int → [a] → [[a]]
unshuffle n xs = map (takeEachN) [ drop i xs | i ← [0.. n−1]]

where takeEachN [] = []
takeEachN (x:xs) = x : takeEachN (drop (n−1) xs)

Fig. 4. Chunking functions.

We therefore introduce an additional parameter z, the desired number of chunks

(i.e. sparks). The n list elements are then distributed into z sub-lists. Each sub-list

becomes a spark that may then potentially be evaluated in parallel. Alternative

chunking functions can be easily defined as standard Haskell definitions4. For

example, as shown in Figure 4, splitAtN splits a list into sub-lists of size n, and

unshuffle distributes elements of a list into exactly n sub-lists, in a round-robin

fashion. For sumEulerGpH, we have chosen to use unshuffle rather than splitAtN

because the computation time for the ϕ-function increases with its argument. If

splitAtN was used instead, then the largest argument values would be gathered

into the first sparks that were created, creating load-imbalance between the sparks.

2.2 Eden

In contrast to GpH, Eden provides explicit process abstraction and process instantia-

tion operations (Figure 5). The expression process ( λx → e ) of type Process a b

denotes a process abstraction over a function λx → e of type a → b. The (#)

operator allows a new child process to be instantiated, i.e. evaluated in parallel

with the calling parent process. process (\ x -> map factorial x) # [1..100]

creates a process that maps the factorial function over the list [1..100]. This list

is evaluated on the parent, and passed in a fully evaluated form to the child. Once

computed, the result list is then returned to the parent. Eden’s spawn function

4 Chunking functions can also be provided abstractly for lists and other data types via a Cluster
type class (Totoo & Loidl, 2014).
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−− Process abstraction and instantiation
process :: (Trans a, Trans b) ⇒ (a → b) → Process a b
( # ) :: (Trans a, Trans b) ⇒ (Process a b) → a → b
spawn :: (Trans a, Trans b) ⇒ [Process a b] → [a] → [b]

Fig. 5. Eden core constructs.

sumEulerEden :: Int → Int
sumEulerEden = sum (spawn (repeat childProc) (unshuffle noPe [1..n]))

where childProc = process (sum ◦ map euler)
n

Fig. 6. Eden version of sumEuler.

lifts process to a list of processes and inputs. All processes are created eagerly in

parallel. This avoids the sequential demand-driven evaluation that the lazy Haskell

list would imply. Once instantiated, the new child process will be executed in parallel

with the parent process. The parent and child processes have independent heaps and

will only communicate by exchanging (implicit) messages. Data that is exchanged

between Eden processes is always in normal form (i.e. fully evaluated). Therefore,

process instantiation is roughly equivalent to hyper-strict function application. Lists

are communicated as streams, element by element. Tuple components are evaluated

by concurrent threads. This allows for circular programs and infinite data streams.

Figure 6 shows how sumEuler can be implemented in Eden by spawning a

number of independent processes that each apply euler to part of the original

input list. Having created these processes, the main process will block until the

results become available, and then compute the final sum. Since, unlike GpH,

Eden will create threads for every process construct that is specified by the

programmer, we introduce a use of the unshuffle function to balance the load

between child processes. This will evenly divide the inputs among the number of

available processors, noPe (provided as a constant by the Eden RTS).

2.3 EdI

The Eden implementation language EdI (Berthold & Loogen, 2007; Berthold, 2008)

(Figure 7) takes the approach of explicit process control even further, requiring the

programmer to take full control of, and responsibility for, all data transfers. As

suggested by its name, EdI was designed to implement Eden, but can also be used

in its own right as a monadic language for parallelism. As in Eden, a new parallel

process can be spawned on a specific instance of a running system but, unlike Eden,

an EdI process is simply an IO action. EdI processes communicate explicitly using

typed one-to-one channels. Channels are created using createC, which returns a

channel name, of type ChanName’ a and a placeholder result of type a. A channel name

can be explicitly communicated to another process, using sendWith, or implicitly

passed to a new process when it is created using spawnProcessAt. The other process

can use the channel to return data (of a suitable type) to the original process. Note

that the sendWith operation takes an evaluation strategy argument. This controls

where the evaluation happens and is applied to the data argument before it is
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spawnProcessAt :: Int → IO () → IO ()

data ChanName’ a
createC :: IO (ChanName’ a, a)
createCs :: Int → IO ([ChanName’ a], [a])

sendWith :: Strategy a → ChanName’ a → a → IO ()
sendStreamWith :: Strategy a → ChanName’ [a] → [a] → IO ()

noPe, selfPe :: IO Int

Fig. 7. The complete API for the Eden implementation language, EdI.

sumEulerEdi :: Int → IO Int
sumEulerEdi = do pes← noPe

(cs, rs) ← createCs pes

zipWithM (spawnEulerW pes) [1..pes] cs
return (sum rs)

where spawnEulerW :: Int → Int → ChanName’ Int → IO ()
spawnEulerW stride c

:

= spawnProcessAt

(sendWith rseq c

(sum (map euler [n−k+1, n−k+1−stride..1]))

kk

n

Fig. 8. EdI implementation for sumEuler.

transmitted. Finally, the sendStreamWith operation extends sendWith to streams.

This enables the definition of circular process networks and pipelining.

Figure 8 shows how sumEuler can be implemented in EdI. A set of channels, cs,

and placeholders, rs, are created using createCs. One channel and one placeholder

are created for each available processor (noPe). Each channel is used in one call to

spawnEulerW, which creates a child process on processor k using spawnProcessAt.

The new process will generate its own part of the input list, apply the euler function

to this partial input, and sum the resulting list. This partial sum is returned to the

parent by calling sendWith on the given channel. EdI represents the lowest level of

abstraction that we will consider in this paper, exposing the full control, and burden,

of parallel evaluation and explicit communication to the programmer. It constitutes

a minimal set of RTS support functionality for sending and receiving data and

computations, exploiting the underlying GHC RTS to achieve synchronisation.

3 Haskell on shared-nothing systems: The PAEAN runtime framework

The language characteristics of Eden, GpH and EdI can be classified into the four key

concepts of parallelism, binding, synchronisation and workload management (Table 2).

Each of these will lead to a number of important implementation requirements.

Parallelism. As we have seen, in Eden and EdI, all threads that are specified by the

programmer must be created (parallelism is mandatory). In contrast, in GpH, the

RTS decides both when and whether to instantiate the potential parallelism that

https://doi.org/10.1017/S0956796816000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000010


10 J. Berthold et al.

Table 2. Language characteristics of GpH, Eden and EdI, and implementation concepts

Concept

Realisation Eden EdI GpH

Parallelism Explicit process constructs Implicit par
annotations

Threads implicit threads explicit threads implicit threads

mandatory

parallelism

mandatory parallelism advisory

parallelism

explicit task

distribution

explicit task

distribution

implicit task

distribution

Binding data exchange through process variables act as

application futures

Memory

Management

distributed heaps (per process) virtual-shared

memory

Synchroni-

sation

Implicit through process arguments and results Implicit variable

sharing

Communi-

cation

implicit and

hyper-strict (on

process arguments)

explicit, including

evaluation control

implicit and lazy

(on shared data)

Workload

Management

Explicit logical processor ids Implicit

Workload

distribution

default (round-robin) or explicit process

placement

automatic spark

distribution

(work-stealing)

has been indicated by the programmer (parallelism is advisory). The corresponding

requirements for thread management are:

• to provide mechanisms to support the creation of parallelism;

• to decide on whether or not to instantiate potential parallelism;

• to decide on when to instantiate potential parallelism.

