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The conjugate of a smooth Banach space

D. G. Tacon

A Banach space X is smooth if at every point of the unit sphere
there is only one supporting hyperplane of the unit ball; and
strictly convex, or rotund, if the unit sphere contains no line

segment.

Although there is a strong duality between these notions, Klee
has produced a smooth space whose conjugate is not rotund.
However there is no known example of a smooth space with

conjugate not isomorphic to & rotund space.

The main purpose of this note is to show that if X is a smooth
space with a certain property, X* is isomorphic to a rotund

space. This will follow from a mapping theorem which implies the
existence of a set T and a continuous one-to-one linear map T

of X* into cO(F) .

1. Introduction and summary

Throughout this paper we assume X to be a real infinite dimensional
Banach space with X* and X** denoting its first and second conjugate
spaces respectively. If x is an element of X we denote by £ the
element of X** defined by z(f) = flz) for f ¢ x*. If X is smooth

for x € X we denote by fm the unique element of X#* such that
If = llell end £ (z) = |If lllel] - It is well known [3, p. 300] that if

X 1is smooth and z, rx in the norm topology then f; > f& in the
n
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weak* topology. We say that a Banach space has property A if it is

smooth and if, whenever z,*>x in norm, f; > fx in the weak topology.
n

In particular it follows that strongly smooth spaces have property 4
{9, p. 140], as do smooth Grothendieck spaces. However, not all smooth

spaces have property A , as can be seen from Lemma 6.
The main result of this note is the following mapping theorem:

THEOREM 1. Let X be a Banach space with property A . Then there
exist a set T and a bounded one-to-one linear map T from X* <into

(r) .

co
We recall at this point that co(F) is the Banach space consisting

of the real-valued functions f on T which vanish at infinity; i.e.,

such that {y : y € I, |f(y)| > €} is finite for every € > 0 .

The theorem should be compared with the following powerful theorem
of Lindenstrauss [11]: If X <s a reflexive Banach space, then there
exist a set T and a continuous one-to-one linear map T of X into

co(F) . In fact Theorem 1 follows from this result if we assume X to be

a conjugate space, for then X 1is reflexive by a generalisation of a
result of Smulian (see, for example, [7, Theorem 2]). More generally Amir
and Lindenstrauss [1] have shown that if X is the closed linear span of
a weakly compact subset of X , then there exist such a set I and
mapping T .

We prove our other stated result as a corollary to Theorem 1 at this

point.

COROLLARY. et X be a Banach space with property A . Then X*

is isomorphic to a rotund space.

Proof. By the main theorem there exist a set I and a one-to-one

bounded linear map T : X* - co(F) . Now by Day [5, p. 523] co(F)

admits an equivalent strictly convex norm |-| . We renorm X* by
putting |f| = IIfll + |Tf] . It is readily checked that |+] is an

equivalent strictly convex norm on X* and so the result follows.

We comment that this clarifies a point made in Day [5, p. 518] and
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Cudia [4, p. 88]. We point out that though we consider spaces over the

reals the proofs need only slight modifications in the complex case.

2. Proof of Theorem 1

The proof is based on techniques developed by Lindenstrauss [10 and

11]. It is long and is broken up by a series of lemmas.
The first result is due to Lindenstrauss [17, p. 967].

LEMMA 1. Let X be a Banach space and let B be a finite
dimensional subspace of X . Let k be an integer and suppose € > 0 .
Then there is a finite dimensional subspace Z of X containing B such
that for every subspace Y of X containing B with dimY/B = k there
i8 a linear operator T : Y+ 2 with |T| <1+e , and Tb = b for all
beB.

We denote by x* the space of homogeneous functionals on X which

are bounded on the unit ball of X . For f € Xu we define a norm by
Ifll = sup{|f(x)| : llzll = 1} . It is easily seen by a slight

generalisation of the Banach-Alaoglu theorem, or by a direct application

of Tychonoff's theorem, that the unit ball of % is compact in the
f—topology. If 7 is a map from C* into X#* , where ( 1is a subspace
of X , we denote by T the extension map of T from X* into X*
defined by f(f) = T(f) , where f 1is [ restricted to C . We retain

this notation for the remaining lemmas.

