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Abstract 

Supplier of system components face the challenge of customer requirements influencing the property 

level functional integral product architectures. For this, solution approaches focusing on the re-use of 

pre-engineered part variants are not applicable. However, to generate a valid product structure, 

customer-specific properties have to fit modelled product knowledge. Therefore, the approach 

models a reference class structure and analysis compatibilities on the property level for customer 

specific inputs concerning explicit product knowledge and constraints. 
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1. Introduction 

Today, companies in mechanical engineering often face a displacement market with rising pressure 

from the growing international competition (VDMA, 2018; Friedli and Schuh, 2012, p. 11). Especially 

suppliers of system components for special machinery and plant engineering experience the need to 

differentiate themselves from the competition. However, they face the additional challenge of 

developing functional, narrowly defined products, where additional features only partially lead to 

differentiation in the customer’s view. Pre-engineered component variants, whether in the form of 

platforms, modular systems or series, always represent a trade-off in regarding to the optimal 

performance for customer specific requirements (Ehrlenspiel and Meerkamm, 2017, p. 884; Friedli 

and Schuh, 2012, p. 14). Industrial cooperation with component suppliers confirm Andersons 

statement, that individual combinations of pre-engineered parts are often no longer sufficient to satisfy 

the customers need for individual developed performance (Anderson and Pine, 1998).  

The customers, OEMs and system manufacturers, aim for optimal performance of their own systems, 

which depends on every used component. Cutbacks in the performance of single components have a 

direct impact within the overall system and their unique selling points. Component suppliers who only 

sell based on a fixed components catalogue lose flexibility towards the customer, which often is an 

exclusion criterion for an order in a displacement market (Franke, 1998).  

The fundamental goal for these suppliers is to maximize customer coverage with customer specific 

products while minimizing internal costs (Ehrlenspiel and Meerkamm, 2017; Feldhusen and Grote, 

2013; Gausemeier et al., 2015). The classic approach to solving this challenge is the re-use and 

combination of fully engineered, pre-designed parts and assembly variants according to the customer’s 

individual requirements (Blees, 2011; Krause and Gebhardt, 2018; Nurcahya, 2007; Wyrwich and 

Jacobs, 2019; ElMaraghy et al., 2013). However, if customers require optimal functionality, 
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combinations of pre-defined parts are not sufficient and the supplier has to optimize components on the 

property level. Since companies are not able to predict customer requirements accurately, no 

development can occur beforehand. This inability to use pre-engineered parts represent a risk entering 

into negotiations through incalculable expenses and development iterations. Functional integral products 

and their interactions on the property level increase this complexity. The results of the subsequent steps 

in the development process based on customer-specific property values are unpredictable (Katzwinkel et 

al., 2018; Konrad et al., 2017; Konrad et al., 2019). One of the main results is the constantly growing 

flood of product data (internal variance) based on customer-specific requirements that must be managed 

and included in the manufactures portfolio (Feldhusen et al., 2007; ElMaraghy et al., 2013).  

This situation requires new approaches in the development process of technical products. The supplier 

needs the ability to compare customer requirements and customer-specific properties to explicitly 

modelled product knowledge in order to manage and structure different simultaneous incoming and 

running offers and development processes. Model Based Systems Engineering (MBSE) presents a 

useful approach in managing the complexity and needed consistency of the presented challenges. 

However, a successful implementation is redundant without a clear methodological approach 

(Gausemeier et al., 2015; Konrad et al., 2019).  

This contribution presents an approach to manage the complexity of functional integral product structures 

through the mapping of modelled product knowledge based on customer properties. The attention lies on the 

interdependencies on the property level. For the methodological foundation, the approach incorporates parts 

of existing methods for modular products with the extension into the property level of the product structure.  

2. State of the art and challenges 

The challenge for suppliers lies in the fact that classical methods to represent possible configurations 

are based on the assumption, that the supplier is able to predefine the product portfolio as a modular 

system (Konrad et al., 2017). However, since the customers’ requirements cannot be predicted (Otto 

and Wood, 2001), and pre-engineered variants do not reflect customer requirements accurately 

enough, existing methods fail to support this configuration (Baumberger, 2007; Konrad et al., 2017). 