Binding. The concept of variable binding is realised in Eden and EdI via data

transfer, initiated by a process creation, and in GpH via lazy futures and implicit

synchronisation. This concept is implemented by the memory management compo-

nent. For Eden, this links remote data access with the language concept of process

abstraction, requiring explicit data transfer. For GpH, the main requirements are

completely transparent access to bindings, which leads to automatic and distributed

memory management over several physical heaps, and hence to a virtual-shared

memory abstraction. More specifically, the requirement on the RTS is to ensure
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that all data is available at the location where the computation is to be executed.

This implicitly invokes communication, so establishing a tighter link between these

components in the GpH implementation. In contrast, the RTS for Eden and

EdI must implement a model of distributed heaps that are connected through

communication channels. The requirements for parallel memory management are:

• to identify points of data exchange;

• to implement a logically shared address space on top of distributed memory;

• to interact with the communication component based on the need for remote

data.

Synchronisation. Synchronisation is required to (i) avoid evaluating a value multiple

times; (ii) communicate values between threads and (iii) ensure that results are shared

between the evaluating thread and the threads that use those results. In EdI, the

programmer is responsible for all communication and for ensuring that evaluation

is performed appropriately. In Eden, the argument to a process is fully evaluated to

full normal form by the parent process and communicated incrementally. The child

process will block if it requires some part of the data that has not yet been evaluated

and communicated to it. In contrast, in GpH, some data may be passed to a child

thread when it is created, but the majority will be fetched on a demand-driven

basis. This increases sharing and reduces startup costs, but may add some delay

if a significant volume of data is fetched during execution. Having created one or

more child processes, in Eden, the parent process will typically block until the results

become available. In GpH, however, execution continues normally. If any GpH

thread requires a value that is being evaluated by another thread, it will block until

the result is produced. When the value of a virtually shared node becomes available,

it will be returned to all blocked threads. This reduces synchronisation delays, but

once again, shared data may be fetched incrementally. This uses an extension of

the standard “black-holing” mechanism that is normally used to detect cycles in

sequential code. Rather than raising an exception, as would normally happen, the

parallel implementation treats an attempt to evaluate a node that is currently under

evaluation as a synchronisation request5. The virtual shared graph model used in

GpH will ensure that the results of computations will be shared as they become

available, so avoiding repeated evaluation. In contrast, Eden and EdI make no

attempt to avoid repeated evaluation other than through transmitting only normal

forms. The requirements for communication are therefore:

• to check whether necessary data is available;

• to realise data exchange when necessary;

• to update values with results as they are produced;

• to notify blocked threads of the availability of a result;

• to interact with the thread management component, based on data availability.

5 A full description of this mechanism can be found in Hammond (2011)
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Fig. 9. The PAEAN runtime system components.

Fig. 10. Parallel system built as a collection of PAEAN instances.

Workload management. A key runtime decision is when and where to execute

parallelism. At the language level, Eden and EdI both provide a notion of virtual

processor, which can be used by the programmer to offload processes to specific

processors. GpH abstracts this even further: threads are instantiated from sparks

and then mapped to the available processors by the RTS. In order to get a good load

balance, it may be necessary to migrate sparks and/or threads between processors.

Finally, where multiple threads exist on a single processor, it is necessary to schedule

them appropriately both for efficiency and, in the case of Eden and EdI, to ensure

fairness. The requirements for workload distribution are:

• to decide on the order of execution of available threads (scheduling);

• to determine how to distribute the available parallelism (load balancing);

• to decide whether and when to offload parallelism.

As shown in Figure 9, PAEAN realises each of these issues as its own modular

component. This makes PAEAN much more generally applicable. Although they

have formed our starting point, the PAEAN system design is not restricted to the

GpH and Eden parallelism models. Neither is it necessarily limited to Haskell: the

concepts and realisations that we have shown in Table 2 are characteristic of a much

wider class of languages, including some parallel dialects of Lisp, Prolog and C++.

Any language that is more prescriptive in terms of thread management can easily

be mapped to the underlying PAEAN realisations, though it may not make full use

of the PAEAN mechanisms.
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Table 3. PAEAN runtime system routines for sparks and threads
Spark Management

PAEAN Routine and Parameters Description

void createSpark(StgClosure ∗la) Generate a spark and put it into

the local spark pool

StgClosure∗ findSpark() Select and return a spark from the

the local spark pool

void activateSpark(StgClosure ∗spark) Turn a spark into a thread,

allocating a thread, and put it

into the thread pool

Thread Management

void startNewProcess(StgClosure ∗la) Create a new thread in its own

process, to evaluate given (IO)

closure

StgTSO∗ createIOThread(StgClosure ∗la) Create a new thread (sharing a

process with other threads) to

evaluate given closure

3.1 PAEAN thread management

PAEAN coordinates multiple instances of the standard GHC RTS. Each PAEAN

instance is typically mapped onto a separate processor in its own operating system

process. When run on a multicore, an instance may comprise multiple Haskell

Execution Contexts (HECs) which share the same heap, i.e. the standard shared-

memory parallel Haskell implementation of GpH, GHC-SMP (Marlow et al., 2009).

These instances are connected to form a collaborating parallel system with a

distributed heap, as shown in Figure 10. Each PAEAN instance manages its own

thread pool and, if required, a spark pool, providing its own independent thread

scheduler. In addition, PAEAN introduces the concept of a process, a thread group

that shares a region of the Haskell heap and communication channels (explained

in Section 3.4.3). As shown in Table 3, PAEAN routines are provided to: spark

closures and add them to the local spark pool (createSpark); select a spark from

the local spark pool (findSpark); turn a spark into a thread and move it from the

spark pool to the thread pool (activateSpark); add an IO thread directly to the

local thread pool (createIOThread) and start a new process (startNewProcess).

3.2 Virtual shared heap management

Following our shared-nothing design, each PAEAN instance maintains its own

independent heap, with its own address space. Each instance undertakes its own

local garbage collection (GC) on this heap, using, for example, the usual GHC GC

mechanism. By default, this is a stop-and-copy generational garbage collector (Appel,

1989). On a shared-memory system, the GHC-SMP shared-memory GC implemen-

tation may be used, if desired, though this may degrade performance. It is possible
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to combine the heaps from multiple PAEAN instances to form a single virtually

shared heap that can be accessed by any PAEAN instance. Shared heap nodes are

accessed through a shared global address (GA) space.

Table 4. PAEAN runtime system routines for global heap management

PAEAN routine and parameters Description

RtsGA∗ makeGlobal() Create a new unique global address

(GA) on the current node

StgClosure∗ lookupGA(RtsGA ∗ga) Look up global address ga in the

GIT, return a local address (LA) if

found

RtsGA∗ lookupLocal(StgClosure ∗la) Look up local address la, return GA

if found

void commonUp(RtsGA ∗ga, StgClosure ∗la) Check whether a ga already exists on

this node; if so, keep only the

further evaluated of the two (a

data duplicate is eliminated)

void splitWeight(RtsGA ∗ga1, RtsGA ∗ga2) Split weight attached to ga1, into 2

components adding up to the

original, one attached to ga1 and

one attached to ga2 (a reference is

created)

RtsGA∗ addWeight(RtsGA ∗ga) Add the weight in ga to the weight

of the GA in the local GIT table

(a reference is deleted)

void markGIT() Traverse in-pointers section of GIT

during GC (local closures with

GAs are roots)

void rebuildGIT Traverse GIT to fix references to

local addresses (out-pointers),

return weight for dead entries

3.2.1 Global addresses

The virtual shared heap forms a subset of the individual PAEAN instance heaps.