LEMMA 2. Let X be a Banach space and let B be a finite
dimensional subspace of X . Then there exist a separable subspace C
of X and a linear operator T : C* + X* such that ||Tll =1 and

~

T*z = & for all x € B .
Proof. Let ¢ B, n=1, 2, ... be the subspaces of X given
n

o0
by Lemma 1 for k=n , € =1/n , and let c=§[~u cn]. If E isa
n=1

subspace of X containing B , such that dimE/B = n , then there is a

linear operator T, : E > C such that “TE” =1+1/n , Tye =z for

all x € B. We extend T, to a map (not linear) Té : X>C by
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defining Téx =0 if =z € X\E .

We consider the adjoint map Té* : ¢* > X% . In the space of all

bounded linear maps (* - Xa we take the pointwise topology, and on x°
the thopology. As the unit ball of X% is ?—compact, Tychonoff's
theorem ensures that the net {Té* : E> B} (here we order the subspaces
E by inclusion) has a limit point T : ¢* + ¥* .,

It is straightforward to check that T : C* - X* , and that it

satisfies the conditions of the lemma.
If Y is a closed subspace of X we denote by Dy,(Y) the set of
f € X* which attain their norm on the unit sphere of Y . If DX*(X) is

norm dense in X* , X 1is said to be subreflexive. E. Bishop and R.R.
Phelps [?] have shown that all Banach spaces are subreflexive. We couple

this result with smoothness to obtain:
LEMMA 3. Let X be a smooth space, let x; =1, ., n, and
f.» d=1, ..., m, be finite sets in X and X* respectively, and let

€ > 0 . Then there exist a separable subspace C of X and a linear

operator T : C* + X* such that H%H =1, f&ﬁi = Ei s, 1=1, .., 1,
and (Tf,- Ff.ll <e, 4=1, ...,m.
J J
Proof. By subreflexivity there exist yj s, =1, ..., m , such

that "fj'fyj" <eg, =1, ..., m.

By Lemma 2 there exist a separable subspace (¢ and a linear
operator T : C* - X* such that (7] =1, %*Ei

A .
.y, =1y voeyn,

7
5*§j = Aj', J=1, ..., m . As f*gj = gj , d=121, ..., m , we have
f =Tf , §=1, ...,m ,sothat [Tf. -f.ll<e, d=1, ...,m.
yj yj J Jd

Before continuing we note an easy result.

LEMMA 4. Let Y be a closed subspace of X . If DX*(Y) i8 a
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linear subspace, then it is isometric to Y* .

Proof. Let T : D_XR-.W + Y* be the restriction map. T is a linear
norm preserving map of D_X*m into Y* . That T is onto follows from
the Hahn-Banach theorem as Y 1is subreflexive.

By the density character of a Banach space we mean the minimal

cardinality of a dense subset.

LEMMA 5. Let X be a smooth space and M be an infinite cardinal
number. Suppose Z, W are subspaces of X, X* respectively of density
character not greater than M . Then there exists a subspace C of X
of density character not greater than M which contains Z , together
with a linear operator T : C* + X* such that P = 7 s a bounded linear
projection satisfying Pl =1, Pf=Ff forall f €W, pP* =z for
all = € C, and such that PX* = —};_(ET; in particular, PX* is

igometric to the comjugate of C .

Proof. The proof is by transfinite induction. Initially we assume
that {fﬁ 3 J=1,2, ...} is dense in W , and that
{xj 3y d=1,2, ...} is dense in Z . By Lemma 3 we can construct
inductively a sequence {C ;n =1, 2, ...} of separable subspaces of X

n
and a sequence {Tn ;n=1, 2, ...} of linear operators Tn : C:L > X*

such that
(i) “Tn” = l 9 n = 19 2’ 3
(ii) i;éi =%, , 1sisn, n=1,2, ,
~.~k _ ~k .
T;;:ci-xi,1$L§n,l<k5n-l,and

