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We consider a continuously monitored system that gradually and stochastically
deterioratesAn alarm threshold is set on the system deterioration level for trigger-
ing a delayed preventive maintenance operattomathematical model is devel-
oped to find the value of the alarm threshold that minimizes the asymptotic
unavailability Approximations are derived to improve the numerical optimization

1. INTRODUCTION

This article considers the maintenance of a technical device subject to a continuous
gradual random deterioratioAssuming that the level of deterioration can be mea-
sured in practicethe degradation process of a system can be controlled by two
different methodscontinuous monitoring and inspectiofvghether periodic or not

In both casesthe maintenance actions are performed when the measured deterio-
ration level exceeds an alarm threshdidntinuous monitoring is particularly jus-
tified for highly critical systems and the continuous information on the system
condition can be exploited by the maintenance decision-maker in order to maximize
the availability of the system or to minimize its long-run expected.cidst objec-
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tive of this article is precisely to propose a stochastic maintenance model that can be
used to optimize the maintenance decision on a system subject to continuous mon-
itoring and delayed maintenance actiolmsour mode) we assume that the deteri-
oration condition of the device can be modeled by an aging stochastic pridd¢ess
also suppose than the absence of repair or replacement actitims aging variable
evolves like a Gamma stochastic processpecial case of the Levy proce®ghen
the device is neythe aging variable is equal to zeMhen the aging variable reaches
a failure levelL, a breakdown occurdoreover the continuous monitoring is as-
sumed to be “perfectthat is the condition of the system is known with no error or
uncertainty at any time

We define a preventive maintenance policy which depends on the state of the
system The preventive maintenance policy is fully determined by an alarm thresh-
old A (A is lower thanL). When the aging variable exceeds this threshilc
preventive maintenance operatiore., replacement of the systens plannedThis
operation occurs after a delay timegcorrespondinge.g., to a maintenance setup
time) and its duratiorp depends on the deterioration state of the system at the be-
ginning of the maintenance actiohhe preventive maintenance operation replaces
the system by a new identical one or repairs it to an as-good-as newSitate the
system still deteriorates during the delay timea breakdown can occur between
the alarm time and the onset of the maintenance adbbriously the choice of the
maintenance thresholwill influence the performance of the maintenance policy
If the thresholdAis close td_, the probability of breakdown is gredt the threshold
Ais low, the probability of breakdown is smallut unnecessary maintenance oper-
ations are done on a system with a long potential residual lile compute the
asymptotic unavailability of the maintained system and we find the preventive main-
tenance policy which minimizes this unavailability

Several articles propose preventive policies for stochastically deteriorating sys-
tems modeled by Levy stochastic processes for example Abdel-Hameed1],
Grall, Dieulle, Bérenguerand Roussigndb], Newby and Dag§7], van Noortwijk
Kok, and Cookd 10], Yang and Klutke[11], or Zuckerman 12]. Most of these
articles consider inspection-based maintenance poligiles model presented in
this article is similar to the model of Zuckermgi?2] for the maintenance problem
of a continuously monitored systeihis more general because it takes into account
maintenance duration depending on the deterioration state of the sy&itera we
consider a Gamma deteriorating processl not a general Levy process explicit
expressioriand several approximationsf the asymptotic unavailability is derived
Other similar models with particular interest in the availability have been developed
by Bloch-Mercier[3] and Cocozza-Thiverit] for systems which are not continu-
ously known

The model proposed in this article can also be connected with the so-called
delay-time analysis framewaork for maintenance problems developed by Chdister
The delay time is defined as the elapsed time between the first detectable apparition
of a defect and the failure of the systelm our analysisthe time between the ex-
ceeding of the alarm threshaofdand the failure threshold can thus be interpreted
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as a delay time in the sense of Chrisi&e compute probability characteristics of
this delay time using the specific properties of Gamma processes

This article is organized as followSection 2 is devoted to the description of the
system characteristickhen a probabilistic analysis is performed in Section 3 and
leads to an expression of the asymptotic unavailabiliyo approximations of this
expression are given in Sectionnally, Section 5 presents numerical experiments
of the optimization of the maintenance policy

2. DESCRIPTION OF THE SYSTEM
2.1. Assumptions and Maintenance Policy

We consider a stochastically deteriorating system with preventive or curative main-
tenance operations occurring at some random times
We suppose that the following assumptions are verified

1. The condition of the system at tinteean be summarized by a scalar aging
variableX;. The aging variable of the system varies increasingly as the sys-
tem deterioratesThe initial stateX, is zera

2. Ifthe aging variable is greater than a given lelvghe system is supposed to
be in the failed statdn this situationthe system may still be in operation
but its high level of deterioration is unacceptable both for economic reasons
(poor products qualityhigh consumption of raw materiatc) and for safety
reasonshigh risk of hazardous breakdownket us denote by the time at
which the aging variable crosses the failure level

oL = inf(t/X, = L). (2.1)

We assume that the system is only subject to this wear-dependent failure
mode that is we discard all failures not directly related to the deterioration
level.

