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We consider a continuously monitored system that gradually and stochastically
deteriorates+An alarm threshold is set on the system deterioration level for trigger-
ing a delayed preventive maintenance operation+ A mathematical model is devel-
oped to find the value of the alarm threshold that minimizes the asymptotic
unavailability+Approximations are derived to improve the numerical optimization+

1. INTRODUCTION

This article considers the maintenance of a technical device subject to a continuous
gradual random deterioration+Assuming that the level of deterioration can be mea-
sured in practice, the degradation process of a system can be controlled by two
different methods: continuous monitoring and inspections~whether periodic or not!+
In both cases, the maintenance actions are performed when the measured deterio-
ration level exceeds an alarm threshold+ Continuous monitoring is particularly jus-
tified for highly critical systems and the continuous information on the system
condition can be exploited by the maintenance decision-maker in order to maximize
the availability of the system or to minimize its long-run expected cost+ The objec-
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tive of this article is precisely to propose a stochastic maintenance model that can be
used to optimize the maintenance decision on a system subject to continuous mon-
itoring and delayed maintenance actions+ In our model, we assume that the deteri-
oration condition of the device can be modeled by an aging stochastic process+We
also suppose that, in the absence of repair or replacement actions, the aging variable
evolves like a Gamma stochastic process, a special case of the Levy process+When
the device is new, the aging variable is equal to zero+When the aging variable reaches
a failure levelL, a breakdown occurs+ Moreover, the continuous monitoring is as-
sumed to be “perfect”; that is, the condition of the system is known with no error or
uncertainty at any time+

We define a preventive maintenance policy which depends on the state of the
system+ The preventive maintenance policy is fully determined by an alarm thresh-
old A ~A is lower thanL!+ When the aging variable exceeds this thresholdA, a
preventive maintenance operation~i+e+, replacement of the system! is planned+ This
operation occurs after a delay timet ~corresponding, e+g+, to a maintenance setup
time! and its durationr depends on the deterioration state of the system at the be-
ginning of the maintenance action+ The preventive maintenance operation replaces
the system by a new identical one or repairs it to an as-good-as new state+ Since the
system still deteriorates during the delay timet, a breakdown can occur between
the alarm time and the onset of the maintenance action+Obviously, the choice of the
maintenance thresholdA will influence the performance of the maintenance policy+
If the thresholdA is close toL, the probability of breakdown is great+ If the threshold
A is low, the probability of breakdown is small, but unnecessary maintenance oper-
ations are done on a system with a long potential residual life+ We compute the
asymptotic unavailability of the maintained system and we find the preventive main-
tenance policy which minimizes this unavailability+

Several articles propose preventive policies for stochastically deteriorating sys-
tems modeled by Levy stochastic processes; see, for example, Abdel-Hameed@1# ,
Grall,Dieulle,Bérenguer, and Roussignol@6# ,Newby and Dagg@7# , van Noortwijk,
Kok, and Cooke@10# , Yang and Klutke@11#, or Zuckerman@12# + Most of these
articles consider inspection-based maintenance policies+ The model presented in
this article is similar to the model of Zuckerman@12# for the maintenance problem
of a continuously monitored system+ It is more general because it takes into account
maintenance duration depending on the deterioration state of the system+ Since we
consider a Gamma deteriorating process, and not a general Levy process, an explicit
expression~and several approximations! of the asymptotic unavailability is derived+
Other similar models with particular interest in the availability have been developed
by Bloch-Mercier@3# and Cocozza-Thivent@5# for systems which are not continu-
ously known+

The model proposed in this article can also be connected with the so-called
delay-time analysis framework for maintenance problems developed by Christer@4#+
The delay time is defined as the elapsed time between the first detectable apparition
of a defect and the failure of the system+ In our analysis, the time between the ex-
ceeding of the alarm thresholdA and the failure thresholdL can thus be interpreted
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as a delay time in the sense of Christer+We compute probability characteristics of
this delay time using the specific properties of Gamma processes+

This article is organized as follows+Section 2 is devoted to the description of the
system characteristics+ Then, a probabilistic analysis is performed in Section 3 and
leads to an expression of the asymptotic unavailability+ Two approximations of this
expression are given in Section 4+ Finally,Section 5 presents numerical experiments
of the optimization of the maintenance policy+

