

DESIGN METHODS 1105

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2020
https://doi.org/10.1017/dsd.2020.303

CUSTOMER SPECIFIC COMPATIBILITY MATRICES FOR FUNCTIONAL
INTEGRAL PRODUCT ARCHITECTURES

J. Siebrecht 1, , G. Jacobs 1, C. Konrad 1, C. Wyrwich 1 and W. Schäfer 2

1 RWTH Aachen University, Germany, 2 University of Siegen, Germany

 justus.siebrecht@imse.rwth-aachen.de

Abstract

Supplier of system components face the challenge of customer requirements influencing the property

level functional integral product architectures. For this, solution approaches focusing on the re-use of

pre-engineered part variants are not applicable. However, to generate a valid product structure,

customer-specific properties have to fit modelled product knowledge. Therefore, the approach

models a reference class structure and analysis compatibilities on the property level for customer

specific inputs concerning explicit product knowledge and constraints.

Keywords: complexity, systems engineering (SE), mass customisation, compatibility, property variance

1. Introduction

Today, companies in mechanical engineering often face a displacement market with rising pressure

from the growing international competition (VDMA, 2018; Friedli and Schuh, 2012, p. 11). Especially

suppliers of system components for special machinery and plant engineering experience the need to

differentiate themselves from the competition. However, they face the additional challenge of

developing functional, narrowly defined products, where additional features only partially lead to

differentiation in the customer’s view. Pre-engineered component variants, whether in the form of

platforms, modular systems or series, always represent a trade-off in regarding to the optimal

performance for customer specific requirements (Ehrlenspiel and Meerkamm, 2017, p. 884; Friedli

and Schuh, 2012, p. 14). Industrial cooperation with component suppliers confirm Andersons

statement, that individual combinations of pre-engineered parts are often no longer sufficient to satisfy

the customers need for individual developed performance (Anderson and Pine, 1998).

The customers, OEMs and system manufacturers, aim for optimal performance of their own systems,

which depends on every used component. Cutbacks in the performance of single components have a

direct impact within the overall system and their unique selling points. Component suppliers who only

sell based on a fixed components catalogue lose flexibility towards the customer, which often is an

exclusion criterion for an order in a displacement market (Franke, 1998).

The fundamental goal for these suppliers is to maximize customer coverage with customer specific

products while minimizing internal costs (Ehrlenspiel and Meerkamm, 2017; Feldhusen and Grote,

2013; Gausemeier et al., 2015). The classic approach to solving this challenge is the re-use and

combination of fully engineered, pre-designed parts and assembly variants according to the customer’s

individual requirements (Blees, 2011; Krause and Gebhardt, 2018; Nurcahya, 2007; Wyrwich and

Jacobs, 2019; ElMaraghy et al., 2013). However, if customers require optimal functionality,

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

1106 DESIGN METHODS

combinations of pre-defined parts are not sufficient and the supplier has to optimize components on the

property level. Since companies are not able to predict customer requirements accurately, no

development can occur beforehand. This inability to use pre-engineered parts represent a risk entering

into negotiations through incalculable expenses and development iterations. Functional integral products

and their interactions on the property level increase this complexity. The results of the subsequent steps

in the development process based on customer-specific property values are unpredictable (Katzwinkel et

al., 2018; Konrad et al., 2017; Konrad et al., 2019). One of the main results is the constantly growing

flood of product data (internal variance) based on customer-specific requirements that must be managed

and included in the manufactures portfolio (Feldhusen et al., 2007; ElMaraghy et al., 2013).

This situation requires new approaches in the development process of technical products. The supplier

needs the ability to compare customer requirements and customer-specific properties to explicitly

modelled product knowledge in order to manage and structure different simultaneous incoming and

running offers and development processes. Model Based Systems Engineering (MBSE) presents a

useful approach in managing the complexity and needed consistency of the presented challenges.

However, a successful implementation is redundant without a clear methodological approach

(Gausemeier et al., 2015; Konrad et al., 2019).

This contribution presents an approach to manage the complexity of functional integral product structures

through the mapping of modelled product knowledge based on customer properties. The attention lies on the

interdependencies on the property level. For the methodological foundation, the approach incorporates parts

of existing methods for modular products with the extension into the property level of the product structure.