The system is monitored continuouslly practice this monitoring can be im-
plementedfor example using vibration analysjtemperature controbr conduc-
tivity measurementseeHandbook of Condition Monitorinf8]. According to the
monitored aging variableéhe maintenance policy states as folloisse Fig 1):

1. When the aging variable becomes greater or equal to a critical threshold
(A=L),amaintenance operation is plannkeet o, denote the time at which
the aging variable crosses the alarm le&ébp = oy ):

o, = Inf(t/X, = A). (2.2)

2. When activateda maintenance operation effectively begins after a delay
timer (i.e, attimeo, + 7). The time needed to begin the maintenance stands
for a global maintenance setup tirfeeg., diagnosis operations and mainte-
nance resources mobilizatigtools spare partsmaintenance crejl.
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a, O Op+T+p t

Ficure 1. Description of the maintenang@onitoring policy

3. The maintenance operation has a random duratidrne probability law of
the random variablg can depend on the state of the aging variable at the
beginning of the maintenance operation in such a way that

E(p) = p1+ p2B(X;, 1), (2.3)

wherep, andp, are known parameter& proper choice of the parametegris
andp, allows us to model a maintenance duration increasing with the level
of deterioration of the system at the beginning of the maintenance operation
This assumption is plausible since the maintenance of a more deteriorated
system is likely to be longer and more complicated

4. Betweeno, ando, + 7, the device deteriorates and a failure may occur
before the maintenance operation begibspending on the occurrence of a
failure, a preventive or a corrective maintenance action has to be performed

e If a failure occurs in this time intervdl.e., if o = o + 7), the device is
unavailable from the failure time until the time of the end of the mainte-
nance operatiomrp + 7 + p.

« If afailure does not occuii.e,, if o, > oA + 7), the device is unavailable
from the timeo s + 7 at which the maintenance operation begins until the
time of the end of the maintenance operationt+ 7 + p.

The unavailability duratiokl; of the system resulting from one maintenance
operation is

Ul = pHo'L>u'A+T + ((O-A +7+ P) - O-L)HU'LSU'A+T’ (24)

wherelg = 1 if E is true and 0 otherwise
5. Atthe end of the maintenance operatiaich can be either a true physical
replacement or an overhaul or repdire device is assumed to be as good as
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new and the aging variable is equal to zéFbe system evolution after this
time is independent of the past

2.2. Stochastic Deteriorating Model

Between maintenance operatiotise aging variable is supposed to evolve like a
Gamma stochastic proce€% ).~o such that the following hotd

1. )zo = O
2. For all 0= s< t, the random variablX; — X follows a Gamma probability
density with shape paramete(t — s) and scale parametgr

fa(tfs),,B(X) = IBQ(K_S) XQ(I_S)_l e_ﬂxﬂ{xzo}’ (25)

I'(a(t—s))
wherea andg are strictly positive parameters
3. (Xi)i=0 has independent increments

We can note that before the first maintenance operati@processX; )-o describ-
ing the evolution of the system subject to the previous maintenance policy is the
same as the proceséX, )~ describing the aging variable evolution between main-
tenance operations

The relevance of the modeling of the aging variable as a Gamma stochastic
process has been justified by several auttierg, van Noortwijk et al [10] and
Singpurwalla and Wilsof9]). A process that has independent incremeistsiot
decreasingand is homogeneous in time belongs to the class of the Levy progesses
see Asmusse€liR]. If our deteriorating process has these three propethieshoice
of the Gamma process is quite natuias advocated by van Noortwijk et &L0].
The Gamma process is a Levy process which has explicit marginal probability den-
sity functions and this property permits computatiofise two parameters andg
of the Gamma process can be estimated from degradation data by a statistical
procedure

3. PERFORMANCE OF THE MAINTENANCE POLICY
AND STUDY OF THE SYSTEM EVOLUTION

The maintenance policy is driven by the choice of the critical thresholdhe value
of this decision parameter has to be optimized according to a given indicar
indicator used in this article to assess the performance of the proposed maintenance
policy is the asymptotic unavailabilityrhe optimal value ofA aims at beginning
maintenance operations in order to avoid both unexpected breakdiéwis close
to L) and unnecessary maintenance operations done on a system with a long poten-
tial residual life(if A is low).