2. DESCRIPTION OF THE SYSTEM

2.1. Assumptions and Maintenance Policy

We consider a stochastically deteriorating system with preventive or curative main-
tenance operations occurring at some random times+

We suppose that the following assumptions are verified:

1+ The condition of the system at timet can be summarized by a scalar aging
variableXt + The aging variable of the system varies increasingly as the sys-
tem deteriorates+ The initial stateX0 is zero+

2+ If the aging variable is greater than a given levelL, the system is supposed to
be in the failed state+ In this situation, the system may still be in operation,
but its high level of deterioration is unacceptable both for economic reasons
~poor products quality, high consumption of raw material, etc+! and for safety
reasons~high risk of hazardous breakdowns!+ Let us denote bysL the time at
which the aging variable crosses the failure levelL:

sL 5 inf ~t0Xt $ L!+ (2.1)

We assume that the system is only subject to this wear-dependent failure
mode; that is, we discard all failures not directly related to the deterioration
level+

The system is monitored continuously+ In practice, this monitoring can be im-
plemented, for example, using vibration analysis, temperature control, or conduc-
tivity measurements; seeHandbook of Condition Monitoring@8# + According to the
monitored aging variable, the maintenance policy states as follows~see Fig+ 1!:

1+ When the aging variable becomes greater or equal to a critical thresholdA
~A# L!, a maintenance operation is planned+ LetsA denote the time at which
the aging variable crosses the alarm levelA ~sA # sL!:

sA 5 inf ~t0Xt $ A!+ (2.2)

2+ When activated, a maintenance operation effectively begins after a delay
timet ~i+e+, at timesA1t!+The time needed to begin the maintenance stands
for a global maintenance setup time@e+g+, diagnosis operations and mainte-
nance resources mobilization~tools, spare parts, maintenance crew!# +
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3+ The maintenance operation has a random durationr+ The probability law of
the random variabler can depend on the state of the aging variable at the
beginning of the maintenance operation in such a way that

E~ r! 5 r1 1 r2E~XsA1t !, (2.3)

wherer1 andr2 are known parameters+A proper choice of the parametersr1

andr2 allows us to model a maintenance duration increasing with the level
of deterioration of the system at the beginning of the maintenance operation+
This assumption is plausible since the maintenance of a more deteriorated
system is likely to be longer and more complicated+

4+ BetweensA and sA 1 t, the device deteriorates and a failure may occur
before the maintenance operation begins+ Depending on the occurrence of a
failure, a preventive or a corrective maintenance action has to be performed+

• If a failure occurs in this time interval~i+e+, if sL # sA 1 t!, the device is
unavailable from the failure time until the time of the end of the mainte-
nance operationsA 1 t 1 r+

• If a failure does not occur~i+e+, if sL . sA 1 t!, the device is unavailable
from the timesA 1 t at which the maintenance operation begins until the
time of the end of the maintenance operationsA 1 t 1 r+

The unavailability durationU1 of the system resulting from one maintenance
operation is

U1 5 rIsL.sA1t 1 ~~sA 1 t 1 r! 2 sL !IsL#sA1t , (2.4)

whereIE 5 1 if E is true and 0 otherwise+
5+ At the end of the maintenance operation, which can be either a true physical

replacement or an overhaul or repair, the device is assumed to be as good as

Figure 1. Description of the maintenance0monitoring policy+
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new and the aging variable is equal to zero+ The system evolution after this
time is independent of the past+

2.2. Stochastic Deteriorating Model

Between maintenance operations, the aging variable is supposed to evolve like a
Gamma stochastic process~ FXt !t$0 such that the following hold:

1+ FX0 5 0+
2+ For all 0# s, t, the random variableFXt 2 FXs follows a Gamma probability

density with shape parametera~t 2 s! and scale parameterb:

fa~t2s!,b~x! 5
1

G~a~t 2 s!!
ba~t2s! xa~t2s!21 e2bxI$x$0% , (2.5)

wherea andb are strictly positive parameters+
3+ ~ FXt !t$0 has independent increments+

We can note that before the first maintenance operation, the process~Xt !t$0 describ-
ing the evolution of the system subject to the previous maintenance policy is the
same as the process~ FXt !t$0 describing the aging variable evolution between main-
tenance operations+