2. State of the art and challenges

The challenge for suppliers lies in the fact that classical methods to represent possible configurations

are based on the assumption, that the supplier is able to predefine the product portfolio as a modular

system (Konrad et al., 2017). However, since the customers’ requirements cannot be predicted (Otto

and Wood, 2001), and pre-engineered variants do not reflect customer requirements accurately

enough, existing methods fail to support this configuration (Baumberger, 2007; Konrad et al., 2017).

Furthermore, to ensure economic efficiency, processes must react to changes in near real time. This

requires a cross-departmental and cross-hierarchical methodology (Grauer et al., 2010a). The large

number of interactions at the property level and the lack of methodological support hampers the

stringent and profitable development of new configurations.

2.1. Functional integral products

Technical products can be analysed in the context of system theory at different relational dimensions

(Göpfert, 1998). The most frequent consideration of relational dimensions is the product architecture.

On the one hand, it describes the physical subdivision into assemblies and components and, on the

other hand, the overall function as well as the underlying sub functions. On the lowest layer of both

views, the product architecture connects the functional and structural view. In system theory, the

number and arrangement of relationships between elements in a specific relational dimension, can

assume either integral or modular traits. For the two dimensions on the product architecture, this leads

to the matrix shown in Figure 1. The prerequisite of many variant management approaches is to

achieve a modular product architectures (Firchau and Franke, 2002; Göpfert, 1998; ElMaraghy et al.,

2013). This leads to an approximately structural and functional independent development, testing and

production of the modules. In this case, a physical modular product architecture is present. This in turn

represents integral traits on the functional view of the product, where separate functions depend on

several parts and a single part incorporates multiple functions.

Component suppliers face customers, where the requirements less often influence the modular product

structure, but rather the optimal realisation of their needs in the functional dimension. The customer

specific change of a part property has a multitude of effects on other components via the functional

interdependencies. Modification of individual part properties leads to far-reaching, complex consequences

for other parts and their properties. Konrad describes this problem and inserts the property level into the

product architecture (Konrad et al., 2017), resulting in the simplified product architecture shown in Figure

2. The modular character in the physical structure remains, where parts consist of numerous properties

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

DESIGN METHODS 1107

while the product architecture assigns each property only to a single part (no. 1). The integral trait lies in

the functional, left part of the product architecture. Multiple use of properties in functions (no. 2), as well

as the dependence of single functions on several properties (no. 3) are the characteristics.

Figure 1. Functional and physical dimension of product architectures (Göpfert, 1998)

Figure 2. Extended product architecture to the property level (Konrad et al., 2017)

2.2. Reference product structures and configuration matrices

The basic idea of reference product structures (RPS) is the representation of product variants and

combinations based on a similar product architectures (Feldhusen and Grote, 2013, p. 795; Feldhusen

et al., 2007; Nurcahya, 2007; Jiao and Tseng, 1999). Figure 3, no. 1 - 3 shows the RPS based on the

example of a bicycle. The RPS represents the fixed product structure and arrangement of the bicycle

through providing default, selection and optional modules. Default modules are always included,

whereas the customer chooses optional modules as well as variants from a pre-engineered selection.

The RPS also includes customer specific parts, which have to comply with the defined interface. The

RPS is especially useful for modular product architectures, where modules are functionally and

physically independent. All parts in the RPS have a fixed material number in the ERP system with

given costs and production plans and all part properties are set.

Figure 3. Classic approach for a reference product structure and configuration matrices

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

1108 DESIGN METHODS

Configuration and compatibility matrices illustrate underlining dependencies in the product and add

additional strategic restrictions. The compatibility matrix (CPM) contains the compatibility for a group

of similar elements, for example parts in a product, and defines the pairwise occurrence or exclusion

of these elements (Figure 3, no. 4). The configuration matrix (CM) links two different groups of

elements and thus shows how two views are interconnected. A good example is the connection of a

customer requirement for a sportive bicycle with a subset of transmissions and wheel sizes. This

results in symmetric CPMs and mostly asymmetric CMs. Most approaches use a combination of CMs

and CPMs. Puls for example uses the configuration and compatibility matrices to link the customer

view with the technical product view as shown in Figure 4 (Puls, 2003). It can contain part

compatibilities that are independent of property values and functional interactions, such as consciously

made sales or strategic decisions.