Each (potentially) shared heap object is identified by a unique GA, created by

makeGlobal. Unshared objects exist only in the local heap for the PAEAN instance

and so do not have a GA. Only selected unevaluated objects need to be shared,

other objects referenced from them will be handled transparently, and evaluated

data can simply be copied. This minimises the number of globally addressed objects

and brings benefits in terms of performance (quicker lookup), space leaks (fewer

external pointers) and memory usage (smaller pointers). This design is based on

the assumption that only a small fraction of any given instance heap is globally

visible, as verified on the GRIP architecture (Peyton Jones et al., 1987; Hammond
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Fig. 11. Transferring graph structures between PAEAN instances. Here, the sub-graph rooted

at address 1 (with GA2.1) has been transferred from instance 1 to instance 2. Thunks are

moved, replacing them by FetchMes on instance 1, while normal forms are copied. GA1.1

and GA1.2 are only used during transfer. At completion of the transfer, they are replaced by

GA2.1 and GA2.2.

& Peyton Jones, 1992). Each PAEAN instance maintains tables of in-pointers from

other PAEAN instances (a Global In-Pointer Table, or GIT), which provide external

references to shared objects that are defined within the instance. By maintaining a

separate table, we avoid the need to record a GA in every allocated closure, and

also make the inter-heap dependencies explicit. This allows an instance to freely

choose any appropriate local GC mechanism — it is only necessary to treat the

global in-pointers as additional GC roots. As discussed in Section 3.2.3, global GC

is performed using weighted reference counting. The PAEAN virtually shared heap

implementation that is described here mostly follows that of Trinder et al. (1995),

but reduces the amount of heap management information that is needed. The most

notable new extensions are user-tunable policies for globalising heap structures and

for the size of a sub-graph to be transferred.

3.2.2 Transferring program graph between PAEAN instances

Every object which is moved from one PAEAN instance to another is given a new,

unique GA in the target instance’s GIT. The original local heap node is replaced

with a special FetchMe closure that refers to this GA. When the value of a FetchMe

node is needed, the communication subsystem is invoked to obtain the value of the

node from the remote PAEAN instance. In this way, local heap nodes are linked to

remote heap nodes. The commonUp routine is used to avoid replicating data where

the same GA is communicated to an instance more than once. An example is shown

in Figure 11. Here, two thunks (nodes 1 and 3) are moved between heaps, replacing

the original nodes with FetchMe nodes. The packing routine checks whether the

thunks are already global. If they are not, GAs are allocated locally for each thunk

(GA1.1–GA1.2). These GAs are used to refer to the thunks while they are in transit.

When the thunks are unpacked, new GAs (GA2.1–GA2.2) are generated to indicate
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the transfer of ownership to Instance 2. An acknowledgement message informs

Instance 1 that GA1.1 and GA1.2 have been superseded by GA2.1 and GA2.2. The

latter become the permanent remote references, whereas the former become garbage.

Figure 11 shows the final state, with FetchMes on Instance 1 referring to GAs on

Instance 2 (GA2.1–GA2.2).

3.2.3 Global garbage collection

A weighted reference counting scheme (Bevan, 1987) is used to garbage collect the

independent PAEAN heaps. As we have seen, the GIT indicates the possibly live in-

pointers for each instance. These are marked as roots during GC using the markGIT

routine. Weights are associated with each GA. Whenever a GA is shared between

instances, e.g. because a FetchMe has been replicated, then its weight is split between

the two relevant GIT entries using splitWeight. Conversely, when an instance

frees a remote closure during its local GC, the weight is returned to the original

GIT using addWeight. The same happens when old GAs are replaced by new ones.

When all the weight is concentrated in the original GIT, then the closure is no

longer referenced globally and the GIT entry can be removed. The local closure can

then be freed if it is not referenced locally. One general weakness of this scheme is

that it will not collect cycles across independent heaps. Various schemes can be used

to deal with this issue, if needed, such as collating cross-heap cycles onto a single

instance, where they can be collected (Bevan, 1987). Such a mechanism, however, is

not currently implemented in PAEAN.

3.3 Haskell program graph serialisation

Haskell program graphs are communicated between RTS instances as serialised

sub-graphs (see Figure 12). These are packed into one or more packets for efficient

communication. PAEAN provides methods to traverse a graph in a local heap,

packing it for efficient transmission (packGraph), and to unpack a serialised graph

into the remote heap (unpackGraph), restoring its original structure and building

any inter-instance links using new FetchMe closures. The serialisation concept

used in PAEAN is a breadth-first traversal that is designed to limit the amount

of communicated graph to a single efficiently-transmitted message. This was first

used in Trinder et al. (1995) as a modification of the original Graph for PVM

mechanism (Loidl & Hammond, 1994; Hammond, 1993) that packed entire sub-

graphs. Loidl & Hammond (1996) studies the best strategies for efficiently packing

shared program graph. We have followed this work here.

3.3.1 Closure layout and serialisation

Most GHC closures are laid out in the heap as a header section containing the

key meta-data, followed by any pointers to other closures, and then by all the non-

pointers. The first header field is an info pointer, which points to a record containing

information such as the number of pointers and non-pointers for a particular heap
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Table 5. PAEAN runtime system routines for serialisation

PAEAN routine and parameters Description

rtsPackBuffer∗ packGraph(StgClosure ∗la) serialise a sub-graph rooted at

la

StgClosure∗ unpackGraph(rtsPackBuffer ∗buf) de-serialise a buffer, returning

a local address

1:graphroot

CLO 1.1 hdr d1,d2

6:closure 2

CLO - hdr d1,d2

11:closure 3

CLO 1.2 hdr

14:closure 5

CLO - hdr d1,d2,d3

20: ref 2

REF - 6

23:closure 4

CLO - hdr d1,d2,d3

28: ref 5

REF - 14

2
d1,d2

4

d1,d2,
d3

5

d1,d2,
d3

GIT

GA 1.2
GA 1.1

1
d1,d2

3
empty

Fig. 12. Example serialisation of the five-closure graph from Figure 11 with two shared

closures. The packet on the left encodes the graph on the right, using REF tags to describe

sharing.

closure, plus a method that can be used to evaluate the closure. During packing,

the Haskell program graph is traversed and serialised so that it can be written into

the communication packet. Every unique closure in the packet is identified using a

CLO tag, followed by the GA of the packed closure. The header and all non-pointer

data is packed directly into the packet immediately after the GA. Pointers into the

local instance heap will, however, need to be re-established once the program graph

has been successfully transmitted to the remote heap. They are therefore omitted

from the packet. The order in which the graph is reconstructed allows them to be

correctly re-established. Where a packed graph contains shared closures, explicit

REF tags are used to preserve sharing. They also allow cyclic structures to be

transmitted. Finally, top-level program constants (constant applicative forms) do not

need to be transmitted between PAEAN instances, since each instance maintains its

own identical collection of such constants, embedded in the binary program that is

executed by all instances. These are identified using a CAF tag. Clearly, the graph

referenced from the root might be larger than could fit into a single fixed-size packet.

In this case, PAEAN will either use FetchMe closures to reference the additional

heap, or will raise an error.

A few special types of GHC closures cannot be packed using the mechanism

described here. These include primitive GHC data structures for synchronisation:

Haskell mutable variables, MVars, and transactional variables that used to implement

software transactional memory, STM, as well as some system-level data structures.
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Table 6. PAEAN runtime system communication routines

PAEAN Routine Parameters Description

rtsBool MP_start Program arguments Start/synchronise all nodes

rtsBool MP_sync Program arguments Start/synchronise all nodes

rtsBool MP_quit Error code Disconnect from system

rtsBool MP_send Receiver, tag, data (non-blocking) data sending

int MP_recv Destination buffer (blocking) data reception

rtsBool MP_probe Void (non-blocking) probe for

available messages

Packing these nodes would not be sensible since they encode state that is local to a

specific PAEAN instance, such as operating system file handles.