The relevance of the modeling of the aging variable as a Gamma stochastic
process has been justified by several authors~e+g+, van Noortwijk et al+ @10# and
Singpurwalla and Wilson@9# !+ A process that has independent increments, is not
decreasing, and is homogeneous in time belongs to the class of the Levy processes;
see Asmussen@2# + If our deteriorating process has these three properties, the choice
of the Gamma process is quite natural, as advocated by van Noortwijk et al+ @10# +
The Gamma process is a Levy process which has explicit marginal probability den-
sity functions and this property permits computations+ The two parametersa andb
of the Gamma process can be estimated from degradation data by a statistical
procedure+

3. PERFORMANCE OF THE MAINTENANCE POLICY
AND STUDY OF THE SYSTEM EVOLUTION

The maintenance policy is driven by the choice of the critical thresholdA+ The value
of this decision parameter has to be optimized according to a given indicator+ The
indicator used in this article to assess the performance of the proposed maintenance
policy is the asymptotic unavailability+ The optimal value ofA aims at beginning
maintenance operations in order to avoid both unexpected breakdowns~if A is close
to L! and unnecessary maintenance operations done on a system with a long poten-
tial residual life~if A is low!+

Let U` denote the asymptotic unavailability of the system+ If U~t ! is the un-
availability duration of the system before timet:

U` 5 lim
tr`

U~t !

t
+ (3.1)
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Its calculation as a function ofA needs to know some probabilistic characteris-
tics of the system evolution under the maintenance policy+We first give an expres-
sion of the asymptotic unavailability as a function of the data of the given problem
~A, L, t, r1, r2, a, b!+ After proving several properties of the process~Xt !t$0, we
propose a calculable expression ofU`+

3.1. Asymptotic Unavailability

First, we note that the process~Xt !t$0 is a regenerative process with regeneration
times being the dates of the end of maintenance+ Indeed, at a time of end of main-
tenance, the process is equal to zero and the random evolution of the system after the
end of the maintenance does not depend on the past+ Thus, we can compute the
asymptotic unavailability as the mean off time on a cycle~see Eq+ ~2+4!! divided by
the mean duration of a cycle:

U` 5
E~ rI$sL.sA1t% 1 ~sA 1 t 2 sL 1 r!I$sL#sA1t% !

E~sA 1 t 1 r!
+ (3.2)

As a consequence,

U` 5
E~ r! 1 E~~sA 1 t 2 sL !I$sL#sA1t% !

E~sA! 1 t 1 E~ r!

5
E~ r! 1 t 2 E~ inf ~t, ~sL 2 sA!!!

E~sA! 1 t 1 E~ r!
+

(3.3)

Considering the dependence of the random variabler on the state of the aging
variable at the beginning of the maintenance operation~Eq+ ~2+3!! and the survival
function OG~s! of sL 2 sA, we obtain

U` 5

r1 1 r2E~XsA1t ! 1 t 2E
0

t

OG~s! ds

E~sA! 1 t 1 r1 1 r2E~XsA1t !
+ (3.4)

3.2. About Entrance Times

In order to develop the above expression of the asymptotic unavailability~Eq+ ~3+4!!,
we need to further investigate the expressions of the quantitiesE~sA!,E~XsA1t ! and
the expression of the survival functionOG~s! of sL 2 sA+

3.2.1. Expression of E(sA ). The survival function of the entrance timesA is
easy to obtain from the Gamma stochastic process~ FXt !t$0 describing the aging vari-
able evolution between maintenance operations:

P~sA . t ! 5 P~ FXt # A!

5 Fat,b~A!,
(3.5)
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whereFat,b is the distribution function of the Gamma density probability function
fat,b+

By definition, the mean time of entranceE~sA! is

E~sA! 5E
0

`

Fat,b~A! dt

5E
0

ASE
0

`

fat,b~x! dtD dx+

(3.6)

3.2.2. Expression of E(XsA+t ). Let us now turn our attention to the quantity
E~XsA1t !, which is the mean aging variable value at the beginning of the mainte-
nance operation+

Proposition 3.1: The mean deterioration level at the entrance timesA 1 t is
given by

E~XsA1t ! 5
a

b
~E~sA! 1 t!+ (3.7)