As long as products are combinations of these pre-engineered parts, the RPS represents a useful tool in

combination with the information contained in the matrices (Feldhusen and Grote, 2013, p. 802). The

reference product structure shows the arrangement and number of elements in the product structure.

Configuration and compatibility matrices support and restrict the selection of variants and options

concerning the customer as well as technical view. If for example dependencies exist between the two

selections in Figure 3, a selection in one part of the product structure can restrict the possible variants

in the other or even results in a fixed selection. This allows an easy mapping of compatibilities for

modular product architecture with a fixed arrangement of the parts in a fixed timeframe.

3. Challenge regarding creation of variants and solution approach

Customization on the property level result in challenges regarding the number of variants created

and the corresponding development processes (Firchau and Franke, 2002; ElMaraghy et al., 2013).

A functional integral product architecture amplifies the number of changes made based on customer

requirements. Figure 4 shows an example of a functional integral product and the results produced

by customer requirements on the property level. Product developers compare customer requirements

with existing parts, customize and create new parts, which expand the portfolio. The differentiation

between variants and default parts remains since variants have underlying differentiation

characteristics (see Figure 4, form 1 or 2). Every change on the property level has the possibility to

further change additional parts through the functional dependencies. The result is an unmanageable

combinatory solution space and product portfolio. Sometimes to a degree, where the new customer

specific development seems easier, faster and more effective, deliberately ignoring existing variants

and products (Feldhusen et al., 2007).

Figure 4. Variance explosion in functional integral products

Although including all engineered customer variants is possible, the rapid growth of customer variants

leads to an enormous and growing number of data as well as exponentially more dependencies. For

customer specific integral products, universally valid RPS, CM and CPM are almost impossible. The

company has to manage all these elements and keep the system up to date to re-use variants in a sales

offer or the development process. In the midst of an almost zero reuse rate for variants, the expenses to

maintain and check every newly added variant presents no feasible option.

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

DESIGN METHODS 1109

Nevertheless, it is necessary for suppliers to keep development efforts and iterations in the

development process, especially when creating an offer, at a minimum. This concerns application of

product knowledge and the mapping of customer requirements to this knowledge, for example

functionality, costs or delivery times. Therefore, a solution is necessary which structures the product

knowledge to realize a better trade-off between scale and scope principles as well as clearer

incorporation of customer requirements. (ElMaraghy et al., 2013; Jiao et al., 2007)

The solution approach aims at reducing the complexity for functional integral product architectures

based on customer specific properties when applied by product developers. The focus lies in mapping

customer requirements with modelled product knowledge, either in case of a sales offer process or as a

starting point for the customer specific development process. The hypotheses of the approach is, that

splitting RPS and CPM into a structural part and a functional part will improve the transparency of the

product knowledge as well as support the usage when analysing customer requirements. Combined

with a strict separation of product knowledge and engineered variants, a clearer processing of

customer requirements should be possible.

3.1. Reference class structure

The product structure illustrated so far is not yet suitable for mapping the functional, technical

compatibilities, i.e. the integral functional character of the product. The representation of all

component variants, as well as the manual linking of deviances, would drive the representation and the

maintenance effort into an inappropriate range. In addition, it would not have the desired effect for the

reasons given in the introduction. Franke suggests converting fixed variants into parameterized

classes, since the use of pre-engineered modules is only viable in a clear state of market leadership

(Franke, 1998). This step represents a change from customer specific parts to customer specific

instances and standardised classes. These classes allow the desired reuse of product knowledge

(Grauer et al., 2010b) instead of the reuse of the results from previous development processes, e.g.

parts. In addition, the classes contain the constraints and boundary conditions that describe the

variance of possible instantiations, an information that normally is not visible in the RPS.

As defined in section 3, the approach separates structure and functionality. This generalizes the

reference product structure to a reference class structure (RCS) as shown in Figure 5. The RPS (on the

left) contains numerous variants for different parts (options and variants alike). Analysing and

dissecting the variants of parts, based on properties (no. 1) results in classes with similar constraints

and characteristics (no. 2). Overlapping properties of these classes are contained in a general class.

Figure 5. Transformation of variance explosion into structured classes with inheritance

For the later creation of CM and CPM, the approach models the resulting generalizations,

specifications and compositions in SysML. The RCS can also contain defaults, options and selections

with multiplicity and optional nodes (Figure 5 no. 3). The inclusion of generalizations is the first

differentiation from the classes RPS approach.