(iti) T f, - fll <1/m, 2

tA
«
A
P
B
L}
o
o

where {ng;i=l, 2, ...} 1is dense in Cp k=1, 2,

oo
We let C = 5[ U Cn] and we consider the extensions of
n=1

T,» T}',l : C*>X*, n=1, 2, ... , defined by Tr’l(f') = Tn(f) , where f
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is f restricted to Cn > n=1,2, ... . Following the technique of

Lemma 2 we let T be a limit point in the ?—operator topology of the net
{T,; ;n=1,2,3, ...} and put P=7T . It follows then that [P =1 ,

P 1is linear and P*E? = ﬁ? for all <, k , so that P*r = z for all

x€C. As P =z forall € C and |[P|| =1 we obtain Pf = f for
all f € DX*(C) as X is smooth. As C( 1is subreflexive it is now

easily seen that Dx*(Ci = PX* and that P 1is a projJection. The last
remark follows from Lemma L.

We can assume now that the lemma holds for all cardinals less than
M ; we let § be the well-ordered set of ordinals less than M . There
are closed subspaces {Za ;0 €RY of Z, {W& ; @ € R} of W with
zZ <2z
a

g > Wa = WB for a < B , such that the density characters of

Za , W& are at most the cardinality of a , for infinite a and such.

that 2 = U Zu , W= U wa . By the induction hypothesis we can
aEQ o

construct inductively for every o € 2 a subspace C& of X whose

density character is at most the cardinality of o for infinite a and

such that Ca >2Z v U CS , together with a linear operator
B<a

T : C*~» Xx*
o a

such that Pa fu satisfies the conditions HPaH =1, P;g =z for all

x € C Paf

* =
o f forell f €W and PX D

v Ca . We let

¢ = U C and consider the extensions of Ta’ T; : C* > X* for each
o€

& . Again for T we take a limit in the Q-operator topology of the net
{T; ; 0 €QY. T and C satisfy the conditions of the lemma.

Before proceeding we require two simple properties of Banach spaces

with property 4 .

LEMMA 6. Let Y be a Banach space with property A . Then the
density character of Y* dig that of Y.
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Proof. It is sufficient to check that the density character of Y#
is not greater than the density character M of Y . If  is the
well-ordered set of ordinals less than M we may assume that
{ya : 0 €Ql is dense in Y . The set @ consisting of all finite
rational linear combinations of the elements fy is a set of cardinality

a
M . PFurthermore ¢ is dense in DY*(Y) ; for if y € Y there is a
ym =1, 2, ...} such that ya + Yy 1in norm, and hence,

o k]

sequence {y
n n

by property 4 , fé *-fé in the weak topology, showing that. fé
n

beiongs to the closure of & by a result of Mazur (6, p. 422]. The lemma

now follows as Y is subreflexive.

LEMMA 7. Suppose X <s a Banach space with property A , and that
YGCY CX for a<B<y. Then

Dyl U yal = U 0[],
a<y a<y

provided a:; DX*iYai is a subspace.

B

Proof. It suffices to show

Dx*[ U ya] c U DY) .
o<y a<y

To establish this consider an element fy vhere y € U Ya . Then there
a<y

exists a sequence {yn ;m=1,2, ...} c U Y, such that
a<y

Y, T Y in norm.

Property A ensures that fy hd fy in the weak topology. The result
~ n

follows as in Lemma 6 [6, p. 422].

We are now in a position to prove a theorem whereby it will be

possible to reduce the proof of Theorem 1 to the separable case.