Proof: Since the random processFXt has independent increments, we have

E~ FXt 2 FXs6Fs! 5
a

b
~t 2 s!, (3.8)

whereFt denotes the natural filtration of the processFXt + As a consequence,

ES FXt 2
at

b *FsD 5 FXs 2
as

b
(3.9)

and FXt 2 at0b is a 0-mean martingale+ The use of the martingale stopping time
theorem with the stopping timesA 1 t proves the proposition+ n

3.2.3. Expression of *0
t OG (s). The survival function OG~s! of sL 2 sA is

defined by

OG~s! 5 P~sL 2 sA . s!+ (3.10)

An expression of OG~s! as a function of the problem parameters is given in
Proposition 3+2+ A proof of the following proposition is given in Appendix A+

Proposition 3.2: The survival function OG~s! of sL 2 sA is

OG~s! 5 2EE
$A,x,L,0,x1y,L,0,y%

SE
0

`

fau,b~x! duD ]fas,b~ y!

]s
dx dy+ (3.11)

By integration of Eq+ ~3+11!, we obtain the following proposition+
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Proposition 3.3:

E
0

t

OG~s! ds5E
0

L2A

OFat,b~z!SE
0

`

fat,b~L 2 z! dtD dz+ (3.12)

The proof is given in Appendix B+

4. DEVELOPMENT AND APPROXIMATIONS
OF THE ASYMPTOTIC UNAVAILABILITY

The results of Section 3 lead to an expression ofU`,which is numerically achievable+
However, some computation and especially the integration of the survival func-

tion OG~s! can be numerically burdensome+ In this section, a computable expression
of the asymptotic unavailability is developed+ Two approximations of the quantity
U` are proposed in order to make its computation faster and easier+

U` will be denoted hereafter as the “exact” expression of the asymptotic un-
availability, as opposed to the approximations+

4.1. Computable Expression of U`

From Section 3, the exact expression of the asymptotic unavailability can be
written as

U` 5
1

r1 1S11 r2

a

bDSt 1E
0

ASE
0

`

fat,b~x! dtD dxD
3 Sr1 1S11 r2

a

bDt 1 r2

a

b
E

0

ASE
0

`

fat,b~x! dtD dx (4.1)

2 E
0

L2ASE
0

`

fat,b~L 2 x! dtD OFat,b~x! dxD+
If fat,b is the Gamma probability density with shape parameterat and scale

parameterb, we have

fat,b~x! 5 bfat,1~bx!, (4.2)

and, obviously,

E
0

`

fat,b~x! dt 5
b

a
E

0

`

fu,1~bx! du+ (4.3)

Let us define the functionw by

w~x! 5E
0

`

ft,1~x! dt+ (4.4)
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We have respectively

E~sA! 5
1

a
E

0

bA

w~ y! dy, (4.5)

E~ inf ~t,sL 2 sA!! 5E
0

t

OG~s! ds

5
1

a
E

0

b~L2A!

OFat,1~ y!w~bL 2 y! dy+ (4.6)

Equation~4+1! can be written with respect tow:

U`5

r1 1 S11 r2

a

b
Dt 1 r2

1

b
E

0

bA

w~ y! dy2
1

a
E

0

b~L2A!

w~bL 2 y! OFat,1~ y! dy

r1 1S11 r2

a

bDSt 1
1

a
E

0

bA

w~ y! dyD ,

(4.7)

where OFat,1 is the survival function of the Gamma probability density functionfat,1+
The functionw is a decreasing function and we can show the following:

1+ limxr`w~x! 5 1+
2+ *0

`~w~x! 2 1! dx5 1
2
_ +

These two properties of the functionw lead to first-order approximations of the
mean entrance timeE~sA! andE~XsA1t !+Equations~3+7! and~4+5! and property~2!
of w successively lead to the two following propositions+

Proposition 4.1: The mean entrance time ofFXt in @A,1`@ is

E~sA! 5
1

a SbA 1
1

2
2E

bA

`

~w~ y! 2 1! dyD+ (4.8)

Proposition 4.2: The mean level of the aging variable Xt at timesA1 t is given by

E~XsA1t ! 5 A 1
1

2b
2

1

b
E

bA

`

~w~ y! 2 1! dy1
at

b
+ (4.9)

Because of its fast decrease, the functionw~x! is close to 1 forx $ 1+ If bA is
large enough~at least greater than 1!, the following approximations ofE~sA! and
E~XsA1t ! can be derived:

E~sA! .
1

a
SbA 1

1

2D, (4.10)

