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Abstract

The phenomenon of collective spontaneous annihilation of a magnetized electron-positron plasma
is predicted. Like the superradiance in systems with discrete energy spectra, collective annihilation
leads to the generation of powerful coherent radiation with the rate of this process considerably
exceeding the spontaneous annihilation and collisional relaxation rates.

1. Annihilation processes in electron-positron (e~e') plasmas and their various applications are of
great interest. The traditional treatment of both spontaneous and induced annihilation is based on the
quantum-electrodynamic calculation of S-matrix terms and solution of the rate equations for pair and
photon densities. However, we have found that annihilation in a sufficiently dense e~e* plasma demon-
strates collective, coherent behavior with the rate of the process considerably exceeding the incoherent
relaxation rates. As a result, a pulse of coherent v-radiation is generated with spectral power density
much greater than that for annihilation of the same number of independent pairs. Such a manifestly
nonstationary process cannot be described in terms of the rate equations and independent spectral com-
ponents of the radiation due to correlations in the broad frequency band width At~! >» T~!, where At
is the duration of the annihilation pulse, and T is a characteristic relaxation time.

This paper is devoted to one of the possible variants of collective annihilation (CA): collective one-
quantum annihilation decay of a magnetized e~et plasma at magnetic field strength B, where B,
4.4 x 10'® G. We point out the straightforward analogy between such a decay and collective spontaneous
emission (superradiance) in systems of excited (population-inverted) atoms or molecules. We present an
example of an analysis of superradiance in a medium with a continuous energy spectrum. Superradiance
has only been investigated in systems with discrete energy spectra [see, e.g. Gross and Haroche 1982,
Andreev et al. (1988), Zheleznyakov et al. (1989), and Kocharovskii and Kocharovskii (1990)].

We assume the number of photons to be sufficiently large to use the classical Maxwell equations for the
electromagnetic field. The magnetized e~e* plasma is described by the polarizability tensor x;; evaluated
first in Svetozarova and Tsytovitch (1962). The covariant expression for x;i; re-derived in Melrose and
Parle (1983) will be used here.

It is known that the population inversion with respect to one-quantum annihilation in an e~e* plasma
occurs when the e~e%t pairs become degenerate. We shall confine ourselves for simplicity to completely
degenerate e"e* pairs occupying the lowest Landau level n = 0 with equal electron and positron densities:

1 B pr _(B ! ~ (B i 30 -3
Ne 21F2A2§:_1T;<N1—(E) m— Fc 1.2 x 10 cm™", (1)

where A\ = li/mc is the electron Compton wavelength. The inequality implies that the Fermi energy

= En:O(pz = PF) < En=l(pz = 0)7 (2)

where pr is the Fermi momentum, and the energy of a Dirac electron in magnetic field B = Bz is given
by En = [p2c? + m2c*(1 + 2nB/B.)]'/?; see figure 1. This allows us to treat the exited Landau levels as
unoccupied.

2. First of all we find the normal modes in the homogeneous magnetized e“e* plasma. Normal
modes in such a medium were analyzed, e.g. by Shabad (1975, 1988). Since we are interested in the
behavior of modes near the first one-quantum annihilation resonance w = wy [see eqs.(4) and (5) below]
we shall neglect the contribution of excited Landau levels to x;;. Then the integration over longitudinal
momentum p, in x;; may be performed exactly, and the value of the hermitian part of x;; at different
pair densities and its influence on the behavior of growth rate w.(k) = S{we(k)} may be estimated.
For sufficiently large pair densities [see eq.(7)] the behavior of the growth rate w/ (k) coincides with that
obtained by Shabad.
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Figure 1a Energy-level diagram for one-quantum anni- Figure 1b Geometry of CA radiation of extraordinary v-
hilation of Dirac electrons and positrons. quanta with wave vector kK and polarization € in the e~e™t

plasma sample.

Choosing the coordinate frame as is shown in figure 1, we obtain for the permittivity tensor &;; =
8i; + 4mxi;j with the only nonzero component of polarizability tensor

V2mScb 4mihw’
Xzz(wv k) =

m2hiu? (w? — c2k2)2p T mc(w? — c2k?) [n(pF - [p1])

4hk. [ : (=1)%pg L4 } (3)

+n(pr — |p2|) = 1] - ;3—&7(/4 -p-)+ Z (1+(p /mc)2)1/2

where a = e?/Hc,
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In

Note the singularity in eq.(3) at the thresheld frequency of one-quantum arnihilation at the lowest
Landau level
wi = k% + (2mc/n)2 (4)

The frequency range near w = wp determines the dynamics of the annihilation process. Near the
resonance, using |w — wo| € wo and replacing k; — (wo/c)cos@ everywhere in eq.(3) except res-
onant terms, this expression may be considerably simplified. After solving the dispersion relation
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w? = 2k? - drx;.(w,k)(w? — c?k?), we obtain that in the degenerate plasma the extraordinary
mode with quasi-transverse polarization in the (k, B) plane becomes unstable. The curves w/(k) =
Re|we (k)]andw (k) = S{we(k)} are shown in figure 2. The maximum growth rate is given by