3.3.2 Example: Packing/unpacking graph

Figure 12 shows how the graph from Figure 11 can be serialised into a single packet

and transferred between PAEAN instances. Here, closures 2 and 5 are shared using

REF tags. The packGraph function traverses the graph in a breadth-first manner.

This means that if the complete sub-graph cannot be packed, then a closure will

generally be packed with all its children. In the example, closures 1 and 3 are thunks,

and are therefore replaced by FetchMe closures in the sender’s heap. The packGraph

method assigns temporary GA, GA 1.1 and GA 1.2, to the two thunks and includes

them in the serialised structure. During de-serialisation, these temporary addresses

will be replaced by the final addresses that are assigned by the receiver, GA 2.1 and

GA 2.2. The same serialisation process can also be used without taking advantage of

the PAEAN virtual shared heap mechanism. In this case, the GA fields are omitted

and no GIT table is maintained by the receiving instance. In place of GA, global

references are established by communication channels connected to heap cells. These

can be created from within Haskell source programs using the createC primitive

operation (Section 3.4.3).

3.4 The PAEAN communication subsystem

PAEAN provides a number of communication primitives that allow instances to

communicate using asynchronous messages. The RTS implementation provides

event-handling routines that allow messages to be received at certain safe execution

points, and that link to one of several low-level transport libraries.

3.4.1 Low-level communication primitives

The PAEAN design is based on simple asynchronous point-to-point message passing

communication, plus a mechanism for structured startup and shutdown of PAEAN

instances, where one PAEAN instance acts as the main instance. As shown in Table 6,
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Table 7. PAEAN message tags and protocols

Message tag Meaning/effect

System Sync: READY Sync. message from non-main to main instance

PETIDS Sync. message from main to non-main

instances

FINISH Shutdown signal (from one non-main instance

to main instance, or broadcast from main to

all non-main instances)

FAIL Failure indicator (middleware to main instance)

Data transfer: CONNECT Receiver registers a sender for an inport

DATA Receiving instance replaces heap placeholder

by arriving data

STREAM Receiving instance modifies heap placeholder,

adding arriving data into a list

FETCH Receiving instance sends back requested data

(identified by a global address)

Global Addresses: ACK Sender acknowledges reception of thunks by

communicating new GAs, receiver creates

FetchMe closures with GAs

NACK Sender indicates failure to receive thunks,

receiver will revert thunk

Process control: RFORK Receiver instance creates a new Haskell process

TERMINATE Receiving instance terminates a Haskell thread

(identified by thread ID)

Work distribution: FISH Sender requests work, receiver will forward fish

or answer with SCHEDULE
SCHEDULE Receiver will create new thread to evaluate

data (answered by ACK or NACK)

message passing is implemented by MP_send (non-blocking send) and MP_recv

(blocking receive). These are complemented by the (non-blocking) MP_probe, which

tests whether messages are available to receive. MP_start and MP_sync start and

synchronise PAEAN instances. MP_quit performs a controlled shutdown of the sys-

tem. Different middleware can be used to implement this communication sub-system.

Existing implementations can use both PVM (Geist, 2011) and MPI (MPI Forum,

2012). The shared-nothing message-passing mechanism can also be implemented on

top of physically shared memory. The Eden implementation supports POSIX shared

memory, Windows shared memory, and Windows Mailslots.

3.4.2 High-level messages

A high-level set of messages is built on this low-level implementation. Table 7

summarises all the PAEAN message types and their semantics. Many kinds of

messages are sent internally by the RTS itself: system messages are exchanged

during startup and shutdown to synchronise and coordinate instances; data transfer
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Table 8. PAEAN primitive operations (callable from Haskell)

data Mode = Stream | Data Data modes: Stream or Single data

| Connect | Instantiate Int Special modes: Connection, Instantiation

data ChanName’ = Chan Int# Int# Int# A single channel

createC :: IO ( ChanName’ a, a ) Create a channel and placeholder

connectToPort :: ChanName’ a → IO () Receiver registration

sendData :: Mode → a → IO () Send data to registered receiver

fork :: IO () → IO () New thread in same process (Conc.Haskell)

noPe :: IO Int Number of instances

selfPe :: IO Int ID of own instance (1..N)

messages (Section 3.2.2) request globalised data (FETCH); GA messages ACKnowledge

a new GA or indicate failures (NACK); and work distribution messages (Section 3.5)

search for work (FISH) and pass on new work (SCHEDULE).

3.4.3 Explicit communication via channels

PAEAN also provides facilities to enable explicit communication and process control

directly from within Haskell, using a number of new primitive operations (Table 8).

These primitives may be preferred where a full shared heap is not required, and

allow direct communication between two instances, forming a dual to the FetchMe

closures described above. EdI uses the primitives directly as a simple explicit language

for parallel coordination. Figure 13 shows a simple example of using the explicit

communication primitives, which provide functionality for creating and using typed

channels, as well as instantiating computations on nodes.

3.5 Work distribution through offloading and work stealing

In a shared-nothing system, work will need to be moved from instances that have

excessive amounts of work to those that are idle. When and how this is done is

an important policy choice that can significantly affect performance. There are two

basic approaches: work can be offloaded eagerly at the time of creation (active load

distribution); or it can be offloaded lazily, e.g. in response to changes in system

load (passive load distribution). Eager work offloading aims to quickly saturate

the parallel system. This is beneficial in cases of regularly structured parallelism

where a single main task generates all the available parallelism at the start of the

execution. Such a policy is easy to implement using PAEAN’s remote execution

mechanisms, as used by Eden. Typically, under such an approach, all the data that

a thread requires will also be sent with the thread when it is offloaded. This may,

of course, add significant delay before a thread can start. When used with virtual

shared memory, it also runs the risk of significant heap fragmentation and increased

communication costs. In contrast, lazy work offloading is typically implemented by
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−− parent process
do −− create reply channel (1)

(ch,bkh) ← createC

−− spawn remote process (2)
sendData (Instantiate 2)

(thread2 ch)
−− next function call will
−− block until response arrives
print bkh

−− child process

−− thread2 ch =
do connectToPort ch −− (3)

let dat = fib 42
rnf dat ‘pseq‘ −− (4)

sendData Data dat

−− terminated

Fig. 13. Communicating computations and values explicitly. A thread on Instance 1 creates

a channel (1) and passes the created ChanName’ to a new process on Instance 2 (2). A newly

created thread connects to the channel (3) and sends evaluated Data (4).

−− insert a closure into a local HEC’s spark pool:
par# :: a → b → b
−− as above, but with locality control , specifying min and max distances :
parDist# :: Int → Int → a → b → b

Fig. 14. Spark insertion primitives in GHC-SMP and PAEAN.

some kind of work stealing mechanism, where idle instances attempt to obtain work

from busy instances. PAEAN provides flexible support for distributing work lazily

across a shared-nothing system by building on, and extending, the basic GHC-SMP

spark/thread mechanisms (Figure 14). The serialisation mechanism described in

Section 3.3 is used to offload a spark plus some or all of the data that is associated

with it. The PAEAN work stealing mechanism supports stealing sparks, which are

fairly cheap to transfer, rather than threads, which may carry significant local state.