THEOREM 2. Let X be a smooth space with property A . Let W be
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the first ordinal of cardinality the density chavacter M of X . For

every o satisfying w =< o < W , there is a subspace X, of X of

density character at most the cardinality of o together with a linear

operator T  : X3 > X* such that P = %a i8 a bounded linear projection

of X* into X* satisfying

Lo =1,

i

2. PaX* D (X ) , and is thus isometric to X; s

X*\q

3. PaPB = PBPOt = PB where B < a ,

4, U P

X* 1s dense in PaX* s for every o > w.
B<y

B+1

Moreover, U P X* is dense in X* .
a<p

Proof. By Lemma 6 we may assume {fa 3 & < U} is a dense subset of

X* . We construct {Ta ; W < a<u} by transfinite induction; if
M= No , Tw = Pw = I has the required properties. Assume now that
M > NO . By Lemma 5 there is a separable space Xw together with a map

T such that P =T satisfies l7ll=1, Px*=0pD X and
w w w w w X w

g3 WS B < v} have been defined

'so that their extensions satisfy conditions 1 to k.

= <
P fe fo for o <w . Assume that {r

If Yy=0a+1 we apply Lemma 5 to define XY and PY so that PY
restricted to P X* v {fu} is the identity and so that X ¢ XY . Lemma

S is applicable by Lemma 6. It follows that PyP = PYPaP =PpP =P

B B o B B

for B <y . Similarly P;Pg = PE follows as 2a is w*-dense in X;* ,

[6, p. L25].

If on the other hand Y 1is a limiting ordinal, let XY = U Xa and
a<y

let T& : X; > X* Dbe the extensions of T to X; for w=<a<y. For

TY we then take a limit point in the f—operator topology of the net
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{T; ; W€ o <y}l. Properties 1, 2 and 3 follow without difficulty whilst
4 holds by virtue of Lemma 7.

* < *

The last part now follows as fu € PmX for o < w and fa € Pa+1X

for a=>uw.

LEMMA 8. Let X be a space with property 4 , and let

{Pa ; W= <yl be the set of projections of X* as in Theorem 2. Then
for every f € X* and every € > 0 the set {o : ”Pa+lf - PafH > e} <s
finite.

Proof. Assume, on the contrary, that there is an infinite sequence

of ordinals W =<a; < dy < ,.. <Y such that ”Pa f - Pa.f" >e ,
Z

1+1
1=1, 2, ... . We denote Eh_ by P2i—l . Pa. by P2i . Let
1 1+1
0
X, = U Xi and consider the extensions of Ti’ T% T XE > Xt
i=1

£=1,2, ... . If T  is a limit point in the 2—operator topology of

the sequence {Té ;1=1,2, ...} , then P_= %m is a projection of X*

8

onto

LU o

L P.X* and PP =P., ©=1,2, ... .

If h € P X* , it follows that lim“Pih - hjl = 0 . For suppose that
1

g € PjX* and that |lg - k|| < §/2 . Then
P, ~ &l = P - Pogll + IP;g - gll + llg = Rl <& for <>

Hence lim”Pif -P 1l = limHPiow - P fll =0 . But then

{Pif ;2 =1, 2, ...} is a Cauchy sequence contradicting our assumption.

Proof of Theorem 1. The proof is by transfinite induction on the
density character M of X or X* . If M= No the result is well

known; we may take {xn ;s mn=1,2, ...} to be a dense subsequence of

the unit ball and put (7f)(n) = fon)/n .
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We assume now that the theorem has been proved for all cardinals

smaller than M . Let {Pa ; W=0 < WU} be the set of projections
constructed in Theorem 2. As PaX* is isometric to X; , the conjugate

of a smooth space with property A , by the induction hypothesis there is

a set Fa and a one-to-one linear operator Ta from PaX* into
co(ra) . We may assume that the Fa are pairwise disjoint and that

HTQH =1 for o satisfying w=o < .

We put T =N u U{T w<a<yl and define (Tf)(n) = (Twafj(n)

a1
for n € N , and (Tf)y = 1/2 Ta+l[Pa+lf - Paf)y for y €T ., . By
Lemma 8, 7T maps X* into cO(F) , T is linear, and |7} =1 .

Furthermore if Tf = 0 then ow =0 and 51+rf = Paf for w=a<y.

As U P_x* 1is dense in PQX* for every limiting o > w , it follows by

B<a 8
transfinite induction that Paf =0 forall o<y . But U PaX* is
a<p
dense in X* so that f = 0 . Hence T is one-to-one and the theorem

is proved.
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