E~XsA1t ! . A 1
1

2b
1

at

b
+ (4.11)
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As a first-order simplification of Eq+ ~4+7!, we have

U` .

r1 1 S11 r2

a

b
Dt 1

r2

b
SbA 1

1

2D2
1

a
E

0

b~L2A!

w~bL 2 y! OFat,1~ y! dy

r1 1 S11 r2

a

b
DSt 1

1

a
SbA 1

1

2DD
+

(4.12)

The two approximations given by Eqs+ ~4+10! and ~4+11! will be used in the
sequel+ We now focus on the remaining integral in the previous expression of the
asymptotic unavailability, which is connected to the survival function ofsL 2 sA+
Two different approximations ofE~ inf ~t, ~sL 2 sA!!! are proposed in the next two
subsections+

4.2. First Approximation of the Asymptotic Unavailability

The first proposed approximation of the asymptotic unavailability is based on a
heuristic approximation of the difference between the entrance times, sL 2 sA+

If the trajectories of the stochastic process~Xt !t$0 were continuous, then
sL 2 sA would have the same probability law assL2A+ Hence, E~ inf ~t, ~sL 2 sA!!!
can be replaced at first sight byE~ inf ~t,sL2A!!+ SinceXsA

$ A, the mean deterio-
ration level at timesA is greater thanA ~see Fig+ 2!+A correction is needed and leads
us to useE~XsA

! rather thanA+ As a consequence, the proposed approximation is

E~ inf ~t, ~sL 2 sA!!! ' E~ inf ~t, ~sL2E~XsA
! !!!+ (4.13)

From Eq+ ~4+11! takingt 5 0, we haveE~XsA
! . A 1 102b and

E~ inf ~t, ~sL2E~XsA
! !!! . E

0

t

Fau,bSL 2 A 2
1

2b
D du+ (4.14)

Figure 2. Approximation 1 ofE~ inf t, ~sL 2 sA!!+
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The first approximated value of the asymptotic unavailability as a function of the
alarm thresholdA is

U`
1~A! 5

r1 1 S11 r2

a

b
Dt 1 r2 SA 1

1

2b
D2E

0

t

Fau,bSL 2 A 2
1

2b
D du

r1 1 S11
ar2

b
DSt 1

Ab

a
1

1

2a
D +

(4.15)

In this expression, only one integral remains to be evaluated+
As a remark, note that forL 2 A , 102b,

E
0

t

Fau,bSL 2 A 2
1

2b
D du 5 0+ (4.16)

As a consequence, the approximated valueU`1 overestimates the asymptotic un-
availability when the alarm thresholdA is close to the failure thresholdL+

4.3. Second Approximation of the Asymptotic Unavailability

In order to avoid an integration of the Gamma density with respect to the shape
parameter in Eq+ ~4+15!, the following approximation is proposed, which is derived
from the properties of the functionw+

Since the functionw decreases quickly and tends to 1, it comes forbL2y$ bA,
and, hence, for 0 # y # b~L 2 A! ,

w~bL 2 y! . 1+

From Eq+ ~4+6!, we have

E
0

t

OG~s! ds5
1

a
E

0

b~L2A!

OFat,1~ y! w~bL 2 y! dy

.
1

a
E

0

b~L2A!

OFat,1~ y! dy+ (4.17)

We know that~see Eq+ ~3+7!!

E~ inf ~t, ~sL 2 sA!!! 5
b

a
E~Xinf ~t, ~sL2sA!! !+

Hence, this approximation aims at replacing the mean deterioration level at timet 5
inf ~t,sL 2 sA! by the minimum between the differenceL 2 A and the mean deteri-
oration at timet ~see Fig+ 3!:

E~Xinf ~t, ~sL2sA!! ! ' E~ inf ~Xt , ~L 2 A!!!+
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The second approximated value of the asymptotic unavailability as a function of
the alarm thresholdA is given by

U`
2~A! 5

r1 1 S11 r2

a

b
Dt 1 r2 SA 1

1

2b
D2

1

a
E

0

b~L2A!