Furthermore, to ensure economic efficiency, processes must react to changes in near real time. This 

requires a cross-departmental and cross-hierarchical methodology (Grauer et al., 2010a). The large 

number of interactions at the property level and the lack of methodological support hampers the 

stringent and profitable development of new configurations. 

2.1. Functional integral products 

Technical products can be analysed in the context of system theory at different relational dimensions 

(Göpfert, 1998). The most frequent consideration of relational dimensions is the product architecture. 

On the one hand, it describes the physical subdivision into assemblies and components and, on the 

other hand, the overall function as well as the underlying sub functions. On the lowest layer of both 

views, the product architecture connects the functional and structural view. In system theory, the 

number and arrangement of relationships between elements in a specific relational dimension, can 

assume either integral or modular traits. For the two dimensions on the product architecture, this leads 

to the matrix shown in Figure 1. The prerequisite of many variant management approaches is to 

achieve a modular product architectures (Firchau and Franke, 2002; Göpfert, 1998; ElMaraghy et al., 

2013). This leads to an approximately structural and functional independent development, testing and 

production of the modules. In this case, a physical modular product architecture is present. This in turn 

represents integral traits on the functional view of the product, where separate functions depend on 

several parts and a single part incorporates multiple functions. 

Component suppliers face customers, where the requirements less often influence the modular product 

structure, but rather the optimal realisation of their needs in the functional dimension. The customer 

specific change of a part property has a multitude of effects on other components via the functional 

interdependencies. Modification of individual part properties leads to far-reaching, complex consequences 

for other parts and their properties. Konrad describes this problem and inserts the property level into the 

product architecture (Konrad et al., 2017), resulting in the simplified product architecture shown in Figure 

2. The modular character in the physical structure remains, where parts consist of numerous properties 
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while the product architecture assigns each property only to a single part (no. 1). The integral trait lies in 

the functional, left part of the product architecture. Multiple use of properties in functions (no. 2), as well 

as the dependence of single functions on several properties (no. 3) are the characteristics. 

 
Figure 1. Functional and physical dimension of product architectures (Göpfert, 1998) 

 
Figure 2. Extended product architecture to the property level (Konrad et al., 2017) 

2.2. Reference product structures and configuration matrices 

The basic idea of reference product structures (RPS) is the representation of product variants and 

combinations based on a similar product architectures (Feldhusen and Grote, 2013, p. 795; Feldhusen 

et al., 2007; Nurcahya, 2007; Jiao and Tseng, 1999). Figure 3, no. 1 - 3 shows the RPS based on the 

example of a bicycle. The RPS represents the fixed product structure and arrangement of the bicycle 

through providing default, selection and optional modules. Default modules are always included, 

whereas the customer chooses optional modules as well as variants from a pre-engineered selection. 

The RPS also includes customer specific parts, which have to comply with the defined interface. The 

RPS is especially useful for modular product architectures, where modules are functionally and 

physically independent. All parts in the RPS have a fixed material number in the ERP system with 

given costs and production plans and all part properties are set. 

 
Figure 3. Classic approach for a reference product structure and configuration matrices 
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Configuration and compatibility matrices illustrate underlining dependencies in the product and add 

additional strategic restrictions. The compatibility matrix (CPM) contains the compatibility for a group 

of similar elements, for example parts in a product, and defines the pairwise occurrence or exclusion 

of these elements (Figure 3, no. 4). The configuration matrix (CM) links two different groups of 

elements and thus shows how two views are interconnected. A good example is the connection of a 

customer requirement for a sportive bicycle with a subset of transmissions and wheel sizes. This 

results in symmetric CPMs and mostly asymmetric CMs. Most approaches use a combination of CMs 

and CPMs. Puls for example uses the configuration and compatibility matrices to link the customer 

view with the technical product view as shown in Figure 4 (Puls, 2003). It can contain part 

compatibilities that are independent of property values and functional interactions, such as consciously 

made sales or strategic decisions. 

As long as products are combinations of these pre-engineered parts, the RPS represents a useful tool in 

combination with the information contained in the matrices (Feldhusen and Grote, 2013, p. 802). The 

reference product structure shows the arrangement and number of elements in the product structure. 