The second differentiation is the abandonment from fixed, fully engineered variants. The RCS refers

to the individual classes, not instances of these classes. Therefore, the portfolio does not result from

combinations of pre-defined classes without a full set of values, but from a solution space with

interconnected value ranges.

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

1110 DESIGN METHODS

For a start, the RCS contains an even greater, unmanageable variance of combinations on the property

level compared to the RPS. However, it simplifies the representation of classes and their

interdependencies. The classes contain the constraints and validity areas that must apply to each

instantiated part of the class structure. Figure 6 shows a detail of the RCS and the different constraints,

which describe the functionality of the product. Part functions (no. 1) represent the dependency of

various properties (values) inside a single part (class) with specified in- and outputs. Boundary

constraints (no. 2) describe the validity areas for various property inputs. Crosscutting constraints

(no. 3) (Schneeweiss and Hofstedt, 2013) logically connect different areas of the RCS, either defining

clear dependencies between values (in- and output) or parent boundary constraints. This allows the

assimilation and reuse of previously identified knowledge from various developed products into new

configuration processes, which is crucial for an integrated value chain for suppliers (Grauer et al.,

2010b). Through a clear differentiation of departments in a company, management can control access

rights to different dependencies. This supports a controlled implementation of new rules. As in the

classical approach, a cross section department administrates the structure in integration if the product

knowledge.

Figure 6. Given constraints between classes of the RCS

3.2. Classic use of configuration and compatibility matrices

The approach uses a bottom-up and top down partial approach, to reduce the solution space. The first

part of the solution is a top-down approach consisting of the applicable state of the art methods for

higher-level product dependencies.

Figure 7 shows how product dependencies above the parameter level result in configuration and

compatibility matrices. On the left side, it presents possible dependencies for a product structure.

These represent example classes and their composition as well as generalisations (no. 1) but also

dependencies between parts and product structure nodes (no. 2). The dependencies presented on this

level are all independent from customer specific properties. These include management decisions,

superordinate usage relationships for different industries and sales regions. SysML represents these

connections as either generalization, composition or associations. System modellers can extract these

relationships as a dependency matrix (no. 3) and form CMs and CPMs for different relationship

dimensions through either the three named connections or complex metachain searches. This allows

the extraction and export of CM and CPMs (no. 4) based on product knowledge described in SysML

in the original intended way.

Figure 7. Usage of dependency matrices to extract configuration and compatibility matrices

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

DESIGN METHODS 1111

3.3. Customer specific configuration and compatibility matrices

The bottom-up part of the approach is shown in Figure 8. For a given, incomplete set of starting

properties through customer requirements, the approach instantiates all classes, independent from the

position or type (optional, default or selection classes) in the structure. This step simulates and solves

all part functions and validates boundary constraints (see Figure 8) for the given properties. An

instance list summarises the instances, as well as the validation results. The analysis for all class

constraints leads to the overall compliance of a class concerning the given properties. For the selection

of class 2, this steps results in the remaining subclasses 2.1XX, 2.2XX and 2.4XX (Figure 8). It is

possible to see, that class 2.3XX is not able to comply with three of the shown constraints, which

makes the class inapplicable for the given properties and the current customer. Indistinct boundary

conditions, for example through the lack of given properties, still represent possible compliance, so

long as a constraint is not clearly violated. The usage of SysML and a system modeller supports these

steps and allows easy changeability of the constraints and underlying dependencies.

Figure 8. Direct validation check of all classes resulting in Boolean vectors summarising the

results of the given constraints

If the direct class validity query is completed, crosscutting constraint checks take place. These check

constraints, where numerous classes and their properties are involved in the fulfilment. Therefore, the

approach utilises the remaining customer specific instance lists (see Figure 8) as an input for the

validation algorithm. The algorithm has access to the underlying crosscutting constraints used in the

class structure and generates a matrix for each constraint, as presented in Figure 9, where the classes 2

and 3 have to comply with the constraints n and m. Each of the instance combinations is an input for

the corresponding constraints and therefore results in a Boolean statement about the compatibility of

said combination. The algorithm ignores previous dismissed classes, for example class 2.3 in the

creation of the matrices.