OFat,1~ y! dy

r1 1 S11
ar2

b
D St 1

Ab

a
1

1

2a
D + (4.18)

5. NUMERICAL EXPERIMENTS

The alarm threshold is set on the system deterioration level for triggering a delayed
preventive maintenance operation+ The mathematical model developed in the pre-
vious sections aims at finding the value of this alarm threshold that minimizes the
asymptotic unavailability of the system:

A* 5 arg min
A

U`~A!+ (5.1)

Several numerical optimization have been performed successfully for different val-
ues of the problem parametersL, t, r1, r2, a, andb using a quasi-Newton method+
As an example, Table 1 shows the evolution of the optimal alarm thresholdA* for
degradation characteristics with a fixed given mean per time unit~a0b 5 2! and a
decreasing variance per time unit~a0b2!+ As the variance decreases, the optimal
valueA* increases and the associated asymptotic unavailabilityU`

* 5 U`~A*! de-
creases+ For a small variance, the value of the degradation mean per time unit is a
significant parameter+ An increase of the variance lead to choosing a more conser-
vative alarm threshold in order to avoid frequent unexpected failures+

The given optimization results~see Table 1! have been obtained with the “ex-
act” expression of the asymptotic unavailability+ This leads to burdensome and slow
numerical computation+ The two proposed approximations give the same numerical

Figure 3. Approximation 2 ofE~ inf t, ~sL 2 sA!!+
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results with a significant time savings+As an example, Figure 4 shows the evolution
of the asymptotic unavailability as a function of the alarm threshold for an average
amount of deterioration per time unita0b 51+ In this configuration, the approxima-
tions ofE~sA! andE~XsA1t ! can be used~A . 1 andL 2 A . 1

2
_!+ Such a set of

parameters makes the two approximations ofE~ inf ~t, ~sL 2 sA!!! accurate and the
results point out that the three computed values of the asymptotic unavailability are
very close to each other+

Table 1. Evolution of the Optimal Asymptotic Unavailability as a
Function of the Variance of the Deterioration per Unit of Time

@E~ FX1! 5 a0b 5 2, L 5 20, t 5 2, r1 5 2, r2 5 0+1# +

Variancea0b2

4 2 1

Optimal alarm thresholdA, 13+6012 14+1137 14+5656
Optimal asymptotic unavailabilityU`, 0+3094 0+3027 0+2976

Figure 4. Comparison of the numerical computations of the asymptotic
unavailability+
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6. CONCLUSION

We have studied a condition-based maintenance policy based on a control limit
structure for a continuously deteriorating0continuously monitored system+A math-
ematical model has been developed in order to evaluate the asymptotic unavailabil-
ity of the maintained system and to allow the optimization of the maintenance
parameter~i+e+, of the threshold value of the control limit rule!+ The mathematical
model is based on the regenerative properties of the maintained system state+ It has
been elaborated in the special case of a deterioration modeled by Gamma stochastic
processes+ Numerical experiments have shown that minimizing the asymptotic un-
availability, an optimal setting of the alarm threshold value can adapt the mainte-
nance policy to the deterioration characteristics of the system+

References

1+ Abdel-Hameed,M+ ~1987!+ Inspection and maintenance policies of devices subject to deterioration+
Advances in Applied Probability19: 917–931+

2+ Asmussen, S+ ~1987!+ Applied probability and queues+Wiley Series in Probability and Mathematical
Statistics+ New York:Wiley+

3+ Bloch-Mercier, S+ ~2002!+ A preventive maintenance policy with sequential checking procedure for
a Markov deteriorating system+ European Journal of Operational Research142: 548–576+

4+ Christer,A+ ~1999!+ Developments in delay time analysis for modelling plant maintenance+ Journal
of the Operational Research Society50: 1120–1137+

5+ Cocozza-Thivent, C+ ~2000!+ A model for a dynamic preventive maintenance policy+ Journal of
Applied Mathematics and Stochastics Analysis13~4!: 321–346+

6+ Grall, A+, Dieulle, L+, Bérenguer, C+, & Roussignol, M+ ~2002!+ Continuous-time predictive-
maintenance scheduling for a deteriorating system+ IEEE Transactions on Reliability51: 141–150+

7+ Newby, M+ & Dagg, R+ ~2001!+ Optimal inspection policies in the presence of covariates+ In Pro-
ceedings of the European Safety and Reliability Conference—ESREL’2002, pp+ 131–138+

8+ Rao, B+ ~ed+!+ ~1996!+ Handbook of condition monitoring+ Amsterdam: Elsevier+
9+ Singpurwalla, N+ & Wilson, S+ ~1998!+ Failure models indexed by two scales+ Advances in Applied