3.5.1 Example of work stealing

Figure 15 illustrates this work-stealing load-balancing mechanism. When Instance 2

becomes idle, it sends a work request message (or FISH) to another processor. In

this case, Instance 1 is targeted. Since Instance 1 has some sparks in its spark pool,

it responds by sending one of these sparks to Instance 2 in a SCHEDULE message,

serialising the graph that it refers to, as described in Section 3.3, and replacing the

original sparked closure by a FetchMe. The program graph will be de-serialised when
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run

spark activate

run

sparkactivate

Spark Pool

Thread Pool

awake

block

Blocking Queue

Spark Pool

Thread Pool

awake

block

Blocking Queue

SCHEDULE

HEC HEC

Instance 1 Instance 2

FISH

Fig. 15. Work stealing using PAEAN’s spark-based mechanisms. An idle instance (Instance 2)

sends a FISH message to Instance 1, aiming to steal some available work. If Instance 1 has

any sparks, then the spark and any associated graph will be serialised and sent to Instance 2

in a SCHEDULE message.

it is received on Instance 2. The spark is added to its local spark pool, whence it can

be turned into a thread using the usual thread scheduling mechanisms, or even passed

on to another PAEAN instance if Instance 2 has gained sufficient work6. If a targeted

instance has no sparks, it forwards the FISH message a fixed number of times. If no

instance has any sparks, the FISH message is sent back to the originator. A back-off

delay is introduced, and a new FISH message will be sent (Trinder et al., 1995).

Typically, execution of the thread that created the spark on Instance 1 depends on

the result of this spark that has been moved to Instance 2, and other threads might

also depend on it. When execution requires the exported spark, the thread will be

added to a local queue of blocked threads. The FetchMe will then be followed, and

a FETCH message will be sent to Instance 2. If the spark has been evaluated by

Instance 2, its (weak head) normal form will be serialised and returned to Instance 1

in a DATA message. Otherwise, Instance 2 will record the attempt to fetch the

closure in its blocking queue, so that its (weak head) normal form can be returned

to Instance 1 once it becomes available.

3.5.2 Work distribution mechanisms for hierarchical systems

We have made several enhancements to our work distribution mechanism in order

to improve performance for large-scale systems, which typically involve clusters of

6 This helps avoid starvation. It would be possible, but highly unlikely, for a spark to be transferred
between the same instances multiple times, but only where the instances gain sufficient work elsewhere.
Although some effort would then be wasted, progress would have been made, so termination is ensured.
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Load Balancing Mechanisms:Markers:

active with off-loading

passive without fishing

passive with fishing

Low Watermark

High Watermark

Spark Pool

Fig. 16. Low- and high-watermark mechanisms for spark distribution. (showing a single

spark pool). By default work-stealing (passive) load distribution is used. If the size exceeds

the higher-watermark, work is actively offloaded. The system aims to always fill the pool up

to the low-watermark.

multicore processor nodes connected using high-latency networks. Such systems are

usually hierarchical with widely varying inter-node latencies, i.e. they are genuinely

NUMA. The largest system we have studied is Edinburgh Parallel Computer Centre’s

HECToR, which has over 90,000 cores and a complex hardware interconnect. Sec-

tion 4 shows scalability results from a smaller, but still realistic, hierarchical cluster.

Watermarks: One simple, but flexible, mechanism that gives better control of spark

distribution is to use low- and high-watermarks for each spark pool. Using this

approach, work offloading decisions are based on the sizes of each spark pool, as

shown in Figure 16. The low-watermark specifies a minimum number of sparks that

should be held in the local spark pool. If the number of sparks falls below this

watermark, no sparks will be exported, and the instance will try to obtain additional

sparks from other instances. The high-watermark indicates the maximum number

of sparks that should be held in a spark pool. If the number of sparks exceeds

this limit, the instance will use SCHEDULE messages to actively offload sparks

to other instances without being asked for work. In other words, the instance will

temporarily and locally switch from lazy load distribution to eager load distribution,

until the spark pool size drops below the high-watermark. If all instances have large

numbers of sparks, a back-off mechanism is used to delay SCHEDULE messages,

as described above for FISH messages. Our experiments identify this mechanism

as the most important one for tuning cluster performance (Aljabri et al., 2013).

Measurements on a 32-node cluster with up to 100 cores show a reduction in

runtime on a set of micro-benchmarks of up to 57%, i.e. in the best case, we

can gain a speedup of more than two over the standard FISHing policy that we

described above. For larger benchmarks, improvements range from 16% to 28%.

Further improvements are possible, by dynamically adapting the low-watermark

over the runtime of the program. In more recent work (Aljabri, 2015) (Section 5.4),

we have extended the scalability measurements to a combination of two remote
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clusters with 300 cores in total. Using our sumEuler example, we have obtained

speedups of up to 140 on this more heterogeneous, distributed architecture.

Locality control: Controlling locality is important for ensuring good performance

on hierarchical shared-nothing systems, especially those with high latency connec-

tions (Loidl, 1998; Loidl, 2001). PAEAN provides several enhanced primitives to

support locality control. The most powerful of these primitives is parDist (Aswad,

2012) (Figure 14), which takes two additional integer arguments, specifying a lower

and an upper limit on the distance of work distribution from the current instance.

If these are both 0, then this forces local evaluation. Setting a minimum limit forces

work to be distributed through the system. This is useful in low-load situations, such

as system startup.

4 Evaluation of scalability and performance

We have carried out a series of experiments to assess the scalability and performance

of our GpH, Eden and EdI implementations using the versions of sumEuler from

Section 2. Our experiments used a commodity cluster of 32 nodes, each with an

8-core x86 64 CPU7. The cluster therefore provides a total of 256 processor cores.

Since the full machine was not available for our exclusive use, the measurements

reported here are limited to a maximum of 64 cores on 16 nodes (i.e. using at

most four cores per node). We delegate the placement of PAEAN instances to the

communication middleware. Both MPI and PVM prefer using different nodes to

using different cores on the same node. This balances the load at the cost of increased

network communication. For our experiments, we have mainly used PVM, but, where

indicated, some of the EdI results have also used MPI. The implementations used in

our measurements are the Eden/EdI system version 7.8.3 (mid 2014), and a research

version of GpH on clusters, GUM-SMP, based on GHC 6.12.3.

4.1 Measured speedup

Figure 17 shows measured speedups for each sumEuler variant, with n = 90, 000.

We can clearly see that the sumEuler program gives near-linear speedup for all

three implementations, even when large numbers of cores are used. Overall, the

EdI implementation shows the best speedups. The MPI implementation is slightly

better than PVM. The Eden version comes close to EdI. However, since the GpH

version requires more management (i.e. overhead), it delivers worse speedup. It

does, however, scale robustly (we have confirmed this up to 180 cores). The

difference between the EdI and the Eden versions can be explained by differences

in communication behaviour: while the Eden version communicates the full list of

arguments to each child process as a stream, the EdI version requires the child

7 The beowulf cluster at Heriot-Watt University Edinburgh. Each node is built from two quad-core
Xeon E5506 2.13GHz, with 256kB L2 and 4 MB shared L3 cache, connected by gigabit Ethernet, and
running CentOS 6.4.
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Fig. 17. Speedup of sumEuler variants: n = 90, 000.

processes to generate their arguments from parameters (size, offset, stride), and

communicates only the results. This reduces communication costs. The GpH version

suffers in this example due to the higher overheads associated with managing

the virtual shared heap. Since the work is already well distributed through the

structure of the problem, the automatic load balancing mechanism does not improve

performance in this case. It would, however, deal better with situations where

some nodes were executing external workloads, and were not dedicated to the

Haskell program. Overall, the sumEuler example clearly demonstrates the ease of

parallelisation and simplicity that is claimed for parallel functional programming.