Let U,, denote the asymptotic unavailability of the systéfmU(t) is the un-
availability duration of the system before tirhe

U@
U, = lim —. (3.2)

t—oo t
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Its calculation as a function & needs to know some probabilistic characteris-
tics of the system evolution under the maintenance polMgy/first give an expres-
sion of the asymptotic unavailability as a function of the data of the given problem
(A, L, 7, p1, p2, @, B). After proving several properties of the procé¥%).-q, we
propose a calculable expressionyf.

3.1. Asymptotic Unavailability

First, we note that the proces$¥; )~ iS a regenerative process with regeneration
times being the dates of the end of maintenatmeeed at a time of end of main-
tenancethe process is equal to zero and the random evolution of the system after the
end of the maintenance does not depend on the jpasis we can compute the
asymptotic unavailability as the mean off time on a cyskee Eq(2.4)) divided by

the mean duration of a cycle

. E(pH{O'L>0'A+T} + (O-A +7 - oL + p)]I{a-LSO'A+7})

3.2
« E(oa+ 7+ p) (3:2)
As a consequence
B E(p) + E((oa+ 7 = 0) iy z0ptn})
= E(oa) + 7+ E(p)
(3.3)

E(p) + 7 — E(inf(7, (o — 0a)))
E(oa) + 7+ E(p)

Considering the dependence of the random varigbtn the state of the aging
variable at the beginning of the maintenance operatiem (2.3)) and the survival
functionG(s) of o, — os, We obtain

T

p1+p2E(X(rA+T) +T—f G(S) ds

0
E(oa) + 7+ p1+ PzE(XoA+T)

U, = (3.4)
3.2. About Entrance Times

In order to develop the above expression of the asymptotic unavaildllity3.4)),
we need to further investigate the expressions of the quarifities), E(X,,,.,) and
the expression of the survival functi@(s) of o — oa.

3.2.1. Expression of E(o,). The survival function of the entrance timg is
easy to obtain from the Gamma stochastic pro¢&sk-, describing the aging vari-
able evolution between maintenance operations

P(oy>1) =P(X, = A)

3.5
= Fat,B(A)a ( )
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whereF,; 4 is the distribution function of the Gamma density probability function

fat p-
By definition, the mean time of entrand@® o,) is

E(oa) =fo Fut, p(A) dt

= fOA(fooo for, p(X) dt) dax.

3.2.2. Expression of E(X, .). Letusnow turnour attention to the quantity
E(X,,+-), Which is the mean aging variable value at the beginning of the mainte-
nance operatian

(3.6)

ProrosiTioN 3.1: The mean deterioration level at the entrance time+ 7 is
given by

o
]E(XUA+T) = ,E (E(O-A) + T)' (37)
Proor: Since the random proces has independent incremenige have
~ ~ (63
E(X; = Xs| ) = ) (t—s), (3.8)

whereF; denotes the natural filtration of the procé§sAs a consequence

IE<)~( at‘f)—f( as (3.9)

t B S S IB) .
andX; — at/B is a 0-mean martingal@he use of the martingale stopping time
theorem with the stopping time, + 7 proves the proposition u

3.2.3. Expression of [j G(s). The survival functionG(s) of o — oa is
defined by

G(s) = P(o,— oga>5). (3.10)

An expression ofG(s) as a function of the problem parameters is given in
Proposition 2. A proof of the following proposition is given in Appendix.A

ProrosITION 3.2: The survival functiors(s) of o, — oa is

_ * s 5(Y)
G(s) = —ff <f fau,B(x)du> —=E 7 dx dy  (3.11)
{A<x<L,0<x+y<L,0<y} 0 Js

By integration of Eq(3.11), we obtain the following propositian
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ProroSITION 3.3:

JOTG(S) ds= foL_A Far 5(2) <f0w fu (L —2) dt) dz. (3.12)