Figure 9. Generation of incompatibility matrices for two given crosscutting constraint

Since only incompatibilities show clear FALSE statement, this step leads to incompatibility matrices

(ICPM, see Figure 9). Here, Boolean FALSE represents clearly identifies incompatibilities and

Boolean TRUE states that the combination is or might be possible, even though some values might be

missing. Figure 10 shows, how the algorithm superimposes all ICPMs (see Figure 9) and CPMs (see

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

1112 DESIGN METHODS

Figure 7) into a single, overall product compatibility matrix (PCPM). Only classes that have individual

compatibilities in all constraints are overall compatible with each other concerning customer specific

properties. Figure 10 shows this for two-dimensional matrices but is also mathematically possible for

more dimensions. The resulting PCPM now contains the combined information of the class

combinations based on customer requirements. The different matrices are checked for internal

contradictions and dependencies as proposed by Puls (Puls, 2003), which might result in further

reduction of the possibilities.

Figure 10. Combination of ICPMs into an overall ICPM

3.4. Application of the presented approach

The presented approach is part of an ongoing research project with industrial partners. The test case is

a reduced product portfolio containing two product families. A commercial system modeller contains

the underlying dependencies and structure documented in SysML. It further simulates the test process,

export of the dependency matrices and controls the main function, calling the constraints given by

different departments.

The PCPM and RCS supports the evaluation of constraint compliance across all product elements

based on the modelled constraints and used input properties. Therefore, product developers can

analyse customer specific inputs for a generic product structure concerning the technical

compatibilities in the PCPM. Two possible outcomes remain. On the one hand, no possible solution

might remain, which leads to a new and expensive development outside of the modelled product

knowledge or a refusal of the sales offer. On the other hand, a number of class combinations is still

possible, which represents a starting point for the development process based on modelled knowledge.

Solving a positive, but not conclusive result requires further, successively added properties. A product

developer gradually fills the remaining parameters (see Figure 8) which in turn results in the reduction

of possibilities in the ICPMs (see Figures 8, 9 and 10). To support this completion sequence,

weighting of all classes according to a standardization key figure that is based on usage frequency,

capitalized costs, and a time relevance factor for each property (Konrad et al., 2017) presents a

reasonable approach to find a valid product structure.

The before mentioned strict separation of product knowledge an engineered variants takes place after a

complete configuration. The development process only uses the modelled knowledge, but does not use

already engineered variants. However, all engineered variants are the basis for a periodically

verification and possible changes in the modelled product knowledge. The connection, to transfer a

created configuration into a PDM test system and into CAD parts is currently under development.

4. Summary and conclusion

The modelling of the product knowledge in a functional and a structure part allows easy adaptability and

an immense reduction of maintenance expenses. The description of classes in the RCS, thereby removing

engineered variants from the portfolio, reduces the amount of elements and thereby the complexity and

maintenance expenses. Through clearer and fewer dependencies the compatibility matrices is able to

handle the different classes and allows the splitting into constraint specific matrices. It is thus possible to

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.303

DESIGN METHODS 1113

generate customer specific compatibility matrices based on custom input properties and make a statement

about the feasibility of the selected properties concerning a functional integral product structure. This

removes the instinct to reuse pre-engineered variants and to start a long chain of change iterations. In

addition, the graphically supported environment of SysML supports easy generation of the matrices and

changes in the structure. The presented PCPM for functional integral products is equivalent to the CPM in

regard of its usage. However, the PCPM does not lead directly to a conclusive product configuration as

expected with modular product architectures. Nevertheless, the automated check results is a statement

over the compliance of customer requirements with the modelled product knowledge. This presents a

possible starting point for the product development. Further analysis of the starting point characteristics

can support the differentiation and management of the product in further development steps.

References

Anderson, D.M. and Pine, J. (1998), Agile product development for mass customization. How to develop

and deliver products for mass customization, niche markets, JIT, build-to-order, and flexible

manufacturing, McGraw-Hill, New York.

Baumberger, G.C. (2007), “Methoden zur kundenspezifischen Produktdefinition bei individualisierten Produkten”,

Dissertation, Technische Universität München, München. Lehrstuhl für Produktentwicklung. Online verfügbar

unter. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20070910-627396-1-3

Blees, C. (2011), “Eine Methode zur Entwicklung modularer Produktfamilien”, Dissertation. Technischen

Universität Hamburg‐Harburg, Hamburg‐Harburg. Online verfügbar unter. http://tubdok.tub.tuhh.de/handle/

11420/1039

Ehrlenspiel, K. and Meerkamm, H. (2017), “Integrierte Produktentwicklung”, Denkabläufe, Methodeneinsatz,

Zusammenarbeit. 6., überarbeitete und erweiterte Auflage. Hanser, München.