Configuration and compatibility matrices support and restrict the selection of variants and options 

concerning the customer as well as technical view. If for example dependencies exist between the two 

selections in Figure 3, a selection in one part of the product structure can restrict the possible variants 

in the other or even results in a fixed selection. This allows an easy mapping of compatibilities for 

modular product architecture with a fixed arrangement of the parts in a fixed timeframe. 

3. Challenge regarding creation of variants and solution approach 

Customization on the property level result in challenges regarding the number of variants created 

and the corresponding development processes (Firchau and Franke, 2002; ElMaraghy et al., 2013). 

A functional integral product architecture amplifies the number of changes made based on customer 

requirements. Figure 4 shows an example of a functional integral product and the results produced 

by customer requirements on the property level. Product developers compare customer requirements 

with existing parts, customize and create new parts, which expand the portfolio. The differentiation 

between variants and default parts remains since variants have underlying differentiation 

characteristics (see Figure 4, form 1 or 2). Every change on the property level has the possibility to 

further change additional parts through the functional dependencies. The result is an unmanageable 

combinatory solution space and product portfolio. Sometimes to a degree, where the new customer 

specific development seems easier, faster and more effective, deliberately ignoring existing variants 

and products (Feldhusen et al., 2007). 

 
Figure 4. Variance explosion in functional integral products 

Although including all engineered customer variants is possible, the rapid growth of customer variants 

leads to an enormous and growing number of data as well as exponentially more dependencies. For 

customer specific integral products, universally valid RPS, CM and CPM are almost impossible. The 

company has to manage all these elements and keep the system up to date to re-use variants in a sales 

offer or the development process. In the midst of an almost zero reuse rate for variants, the expenses to 

maintain and check every newly added variant presents no feasible option. 
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Nevertheless, it is necessary for suppliers to keep development efforts and iterations in the 

development process, especially when creating an offer, at a minimum. This concerns application of 

product knowledge and the mapping of customer requirements to this knowledge, for example 

functionality, costs or delivery times. Therefore, a solution is necessary which structures the product 

knowledge to realize a better trade-off between scale and scope principles as well as clearer 

incorporation of customer requirements. (ElMaraghy et al., 2013; Jiao et al., 2007) 

The solution approach aims at reducing the complexity for functional integral product architectures 

based on customer specific properties when applied by product developers. The focus lies in mapping 

customer requirements with modelled product knowledge, either in case of a sales offer process or as a 

starting point for the customer specific development process. The hypotheses of the approach is, that 

splitting RPS and CPM into a structural part and a functional part will improve the transparency of the 

product knowledge as well as support the usage when analysing customer requirements. Combined 

with a strict separation of product knowledge and engineered variants, a clearer processing of 

customer requirements should be possible.  

3.1. Reference class structure 

The product structure illustrated so far is not yet suitable for mapping the functional, technical 

compatibilities, i.e. the integral functional character of the product. The representation of all 

component variants, as well as the manual linking of deviances, would drive the representation and the 

maintenance effort into an inappropriate range. In addition, it would not have the desired effect for the 

reasons given in the introduction. Franke suggests converting fixed variants into parameterized 

classes, since the use of pre-engineered modules is only viable in a clear state of market leadership 

(Franke, 1998). This step represents a change from customer specific parts to customer specific 

instances and standardised classes. These classes allow the desired reuse of product knowledge 

(Grauer et al., 2010b) instead of the reuse of the results from previous development processes, e.g. 

parts. In addition, the classes contain the constraints and boundary conditions that describe the 

variance of possible instantiations, an information that normally is not visible in the RPS.  

As defined in section 3, the approach separates structure and functionality. This generalizes the 

reference product structure to a reference class structure (RCS) as shown in Figure 5. The RPS (on the 

left) contains numerous variants for different parts (options and variants alike). Analysing and 

dissecting the variants of parts, based on properties (no. 1) results in classes with similar constraints 

and characteristics (no. 2). Overlapping properties of these classes are contained in a general class.  