W' Jwo = (V3/2)[(a/8V2)(B/B.) exp(-2B./B)|*/3sin? 0, (5)

where wy = 2mc?/hsin@ is assumed to be much greater than w”’. For B = B.,# = w/2 one has
W' >3 x 10" 57! g wy =2 x 102 5L,
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Figure 2 Dispersion curves for the unstable extraordi- Figure 3 Self-similar profiles of field amplitude squared
nary mode we(k) = w! (k) + iw!'(k) near the one-quantum lea]? (solid line) and pair occupation number ng (dashed
annihilation resonance wp = cko = 2mc?/fisin 9 (solid line) line) according to eq.(14). The curves are plotted numeri-

and in the region |w — wg| » W' where |x;,(w = ck)] € 1 cally for £4(0) = 103; no(0) = 1.
and an iteration solution of dispersion equation becomes
possible (dashed line).

The scale of spatial coherency of the process is the cooperative length L.—the maximum distance
between pairs interacting by the field of their radiation up to t = 1/uw", i.e. L = ¢/w"; L. ~ 1A for
B = B, and 0 = 7 /2.

One should note that the curves (k) and w” (k) are insensitive to variations in pair density. Moreover,
the value of w”’ depends only on the values of B and #. Such saturation occurs only in a sufficiently dense
plasma when all states in the p,-interval

Apr = h(wow")/?sin/c (6)

around the value p, = hk,/2 are occupied by particles. In other words, the saturation occurs when
pr | (Apr + hk.)/2, i.e.

B[Apr + hk. B 2hw”  \/?
NelNe(')=N0—[—B?c—1;-E——] ENQE (m +2C0t0 ) (7)

No = (4x223) " = 4 x 10?° cm™3. For transverse propagation one has N*(B = B.) 4 x 10? cm~?,
and Ne(°)(B = B./4) 2 10*" cm 3.

3. Now let us consider the generation of annihilation radiation e,(t,s) = (1/2)e.(t, 8) exp(—iwopt +
iko8) + c.c. with a given initial (t = 0) level of spontaneous fluctuations ¢¢(8) and its propagation along
one direction s (figure 1b). At the linear stage when the pair density N, = const and the slowly changing
field amplitude €,(t, 8) is sufficiently small, one may obtain

[c8/8s + p — 2miwgx .z (p) sin? O)e.(p, 8) = €0(s), (8)

where |w—wo| € wo, p = i(wo —w) and €.(p, 8) = f;~ €:(t, 8) exp(—pt)dt. An asymptotic (¢ 3 1) solution
of eq.(8) is given by
4ns

£.(t,8) = 50(0)-:;Et-(ﬁl/%)l/2 exp (fe""”) ; (9)
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£ = [(6v3)/29/L] " (Wt > 1. (10)

To find the space-time profile of the radiation pulse one should take into account the nonlinear
depletion of pair density. To describe this nonlinear stage qualitatively we suppose that the radiation
along the direction 4 is formed completely by annihilation of the group of pairs occupying an appropriate
p. -interval [eq.(6)] Apr(8) around hk,/2. Then the different groups of pairs will annihilate independently,
each forming a mode with appropriate wy and k,. In this approximation, the evolution [averaged over
Apr occupation number ng of electron (positron) states with energy Eg = fiwg /2] is determined by the
energy conservation law

_ . . B Apr
AN.Ong [0t = S{Pe}}/2h; AN = No— B, me’ (11)
where € and P are the field and polarization amplitudes. This equation together with the material
equation
{2no(t,8) — 1]e.(t,8) ,,.
P(t,s) = -—-—\/wo sin 8 exp( z7r/4)/ [7r(t A7 dt’; (12)
by = (a/8V2)(B/B.) exp(—2B./B),
and wave equation
O¢. /0t + cOe,/0s = 2miwgP sin® § (13)

describes the nonlinear CA regime. It may be shown that the system of equations (11)-(13) has the
self-similar solution

£(t,s) = emea(E)[(6V3)/2s/LJ*/2, 2n4(t,s) — 1 = An(€), (14)

where €2, = hwg sin? AN, and ¢ is given by eq.(10).

The solution [eq.(14)] gives universal profiles of €4 (£) and n¢(£) as shown in figure 3. When ny =
const, it agrees with eq.(9). According to eq.(9) the value of £(¢) achieves the maximum level ¢, at the
delay time tq = £3/(6v/3w"(s/Lc)?), where €4 2 In|em/eo| > 1. When B = B, and s is of order L., the
value of ¢, is of order 3 x 107*B..