ElMaraghy, H. et al. (2013), “Product variety management”, In: CIRP Annals, Vol. 62 No. 2, S. 629-652.

https://doi.org/10.1016/j.cirp.2013.05.007

Feldhusen, J. and Grote, K.-H. (Hg.) (2013), Pahl/Beitz Konstruktionslehre. Methoden und Anwendung

erfolgreicher Produktentwicklung. 8., vollständig überarbeitete Auflage. Springer Vieweg, Berlin,

Heidelberg.

Feldhusen, J., Nurcahya E. and Löwer, M. (2007), “Implementation of a product data model to support variant

creation process as a part of product lifecycle management”, In: Product lifecycle management : assessing the

industrial relevance. Proceedings of the 4th International Conference on Product Life Cycle Management

(PLM’07), Bd. 3. Italy. Geneve: Inderscience Enterprises Limited (Product lifecycle management - special

publication : PLM-SP), pp. 235-242. Online verfügbar unter. http://publications.rwth-aachen.de/record/112672

Firchau, N. and Franke, H.-J. (2002), “Methoden zur Variantenbeherrschung in der Produktentwicklung”, In:

Franke, H.-J., Hesselbach J., Huch B. und Firchau, N. (Hg.): Variantenmanagement in der Einzel- und

Kleinserienfertigung. Mit 33 Tabellen. München: Hanser, pp. 52-86.

Franke, H. J. (1998), “Produkt-Variantenvielfalt - Ursachen und Methoden zu ihrer Bewältigung”, In: Verein

Deutscher Ingenieure (VDI) (Hg.): Effektive Entwicklung und Auftragsabwicklung variantenreicher

Produkte. Allgemeiner Maschinenbau, Anlagenbau, Fahrzeugtechnik, Tagung Würzburg, 7. und 8. Oktober

1998. Unter Mitarbeit von, M. G. VDI: Gesellschaft Entwicklung Konstruktion Vertrieb. Düsseldorf: VDI

Verlag (VDI-Berichte, 1434), pp. 1-13.

Friedli, T. and Schuh, G. (2012), Wettbewerbsfähigkeit der Produktion an Hochlohnstandorten. 2. Aufl.
Springer, Berlin Heidelberg.

Gausemeier, J. et al. (2015), “Sytems Engineering in Industrial Practice”, Heinz Nixdorf Institute, University of

Paderborn, Faculty of Product Egineering; Fraunhofer Institute for Production Technology IPT; UNITY

AG. Paderborn.

Göpfert, J. (1998), “Modulare Produktentwicklung”, Zur gemeinsamen Gestaltung von Technik und

Organisation, Gabler, Wiesbaden.

Grauer, M. et al. (2010a), “Real-time enterprise ‐- schnelles Handeln für produzierende Unternehmen”, In:

Wirtschaftsinformatik und Management, Vol. 2 No. 5, pp. 40-45. https://doi.org/10.1007/BF03248290

Grauer, M. et al. (2010b), “Towards an Integrated Virtual Value Creation Chain in Sheet Metal Forming”, In:

Dangelmaier, W., Blecken, A. Delius, R. und Klöpfer, S. (Hg.): Advanced Manufacturing and Sustainable

Logistics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 186-197.

Jiao, J., Simpson, T.W. and Siddique, Z. (2007), “Product family design and platform-based product

development: a state-of-the-art review”, In: J Intell Manuf, Vol. 18 No. 1, pp. 5-29. https://doi.org/10.1007/

s10845-007-0003-2

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20070910-627396-1-3
http://tubdok.tub.tuhh.de/handle/11420/1039
http://tubdok.tub.tuhh.de/handle/11420/1039
https://doi.org/10.1016/j.cirp.2013.05.007
http://publications.rwth-aachen.de/record/112672
https://doi.org/10.1007/BF03248290
https://doi.org/10.1007/s10845-007-0003-2
https://doi.org/10.1007/s10845-007-0003-2
https://doi.org/10.1017/dsd.2020.303