 
Figure 5. Transformation of variance explosion into structured classes with inheritance 

For the later creation of CM and CPM, the approach models the resulting generalizations, 

specifications and compositions in SysML. The RCS can also contain defaults, options and selections 

with multiplicity and optional nodes (Figure 5 no. 3). The inclusion of generalizations is the first 

differentiation from the classes RPS approach. 

The second differentiation is the abandonment from fixed, fully engineered variants. The RCS refers 

to the individual classes, not instances of these classes. Therefore, the portfolio does not result from 

combinations of pre-defined classes without a full set of values, but from a solution space with 

interconnected value ranges. 
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For a start, the RCS contains an even greater, unmanageable variance of combinations on the property 

level compared to the RPS. However, it simplifies the representation of classes and their 

interdependencies. The classes contain the constraints and validity areas that must apply to each 

instantiated part of the class structure. Figure 6 shows a detail of the RCS and the different constraints, 

which describe the functionality of the product. Part functions (no. 1) represent the dependency of 

various properties (values) inside a single part (class) with specified in- and outputs. Boundary 

constraints (no. 2) describe the validity areas for various property inputs. Crosscutting constraints 

(no. 3) (Schneeweiss and Hofstedt, 2013) logically connect different areas of the RCS, either defining 

clear dependencies between values (in- and output) or parent boundary constraints. This allows the 

assimilation and reuse of previously identified knowledge from various developed products into new 

configuration processes, which is crucial for an integrated value chain for suppliers (Grauer et al., 

2010b). Through a clear differentiation of departments in a company, management can control access 

rights to different dependencies. This supports a controlled implementation of new rules. As in the 

classical approach, a cross section department administrates the structure in integration if the product 

knowledge. 

 
Figure 6. Given constraints between classes of the RCS 

3.2. Classic use of configuration and compatibility matrices 

The approach uses a bottom-up and top down partial approach, to reduce the solution space. The first 

part of the solution is a top-down approach consisting of the applicable state of the art methods for 

higher-level product dependencies. 

Figure 7 shows how product dependencies above the parameter level result in configuration and 

compatibility matrices. On the left side, it presents possible dependencies for a product structure. 

These represent example classes and their composition as well as generalisations (no. 1) but also 

dependencies between parts and product structure nodes (no. 2). The dependencies presented on this 

level are all independent from customer specific properties. These include management decisions, 

superordinate usage relationships for different industries and sales regions. SysML represents these 

connections as either generalization, composition or associations. System modellers can extract these 

relationships as a dependency matrix (no. 3) and form CMs and CPMs for different relationship 

dimensions through either the three named connections or complex metachain searches. This allows 

the extraction and export of CM and CPMs (no. 4) based on product knowledge described in SysML 

in the original intended way.  

 
Figure 7. Usage of dependency matrices to extract configuration and compatibility matrices 
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3.3. Customer specific configuration and compatibility matrices 

The bottom-up part of the approach is shown in Figure 8. For a given, incomplete set of starting 

properties through customer requirements, the approach instantiates all classes, independent from the 

position or type (optional, default or selection classes) in the structure. This step simulates and solves 

all part functions and validates boundary constraints (see Figure 8) for the given properties. An 

instance list summarises the instances, as well as the validation results. The analysis for all class 

constraints leads to the overall compliance of a class concerning the given properties. For the selection 

of class 2, this steps results in the remaining subclasses 2.1XX, 2.2XX and 2.4XX (Figure 8). It is 

possible to see, that class 2.3XX is not able to comply with three of the shown constraints, which 

makes the class inapplicable for the given properties and the current customer. Indistinct boundary 

conditions, for example through the lack of given properties, still represent possible compliance, so 

long as a constraint is not clearly violated. The usage of SysML and a system modeller supports these 

steps and allows easy changeability of the constraints and underlying dependencies.  

 
Figure 8. Direct validation check of all classes resulting in Boolean vectors summarising the 

results of the given constraints 

If the direct class validity query is completed, crosscutting constraint checks take place. These check 

constraints, where numerous classes and their properties are involved in the fulfilment. Therefore, the 

approach utilises the remaining customer specific instance lists (see Figure 8) as an input for the 

validation algorithm. The algorithm has access to the underlying crosscutting constraints used in the 

class structure and generates a matrix for each constraint, as presented in Figure 9, where the classes 2 

and 3 have to comply with the constraints n and m. Each of the instance combinations is an input for 

the corresponding constraints and therefore results in a Boolean statement about the compatibility of 

said combination. The algorithm ignores previous dismissed classes, for example class 2.3 in the 

creation of the matrices.  