The duration of the front of the pulse 7 2 3t4/¢4 is determined by eq.(9), while the duration of the
whole CA pulse 7 is defined by the annihilation rate of most of the pairs in the plasma sample. In other
words, 7 is determined by the movement of the depletion front £ = &4 (see figure 3) from the plasma
boundary deep into the sample. One may easily show that 7 is of order t4. The values of the characteristic
time scales are shown in figure 5.

We note that if the length of the sample s is much greater than ctq 2 L.£4/2, the regular solutions
egs.(9) to (14) are no longer correct. In this case at the different segments ~ ctq independent CA pulses
will be generated. Finally, their propagation and reabsorption in the plasma results in forming the
irregular sequence.

We have investigated a one-dimensional model. It may be shown that the angular divergence of the
radiation does not change the dynamics of the CA. It is caused by the fact that the waves propagating
along different directions s are mutually incoherent and amplified independently of each other. Therefore,
the generation of y-radiation is determined by the self-similar solution eqs.(9) and (14) along each direction
s.

4. Using the results obtained in sections 2 and 3 one can easily paint a qualitative picture of the CA of
a real three-dimensional plasma bunch. For fairly short bunches [L, < cta(1 + m?c?/p%)~'/?] one must
take into account the expansion of independently annihilating groups of pairs (see the end of section 2)
along the magnetic field lines. Flying away along the field lines the groups will annihilate along different
directions § determined by cosf = z/ctq (figure 4) at different frequencies wo(f). Due to the relative
movement of pairs, the size of a certain group along the z-direction will be AL, 2 2ctq(w” /wo)!/?sind.
If the z-size of the initial plasma bunch is greater than AL,, we need not take into account the depletion
of pair density caused by their relative movement, and all previous results may be applied to each group.

The power AW of coherent y-radiation for each group with sizes L, ~ Ly, ~ Lc and L; ~ AL, may be
estimated assuming that during the time interval t4 about half of the total number of pairs in the group
will annihilate. For B = B, and § = /2, we obtain AL, ~ 14, t4 ~107"s and AW ~ 108 W. The
total radiated power for the whole plasma bunch is given by Wioe ~ AW(pp/Apr)(L./AL;) ~ 101°W
for pp ~mcand L, ~ SAL,.
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Figure 4 Geometry of the annihilation radiation of e~e* groups flying away along the magnetic field lines with different
momenta p; = hk;/2 = mccot at t = t4.
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Figure 5 Growth rate w” [eq.(5), curve 1], inverted delay time t;l (curve 2) for 8 = /2, s ~ Lc, and & = 10, and

-3

spontaneous one-quantum annihilation rate t;/l (curve 3) for N. = 4 x 10%® cm~3 vs. magnetic field strength B/B..

5. Finally, we have compared the CA rate with the spontaneous annihilation and collisional relaxation
rates. Using the one-quantum annihilation cross-section (Wunner et al. 1986), the rate of spontaneous
one-quantum annihilation may be estimated as an inverted lifetime tl'.,1 of a positron with momentum
P: = 0 in a totally degenerate gas of electrons, occupying the lowest Landau level. As is shown in figure
5, for electron densities N, 1 103 cm™3 the value of tx_-yl is much less than the CA rate. Estimation of the
spontaneous the two-quantum annihilation rate, particle collisions and Compton scattering gives that for
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B | 0.1B. and Ne(’) T N. 1103 cm™3, these relaxation processes also cannot lead to a cancelling of the
CA.

It may be of interest to discuss the fate of the annihilation y-quanta propagating in vacuo out of
an initial plasma bunch. If the external magnetic field is homogeneous and stationary, the radiated +-
quanta will remain near the annihilation resonance and convert into e~e* pairs at distances ~ L. from
the initial bunch. In this case CA leads to rapid and effective transverse (with respect to B) diffusion of
the e“e’ plasma. If the magnetic field is localized near the plasma bunch and rapidly changes at distances
~ L. and time scales ~ t4 (e.g. when it is generated by plasma inner currents) y-quanta may propagate
without significant absorption. In these cases CA leads to the generation of coherent y-radiation. Such
a situation is discussed in Winterberg (1979) where a hypothetical experiment with collapsing electron
and positron beams is described. According to Winterberg the collapse leads to e et plasma densities of
order 10*2 cm ™3 and generation of magnetic fields ~10!8-10!7 G. However, at a magnetic field strength
~10'3 G the process of CA must be taken into account. As a result only pair densities considerably lower
than that mentioned in Winterberg are available.

The problem considered above proves the existence of superradiance in systems with a continuous
energy spectrum. Similar to superradiance in two-level oscillators, it leads to the generation of powerful
coherent radiation.

The application of the ideas developed here to similar processes in other physical situations, e.g. two-
quantum annihilation of e~e* plasma, electron-ion recombination in a gas discharge, or electron-hole
annihilation in semiconductors, is still a problem to be solved. As for the laboratory observation of these
phenomena, semiconductors seem to offer the best possibility. In this case there would be no need for
superstrong magnetic fields and tremendous plasma densities.
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