1114 DESIGN METHODS

Jiao, J. and Tseng, M. M. (1999), “A methodology of developing product family architecture for mass

customization”, In: J Intell Manuf, Vol. 10 No. 1, pp. 3-20. https://doi.org/10.1023/A:1008926428533

Katzwinkel, T. et al. (2018), MBSE on parameter level. In: NAFEMS (Hg.): Proceedings: NAFEMS18 DACH

Conference. Berechnung und Simulation: Anwendungen, Entwicklungen, Trends. NAFEMS 18 DACH

Conference. Bamberg, 14-16.5.2018. NAFEMS. Grafing, Germany: NAFEMS Deutschland Österreich

Schweiz GmbH (NAFEMS Proceeding, 18), pp. 129-132. Online verfügbar unter. http://publications.rwth-

aachen.de/record/723965

Konrad, C. et al. (2019), “Enabling complexity management through merging business process modeling with

MBSE”, In: Procedia CIRP, Vol. 84, pp. 451-456. https://doi.org/10.1016/j.procir.2019.04.267

Konrad, C. et al. (2017), “Varianzsteuerung integraler Produkte durch den prozessbegleitenden Einsatz von

Data-Mining Werkzeugen”, In: Köhler, P., Brökel, K. Scharr, G. et al. (Hg.): 15. Gemeinsames Kolloquium

Konstruktionstechnik 2017: Interdisziplinäre Produktentwicklung. Duisburg-Essen, pp. 213-222. Online

verfügbar unter. https://publications.rwth-aachen.de/record/707097

Krause, D. and Gebhardt, N. (2018), “Methodische Entwicklung modularer Produktfamilien”, Hohe

Produktvielfalt Beherrschbar Entwickeln, Springer Vieweg, Hamburg, p. 12.

Nurcahya, E. (2007), “Configuration instead of New Design using Reference Product Structures”, In: Krause, F.-

L. (Hg.): The Future of Product Development. Proceedings of the 17th CIRP Design Conference. Springer,

Berlin, Heidelberg, pp. 125-134.

Otto, K.N. and Wood, K.L. (2001), Product design. Techniques in reverse engineering and new product

development. Prentice Hall, Upper Saddle River.

Puls, C. (2003), “Die Konfigurations- und Vertraeglichkeitsmatrix als Beitrag zum Management von

Konfigurationswissen in KMU”, ETH Zürich, Zürich.

Schneeweiss, D. and Hofstedt, P. (2013), “FdConfig: A Constraint-Based Interactive Product Configurator”, In:

Tompits H., Abreu, S., Oetsch J., Puhrer J., Seipel D. und Umeda, M. (Hg.): Applications of Declarative

Programming and Knowledge Management. 19th International Conference, INAP 2011, and 25th

Workshop on Logic Programming, WLP 2011. Viena, Austria. Berlin Heidelberg: Springer (Lecture Notes

in Artificial Intelligence, v.7773), pp. 239-255. Online verfügbar unter. http://arxiv.org/pdf/1108.5586v1

VDMA (2018), “Das Chinageschäft der Zukunft”, Herausforderungen und Strategien für den deutschen

Maschinenbau. Hg. v. VDMA. Online verfügbar unter. https://ea.vdma.org/viewer/-/v2article/render/27009603,

zuletzt geprüft am 14.06.2019.

Wyrwich, C. and Jacobs, G. (2019), “Branchenübergreifendes Benchmarking von variantenreichen

Produktportfolios auf Basis von Produktstrukturen”, In: Stelzer, R. H. und Krzywinski, J. (Hg.): Entwerfen

Entwickeln Erleben in Produktentwicklung und Design 2019. Entwerfen Entwickeln Erleben (EEE).

Dresden Technische Universität Dresden. Dresden: TUDpress (Technisches Design, 11,12). Online

verfügbar unter. http://publications.rwth-aachen.de/record/767928

https://doi.org/10.1017/dsd.2020.303 Published online by Cambridge University Press

https://doi.org/10.1023/A:1008926428533
http://publications.rwth-aachen.de/record/723965
http://publications.rwth-aachen.de/record/723965
https://doi.org/10.1016/j.procir.2019.04.267
https://publications.rwth-aachen.de/record/707097
http://arxiv.org/pdf/1108.5586v1
https://ea.vdma.org/viewer/-/v2article/render/27009603
http://publications.rwth-aachen.de/record/767928
https://doi.org/10.1017/dsd.2020.303