It was straightforward to achieve the near-perfect speedup reported here, since the

problem structure itself is intuitive and easy to parallelise. Note that the speedup

we obtain is dependent on the problem size. For smaller problem sizes, where

n < 90, 000, it would scale less well with increasing number of cores, since the

constant overhead of instantiating the program and using the middleware would

have an increasing effect.

4.2 Scalability

While the sumEuler example is easy to decompose into independent parallel

tasks, many parallel algorithms have more complex structures with inter-task

dependencies. One example is the N-Body simulation, which simulates the movement

and gravitational acceleration of a number of “particles” (physical bodies) in a

3-dimensional space. The simulation is typically approximated iteratively in a number

of discrete time-steps. A simple straightforward parallelisation of this problem will

exploit parallelism within each iteration, assigning subsets of particles to different

threads, where each thread computes the new velocity and position for its own

particles. In order to update the velocities for its own particles, each thread needs

the position and mass of all the other particles. This is approximated by exchanging

new information after each iteration, in a potentially costly global exchange of data.
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We have measured the performance of an Eden implementation of N -Body based on

iteration skeletons (Dieterle et al., 2013). These use the allGather skeleton (Dieterle

et al., 2010) to implement the global data exchange. Figure 18 shows the speedups

that we obtain with this implementation for a problem size of 20,000 particles. For

this problem size, the program scales reasonably well, achieving a maximum speedup

of around 30 on 64 cores. Performance degrades when more than two cores per

node are used. Once again, the MPI back-end performs similarly to, but slightly

better than, its PVM counterpart.

The iterative structure of this algorithm means that each iteration is performed

sequentially. Figure 19 shows the overhead when the algorithm performs more

iterations while the amount of computation is kept constant (N2 · k computations

for N particles and k iterations). We can see that speedup degrades earlier and is
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Fig. 20. Speedup of sumEuler variants on an 48-core machine: n = 90, 000.

generally lower when more iterations are performed, since each iteration requires a

global synchronisation.

4.3 Shared-nothing performance on shared-memory systems

As a baseline for our shared-memory results, we again use the sumEuler pro-

gram on a 48-core machine8 to compare the performance of the GpH and Eden

implementations. Figure 20 shows the results that we obtain. While the speedups

are fairly modest for this simple parallel program, we observe a steady increase in

speedup for all versions, up to 28 on 46 cores in the best case for Eden with a

shared-memory (ShMem) back-end. All implementation show a drop in speedup

when using all 48 cores. This is consistent with previous experimental results on

similar systems, where we have found that allocating all available processors to the

parallel execution can interfere with system process execution. As with the cluster

results, the GpH speedups are slightly worse than those for Eden, but notably

better than those for the GHC-SMP shared-memory implementation. This matches

with our previous study of the impact of NUMA architectures on parallel Haskell

performance (Aljabri et al., 2014). We summarise our findings below. These findings

are also consistent with parallel benchmarks, across languages, on this NUMA

architecture. Due to the different memory latencies to different memory banks in

NUMA architectures, even simple parallel programs struggle to efficiently exploit

this kind of architectures.

For a more detailed evaluation of the performance of the PAEAN shared-

nothing approach on a physically shared-memory system, we have chosen to use

8 Four AMD Opteron-based processors, each with two NUMA regions, where each region has six
2.8GHz cores; total RAM is 512 GB, with 64 GB per region; there is a 2 MB L2 cache, shared
between every two cores in each region, and a globally shared 6 MB L3 cache.
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the MatMult benchmark program from the nofib suite9. Matrix multiplication

can be easily decomposed, with independent calculations, so should give good

scalability, in principle, provided that the thread granularity is managed carefully.

We compared the scalability of the original GHC-SMP implementation against

that of an equivalent Eden version. The Eden version uses a variant of Cannon’s

algorithm, communicating matrix blocks in a toroidal topology, using a recursive

toroid skeleton (Berthold & Loogen, 2005). The GHC-SMP version uses a similar

blockwise task distribution, but tasks communicate via the shared heap without

using a specific communication topology. Hence, the GHC-SMP version can freely

choose the block size to improve load balancing, but might encounter bus contention

when doing so. Since we are evaluating scalability on shared-memory architectures,

we have used a 64-core physically shared-memory system10. Our speedup results are

shown in Figure 21. They clearly show that the Eden version can exploit the available

cores, delivering a peak speedup of approximately 54 on 64 cores. The GHC-SMP

shared-memory version delivers the best speedups on small numbers of cores, but

flattens out at about 16 − 17×. The Eden versions scale better when using more

than 25 cores; all PAEAN shared-nothing implementations have speedup that is

equivalent to or better than GHC-SMP from that size onwards. This is probably an

effect of shared-memory GC. Note that the speedup for the Eden versions does not

scale linearly with the number of cores. The toroidal algorithm delivers a “stepped”

speedup profile, that is ideally matched to a square number of cores. The Eden

program attempts to utilise all the cores by placing more than one process on some

of them when approaching square numbers. This however, hardly yields any better

speedup.

9 http://git.haskell.org/nofib.git
10 Compute server lovelace, University of St.Andrews: 4 × 16 core Opteron 6376 1.4GHz with 2 MB

L2-cache (per core), 16 MB shared L3 cache, 640 GB shared RAM.
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We note, in passing, two interesting phenomena: First, the GHC-SMP version

is faster than the equivalent sequential version without any spark creation when

executed on only one core. However, it uses a considerably larger heap. Creating

sparks reserves heap space early, and therefore accelerates execution. This effect is

intensified when using column-wise instead of block-shaped sparks: column division

exposes the worst access locality. On more cores, this effect quickly disappears, and

the spark strategies only have a minor influence on the runtimes. Second, the Eden

version has been measured with all three possible back-ends for data transfer: the

shared-memory back-end, MPI and PVM. As expected, PVM performs worse than

MPI, and the shared-memory back-end yields the best performance. This exposes

the overhead that is imposed by PAEAN communication subsystem middleware: the

bespoke shared-memory back-end was tailor-made for its specific message-passing

needs, without any additional features which would worsen performance.

Finally, we have recently performed a systematic evaluation of shared-nothing

versus shared-memory parallel Haskell systems on a number of modern NUMA

architectures (Aljabri et al., 2014). We have explored a range of configurations,

including purely distributed memory, classic GUM; a mixture of shared-memory

and distributed-memory, GUM-SMP (Aljabri et al., 2013; Aljabri, 2015) and purely

shared-memory, GHC-SMP. Our measurements show that the shared-memory

implementation consistently performs worst on these architectures, repeatedly hitting

memory access and locking bottlenecks. A pure distributed-memory implementation

improves runtimes by a factor of about three compared with the shared memory

implementation. Further improvements can be achieved by configuring the system

to use one shared heap for each NUMA region on the machine. These results

support the findings reported above, underlining that even on the current generation

of moderately parallel systems, a shared-nothing design delivers consistent and

tangible performance benefits.