 
Figure 9. Generation of incompatibility matrices for two given crosscutting constraint 

Since only incompatibilities show clear FALSE statement, this step leads to incompatibility matrices 

(ICPM, see Figure  9). Here, Boolean FALSE represents clearly identifies incompatibilities and 

Boolean TRUE states that the combination is or might be possible, even though some values might be 

missing. Figure 10 shows, how the algorithm superimposes all ICPMs (see Figure 9) and CPMs (see 
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Figure 7) into a single, overall product compatibility matrix (PCPM). Only classes that have individual 

compatibilities in all constraints are overall compatible with each other concerning customer specific 

properties. Figure 10 shows this for two-dimensional matrices but is also mathematically possible for 

more dimensions. The resulting PCPM now contains the combined information of the class 

combinations based on customer requirements. The different matrices are checked for internal 

contradictions and dependencies as proposed by Puls (Puls, 2003), which might result in further 

reduction of the possibilities. 

 
Figure 10. Combination of ICPMs into an overall ICPM 

3.4. Application of the presented approach 

The presented approach is part of an ongoing research project with industrial partners. The test case is 

a reduced product portfolio containing two product families. A commercial system modeller contains 

the underlying dependencies and structure documented in SysML. It further simulates the test process, 

export of the dependency matrices and controls the main function, calling the constraints given by 

different departments. 

The PCPM and RCS supports the evaluation of constraint compliance across all product elements 

based on the modelled constraints and used input properties. Therefore, product developers can 

analyse customer specific inputs for a generic product structure concerning the technical 

compatibilities in the PCPM. Two possible outcomes remain. On the one hand, no possible solution 

might remain, which leads to a new and expensive development outside of the modelled product 

knowledge or a refusal of the sales offer. On the other hand, a number of class combinations is still 

possible, which represents a starting point for the development process based on modelled knowledge. 

Solving a positive, but not conclusive result requires further, successively added properties. A product 

developer gradually fills the remaining parameters (see Figure 8) which in turn results in the reduction 

of possibilities in the ICPMs (see Figures 8, 9 and 10). To support this completion sequence, 

weighting of all classes according to a standardization key figure that is based on usage frequency, 

capitalized costs, and a time relevance factor for each property (Konrad et al., 2017) presents a 

reasonable approach to find a valid product structure.  

The before mentioned strict separation of product knowledge an engineered variants takes place after a 

complete configuration. The development process only uses the modelled knowledge, but does not use 

already engineered variants. However, all engineered variants are the basis for a periodically 

verification and possible changes in the modelled product knowledge. The connection, to transfer a 

created configuration into a PDM test system and into CAD parts is currently under development. 

4. Summary and conclusion 

The modelling of the product knowledge in a functional and a structure part allows easy adaptability and 

an immense reduction of maintenance expenses. The description of classes in the RCS, thereby removing 

engineered variants from the portfolio, reduces the amount of elements and thereby the complexity and 

maintenance expenses. Through clearer and fewer dependencies the compatibility matrices is able to 

handle the different classes and allows the splitting into constraint specific matrices. It is thus possible to 
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generate customer specific compatibility matrices based on custom input properties and make a statement 

about the feasibility of the selected properties concerning a functional integral product structure. This 

removes the instinct to reuse pre-engineered variants and to start a long chain of change iterations. In 

addition, the graphically supported environment of SysML supports easy generation of the matrices and 

changes in the structure. The presented PCPM for functional integral products is equivalent to the CPM in 

regard of its usage. However, the PCPM does not lead directly to a conclusive product configuration as 

expected with modular product architectures. Nevertheless, the automated check results is a statement 

over the compliance of customer requirements with the modelled product knowledge. This presents a 

possible starting point for the product development. Further analysis of the starting point characteristics 

can support the differentiation and management of the product in further development steps. 
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