Probability 30: 1058–1072+
10+ van Noortwijk, J+, Kok, M+, & Cooke, R+ ~1997!+ Optimal maintenance decisions for the sea-bed

protection of the Eastern-Scheldt Barrier+ In R+Cooke,M+Mendel, & H +Vrijling ~eds+!, Engineering
probabilistic design and maintenance for flood protection+ Boston: Kluwer Academic, pp+ 25–51+

11+ Yang, Y+ & Klutke, G+-A+ ~2000!+ Lifetime-characteristics and inspections-schemes for Lévy degra-
dation processes+ IEEE Transactions on Reliability49~4!: 377–382+

12+ Zuckerman, D+ ~1978!+ Optimal replacement policy for the case where the damage process is one-
sided Levy process+ Stochastic Processes and Their Applications7: 141–151+

APPENDIX

A. PROOF OF PROPOSITION 3.2

It is easy to obtain the survival functionPH~u, v! of ~sA,sL! for v . u . 0:

PH~u, v! 5 P~sA . u,sL . v!

5 P~ FXu # A, FXv# L!

5EE
$0,x,A,0,x1y,L,0,y%

fau,b~x! fa~v2u!,b~ y! dx dy+
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Then,

OG~s! 5EE
$v2u.s%

]2H

]u ]v
~u, v! du dv

5E
s

`S ]H

]v
~v2 s, v! 2 lim

ur0

]H

]v
~u, v!D dv+

Since the Gamma probability lawfau,b~x! dx converges toward the Dirac probability law at
zero if u tends to zero:

lim
ur0

]H

]v
~u, v! 5

]Fav,b~L!

]v
~v!+

Then,

OG~s! 5E
s

`SEE
$0,x,A,0,x1y,L,0,y%

fa~v2s!,b~x!
]fas,b~ y!

]s
dx dyD dv1 Fas,b~L!

5E
0

`SEE
$0,x,A,0,x1y,L,0,y%

fav,b~x!
]fas,b~ y!

]s
dx dyD dv1 Fas,b~L!+

We know that the convolution of the functionsfav,b~{! andfau,b~{! is equal tofa~v1u!,b~{!+
Then, we can write

E
0

`SEE
$0,x,0,x1y,L,0,y%

fav,b~x! fas,b~ y! dx dyD dv

5E
0

`SE
0

L

fa~s1v!,b~z! dzD dv

5E
0

LSE
s

`

faw,b~z! dwD dz

and by differentiating,

E
0

`SEE
$0,x,0,x1y,L,0,y%

fav,b~x!
]fas,b~ y!

]s
dx dyD dv

5 2E
0

L

fas,b~z! dz

5 2Fas,b~L!+

We obtain

OG~s! 5 2E
0

`SEE
$A,x,L,0,x1y,L,0,y%

fav,b~x!
]fas,b~ y!

]s
dx dyD dv+

This ends the proof+ n
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B. PROOF OF PROPOSITION 3.3

By integration of Eq+ ~3+11! with respect tos between anye . 0 andt,

E
e

t

OG~s! ds5 2E
e

tSEE
$A,x,L,0,x1y,L,0,y%

SE
0

`

fau,b~x! duD ]fas,b~ y!

]s
dx dyD ds

5 2EE
$A,x,L,0,x1y,L,0,y%

SE
0

`

fau,b~x! duD ~ fat,b~ y! 2 fae,b~ y!! dx dy

5 2E
A

LSE
0

`

fau,b~x! duDSE
0

L2x

~ fat,b~ y! 2 fae,b~ y!! dyD dx+

With z5 L 2 x, we obtain, after integration with respect toy,

E
e

t

OG~s! ds5 2E
0

L2ASE
0

`

fau,b~L 2 z! duD~Fat,b~z! 2 Fae,b~z!! dz,

whereFat,b 5 1 2 OFat,b is the distribution function of the Gamma probability functionfat,b+
Let e tend to zero+ The Gamma probability lawfae,b converges toward the Dirac probability
law at zero+ Hence, Fae,b~z! tends to one ifz . 0+ As a conclusion,

E
0

t

OG~s! ds5E
0

L2ASE
0

`

fau,b~L 2 z! duD OFat,b~z! dz+ n
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