5 Related work

5.1 Built-in parallelism support in GHC: GHC-SMP

The standard GHC RTS provides built-in support for parallelism (Marlow et al.,

2009), but only on physically shared-memory systems. Drawing on experience with

e.g. the GUM design for GpH (Trinder et al., 1995), GHC-SMP supports both

the GpH and Par-Monad models of parallelism. It uses a physically shared heap

with a common address space. Synchronisation is achieved using a “black-holing”

mechanism. Memory management uses a shared-memory implementation of GHC’s

standard generational garbage collector, with independent nursery areas, but shared

old generations. GC is currently stop-and-copy: all threads must be suspended during

GC. While there has been some work on independent GC (Marlow & Peyton Jones,

2011), the complexity of supporting this efficiently and effectively on a physically

shared-memory architecture, without adopting a shared-nothing implementation,

means that this has not yet been integrated into the production version of GHC.
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5.2 Implementations of GpH and Eden

The first implementation of GpH was designed to work on the novel GRIP

multiprocessor (Peyton Jones et al., 1987; Hammond & Peyton Jones, 1990; Ham-

mond & Peyton Jones, 1992). This was first adapted to yield a message-passing

implementation of virtual-shared memory using PVM, GRAPH for PVM (Loidl &

Hammond, 1994) and subsequently to both physically shared-memory and shared-

nothing parallel machines in the form of GUM (Trinder et al., 1995). GUM uses

a two-level message-passing communication system, where high-level messages for

synchronisation, workload distribution etc. are built on a basic communication

system. Low-level communication can be realised either via shared-memory or via

an explicit message-passing communication library such as PVM or MPI. This

gives significant flexibility. GUM has been extended using a variety of workload

management systems (Loidl & Hammond, 1996; Loidl, 2001; Du Bois et al., 2002;

Al Zain et al., 2008; Aljabri et al., 2012). Using these mechanisms, it has been

deployed on a variety of systems ranging from small-scale multicores to hierarchical

clusters of up to 90,000 cores (Maier et al., 2014a).

The DREAM RTS (Breitinger et al., 1998; Klusik et al., 1999) was the first

working implementation of Eden. It was originally implemented by adapting

the GUM implementation to comply with the the DREAM abstract machine

model (Breitinger et al., 1997). It has subsequently seen several complete rewrites

and major revisions. Some parts of the implementation which were originally

implemented directly in the RTS have now been lifted to the Haskell level, relying

on simpler and more modular RTS support (Berthold et al., 2003). This refinement

ultimately led to factoring out the EdI language: all Eden language constructs are

now implemented in Haskell, using the simpler primitive operations that implement

EdI directly (Berthold & Loogen, 2007; Berthold, 2008).

5.3 Distributed systems: Cloud Haskell and HdpH

A contrasting approach to that described here is taken by Cloud Haskell (Epstein

et al., 2011) and HdpH (Maier et al., 2014b). Rather than providing flexible and

general RTS support, which can be used to build appropriate high-level parallel

programming constructs for different language designs, Cloud Haskell and HdpH

both use a fully explicit approach to parallelism on distributed memory platforms,

relying on the programmer to build any necessary higher-level abstractions. Cloud

Haskell provides a minimal abstraction level, while HdpH also includes ideas of

work stealing and virtual sharing that were previously developed for GpH. As with

Eden or GpH, higher-level parallel abstractions can be built on these primitives, in

the form of structured parallel approaches such as algorithmic skeletons (Cole, 1989)

or evaluation strategies (Trinder et al., 1998). In our opinion, this is likely to be the

best way for functional applications programmers to use libraries such as Cloud

Haskell or HdpH, since many problematic details can then be encapsulated into

higher level abstractions. This is also consistent with the functional programming

philosophy of good abstraction and encapsulation.
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5.4 Work distribution for large-scale hierarchical PAEAN systems

The basic PAEAN work distribution model (Section 3.5) has been extended to

provide better support for large-scale, hierarchical architectures. Grid-GUM2 (Al

Zain et al., 2008) systematically attaches load information to FISH messages in order

to refine the search for available work. Unlike the standard PAEAN mechanism,

it delivers a variable number of work items in order to amortise the cost of

transferring work and data between sub-clusters in a Grid infrastructure. Grid-

GUM2 also supports migration of live threads (Du Bois et al., 2002): threads are

serialised in their current execution state, and can be migrated across processors in

order to improve load balance. Migration should, however, be used carefully since it

is expensive and increases heap fragmentation. Aljabri et al. (2013), Aljabri (2015)

describe GUM-SMP, which combines our shared-nothing work-stealing mechanisms

with those in the standard GHC-SMP. This gives additional freedom in configuring

PAEAN systems for large-scale clusters of multicore machines.

5.5 Scheduling support in Haskell

Both the Par-monad (Marlow et al., 2011) and Meta-par (Foltzer et al., 2012) have

adopted the idea of defining parallel scheduling policies in Haskell. However, these

approaches do not consider more general RTS support and system architecture,

as we have done in this paper. Moreover, unlike our approach, the Par-monad is

restricted to shared memory parallelism. Two separate lightweight implementations

of concurrent Haskell have also been produced that lift scheduling and other

concurrency features to the Haskell level (Li et al., 2007; Sivaramakrishnan et al.,

2013). This complements our work, that instead focuses on the introduction and

control of parallelism. It would, however, be both straightforward and useful to

incorporate similar concurrency features into PAEAN, and we intend to investigate

this in future work. Similar support for scheduling operating system level threads

and processes has been provided in the prototype House operating system (Hallgren

et al., 2005) , which was written entirely in Haskell.

5.6 The ArTCoP micro-kernel

ArTCoP
11 is a highly modular micro-kernel design for parallel Haskell (Berthold

et al., 2008) that is closely related to PAEAN. The kernel level implements simple

and generic routines for asynchronous communication, basic execution management

and system information. System Modules written in Haskell restrict and combine

these kernel routines to provide higher level coordination constructs, narrowing

the generic runtime support to a particular programming model. Coordination

constructs can be used at both a Library and an Application level either to implement

algorithms directly or to implement parallel algorithmic patterns and skeletons (Cole,

1989). System modularity is achieved similarly to PAEAN components: driven by

11 ARchitecture-Transparent Control Of Parallelism
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data Serialized a = Serialized { packetData :: ByteArray# }

serialize :: a → IO ( Serialized a)
deserialize :: Serialized a → IO a

−− | Packing and unpacking exceptions :
data PackException

= P_BLACKHOLE | P_NOBUFFER | P_CANNOTPACK | ... | P_GARBLED −− from RTS
| P_ParseError | P_BinaryMismatch | P_TypeMismatch −− from Haskell

−− Serialized instances :
instance Typeable a⇒ Binary (Serialized a) ...
instance Typeable a⇒ Show (Serialized a) ...
instance Typeable a⇒ Read (Serialized a) ... −− read ◦ show == id

Fig. 22. Proposed Haskell types for serialised data.

a workload distribution logic, tasks are distributed to processors and controlled

by a scheduling component; scheduling relies on a communication subsystem; and

a monitoring component informs dynamic and adaptive scheduling decisions. In

Berthold (2008), Berthold et al. (2008), we presented a Haskell scheduling framework

in the spirit of the ArTCoP design. Complex scheduling policies and heuristics can

be defined in Haskell, based on a system of type classes for parallel jobs and

scheduler states. The scheduling framework can express complex mechanisms such

as the FISH mechanism discussed in Section 3 and Grid-GUM2.

5.7 Haskell-level serialisation for PAEAN

The PAEAN serialisation and de-serialisation routines allow data to be exchanged

between different heaps in a running system. In doing so, however, they also

provide type- and evaluation-agnostic data persistence for Haskell. This has several

important uses (Berthold, 2011), including supporting persistence for memoised

functions and checkpointing. Figure 22 shows how Haskell-level serialisation can

be realised, supported by PAEAN primitive operations. Serialisation is orthogonal

to evaluation: any Haskell program graph can be serialised. It is also orthogonal to

Haskell types: as shown, type-safety can be re-established by phantom types. When

Serialized data is externalised (written to files or sent over the network), phantom

type information is lost and must be recovered dynamically, using Typeable. This is

achieved using the representations provided by the Binary, Show and Read instances.

To make our work usable in other settings, e.g. networked systems, we have factored

out this serialisation functionality, so that it can be installed as a Haskell library12

using cabal. This library is a good example of the targeted bespoke RTS support

for parallelism that we advocate for PAEAN: well-tailored operations enable a

simple and straightforward API and avoid the pervasive complications of library-

12 Available at http://github.com/jberthold/packman/ and on hackage.
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only solutions to Haskell data communication, as typified by e.g. Cloud Haskell or

HdpH.

5.8 Kali scheme

As with ArTCoP, Kali Scheme (Cejtin et al., 1995) aimed to provide user-level

scheduling operations, including load balancing and thread migration. Like PAEAN,

Kali Scheme is a shared-nothing implementation, but for Scheme rather than Haskell.

Kali Scheme operates at a similar level to EdI, HdpH or Cloud Haskell, using

explicit message-passing communication. Unlike the PAEAN approach, but like

Cloud Haskell and HdpH, it provides explicit primitives to create and manage

independent heap spaces, including serialisation and deserialisation for transmitting

closures. Kali Scheme assigns unique identifiers to all heap objects, and uses a

mechanism similar to our FetchMe to fetch all data referenced by unique identifier

in a received message before taking any action on it. The PAEAN system, in contrast,

assigns GA only to thunks that were actually communicated before being evaluated,

and lazily fetches other references only when the data is required. Kali Scheme

also provides a proxy mechanism, which allows remote values to be accessed using

Kali’s strong code mobility capabilities. As with GUM and PAEAN, Kali Scheme

supports a two-level GC scheme, where local collections can proceed independently.

Global collection uses a combination of lightweight distributed reference counting

with a separate mechanism for global cycle detection. A similar mechanism to our

ACK/NACK messages is used to ensure that messages are not lost in transit, and

that in-flight data is not garbage collected prematurely. At the time of writing, the

Kali Scheme system seems to be no longer maintained. However, there are calls to

revive the project.

5.9 Manticore

Finally, while it does not aim to provide a reusable library as with PAEAN,

the Manticore (Fluet et al., 2007; Fluet et al., 2010) implementation for parallel

ML provides similar implicitly threaded parallelism and follows the same spirit of

semi-explicit adaptivity as our earlier implementations of GpH. Futures and data

parallel constructs are used to manage local parallelism. Explicit synchronisation

and coordination is used at a larger scale (Reppy et al., 2009). At the runtime level,

Manticore provides a notion of virtual processor similar to a HEC, which can be

similarly mapped to physical cores by the operating system. A process, comprising

multiple lightweight threads, is mapped to the required number of virtual processors

using a provision operation. There is a simple built-in mechanism for basic load-

balancing, extended using a low-latency work-stealing mechanism (Acar et al., 2013).

Manticore also provides a low-level internal scheduling interface (Acar et al., 2012),

which provides preemption and interrupt via a signal-based approach. Processes

are scheduled in a round-robin fashion, and schedulers may be nested, so that, for

example, a data parallel scheduler may be used within a process-level scheduler.
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6 Conclusions

This paper has introduced PAEAN, an RTS framework that supports efficient and

scalable execution of parallel Haskell programs on a variety of (possibly NUMA)

parallel architectures, and shown how it can be used to implement three distinct

parallel Haskell dialects: GpH, Eden and EdI. PAEAN is based on the widely used

and heavily tuned GHC RTS. It offers a flexible and general API for workload

distribution, virtual shared memory, communication and serialisation that can

be used to implement a variety of further Haskell dialects, on a “pick-and-mix”

basis.

The central design decision in PAEAN is its shared-nothing heap, which greatly

enhances the scalability of the system. PAEAN abstracts over low-level commu-

nication libraries, linking to standards such as PVM and MPI. We believe that

with hardware scalability limitations imposed by upcoming many-core architectures,

such a design is the only way forward for modern, massively parallel systems. These

concerns are already visible in modern NUMA hardware architectures, and threaten

to disrupt current programmer models of memory behaviour. It is no longer tenable

to assume that access to an array is uniform cost, for example.

This provides an opportunity for more structured and flexible approaches to

data as promoted by Haskell and other functional languages, that will better fit

limited sharing or shared-nothing settings. In order to achieve this potential, it is

important to provide good abstractions over this rapidly increasing complexity at

the hardware memory level. We have built a programmer level virtual shared heap

abstraction on top of a set of low-level message passing primitives. PAEAN also

supports physically shared memory, but as a special case of our shared-nothing

design. Our performance results show that we can obtain good, scalable and easy-

to-use parallelism for multiple Haskell dialects beyond the usual shared-memory

limitations of standard parallel Haskell implementations.

6.1 Limitations and further work

While we have considered reasonably sized clusters in this paper (of up to 64 cores),

in order to fully study scalability, we will need to consider the use of PAEAN

implementations on larger machines such as EPCC’s 90,000 core HECToR. Our

results with a challenging symbolic computation application on up to 1,024 cores

of HECToR show good scalability for a program with complex data dependen-

cies (Maier et al., 2014a). However, we anticipate that larger, hierarchical systems

will highlight the need for improved control of locality, hierarchical workload

management, and other mechanisms of work and data distribution that we have

discussed above.

One other obvious limitation is that PAEAN does not currently provide support

for fault tolerance. This is not a major issue in a typical parallel computing setting

(whether shared-something or shared-nothing), since such systems can generally be

assumed either to be reliable or to provide systems-level recovery mechanisms.

Likewise, cloud and other managed distributed servers typically provide good
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system-level mechanisms for checkpointing and recovery, which should deal with

system-level failures. A language-level mechanism is more useful for dealing with

programmer level failures, where the cause of any error can be predicted and

corrected by the programmer. In such a situation, the direction taken by Cloud

Haskell and HdpH, using Erlang-style supervisor processes to monitor the health

of large distributed systems (Stewart et al., 2012), would seem to offer a relative

simple and effective mechanism that can easily be added to PAEAN. We intend to

investigate this in due course.

Parallel programming is increasingly mainstream, and functional languages like

Haskell are, in principle, an excellent fit to modern massively parallel architectures.

However, the chief advantages of functional programming, namely composability

and referential transparency, can easily be lost, for example, by using explicit

communication primitives to link shared-nothing machines. Advanced runtime

support such as we provide in PAEAN aims to bridge and structure necessary

performance tweaks in a carefully designed and modular RTS. In our opinion, such

an approach is crucially important to achieving large-scale parallel programming

without losing key semantic advantages of the functional approach. Ultimately, we

intend to develop a revised PAEAN system that captures the spirit of our ArTCoP

design: with the necessary RTS internals largely programmed in Haskell, while still

achieving good scalable performance through flexible RTS support. We anticipate

that this will allow us to address both near-term and more distant parallel hardware

developments, while providing support for high-level parallelism abstractions in

Haskell.
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Systems availability

Source code for the latest version of the GpH runtime system, including GUM and

GUM-SMP, is available at http://www.macs.hw.ac.uk/~hwloidl/hackspace/

GUMSMP. This version covers both GpH and Eden. The full Eden source code, which

implements a subset of the PAEAN design, plus pre-compiled binary releases for se-

lected GHC versions, are available for download at http://www.mathematik.uni-

marburg.de/~eden/. Binaries are provided for Windows, Linux, and Mac OS

versions. All Haskell modules are available on hackage. RTS source code is available

at http://github.com/jberthold/ghc.
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Acar, U. A., Charguéraud, A. & Rainey, M. (2012 January) Efficient primitives for creating

and scheduling parallel computations. In Workshop contribution for DAMP’12. Available at

http://chargueraud.org/research/2012/damp/damp2012 primitives.pdf. [Retrieved

14/12/2015]
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