The proof is given in Appendix B

4. DEVELOPMENT AND APPROXIMATIONS
OF THE ASYMPTOTIC UNAVAILABILITY

The results of Section 3 lead to an expressiddgfwhich is numerically achievahle
However some computation and especially the integration of the survival func-
tion G(s) can be numerically burdensonia this sectiona computable expression
of the asymptotic unavailability is develop€eldvo approximations of the quantity
U, are proposed in order to make its computation faster and easier
U, will be denoted hereafter as the “exact” expression of the asymptotic un-
availability, as opposed to the approximations

4.1. Computable Expression of U,

From Section 3the exact expression of the asymptotic unavailability can be
written as

1

p1+<l+ng><7+Jo (fo fat,B(x)dt> dx)
X <p1+ <1+ng>r+ngfo <f0m fm,B(x)dt> dx 4.1)
_ f ) (fwfat,B(L—x)dt)ﬁm,ﬁ(x)dx)

If f,t g is the Gamma probability density with shape parameteand scale
parametep, we have

U, =

far, 8(X) = Bfar1(BX), (4.2)

and obviously

fof“""(x)dt:gfo fu1(Bx) du. (4.3)

Let us define the functiog by

@ (Xx) :Jo fi1(x) dt. (4.4)
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We have respectively

1 (PA
E(oa) = ;fo @(y) dy, (4.5)
E(inf(r,0, — 04)) = fT G(s)ds
1 (BL=A _
= - f Fara(Y)e(BL —y) dy. (4.6)
a Jo

Equation(4.1) can be written with respect to:

o 1 (BA B(L—A) ~
ot (1+p2—>7+p2—f <p(y)dy——f (BL — y)E..1(y) dy
B ,3 0 a Jo

+<1+ 5)( +EfﬁA ()d)
P1 Pzﬁ T A ply)ay
(4.7)

whereF,. ; is the survival function of the Gamma probability density funcfign .
The functiong is a decreasing function and we can show the following

o =

’

L lim, (X)) =1.
2 [ (60— Dx= 1.

These two properties of the functianlead to first-order approximations of the
mean entrance tiné(o,) andE(X,, . .). Equationg3.7) and(4.5) and property2)
of ¢ successively lead to the two following propositions

ProrosITION 4.1: The mean entrance time Xf in [A,+oo[ is

2o = 5 (#a+ 3 =] en-vay). @9
ProrosITION 4.2: The mean level of the aging variable2t timeo, + 7 is given by
E(Xpper) = At o — = [ (o(y) ~Dy+ 2. (4.9)

" 28 B Jpa B

Because of its fast decreasle functione(x) is close to 1 fox = 1. If BAis
large enoughat least greater than),lthe following approximations of (o) and
E(X,,+-) can be derived

1 1
E(oa) = ; <,8A+ E)’ (4.10)
E(X, )~ A+ =+ (4.11)
optT ZB B . .
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As a first-order simplification of Eq4.7), we have

o P 1 BL-A ~
~p1+<1+p2E>T+E<,BA+ §>_;Jo @(BL = y)Fa-a(y) dy

o YT
p1t <1+p2B><T+ a<[3A+ 2))

The two approximations given by EqgL10) and(4.11) will be used in the
sequel We now focus on the remaining integral in the previous expression of the
asymptotic unavailabilitywhich is connected to the survival function @f — oa.

Two different approximations dt (inf(7, (o — oa))) are proposed in the next two
subsections

(4.12)

4.2. First Approximation of the Asymptotic Unavailability

The first proposed approximation of the asymptotic unavailability is based on a
heuristic approximation of the difference between the entrance times oa.

If the trajectories of the stochastic procds$ )=, were continuousthen
o, — aawould have the same probability lawas . Hence E(inf(r, (o, — oa)))
can be replaced at first sight ®(inf(7, 0 _)). SinceX,, = A, the mean deterio-
ration level at timer, is greater thaw (see Fig2). A correction is needed and leads
us to useE(X,,) rather tharA. As a consequencéhe proposed approximation is

E(inf(7, (oL — 0a))) =~ E(inf(7, (0L —g(x,,))))- (4.13)

oA

From Eq (4.11) taking7 = 0, we haveE(X,,) = A+ 1/28 and

. T 1
E(lnf(T,(O’Lf]E(XUA)))) = f Fau,,B<L —A-— 2_> du. (414)
0 B
Xt A T .
- - e
- : A
v i
[—— 1
- =1 |
L-EXaA) | _ =™ | LA 5
Y S— =S § S
~7 s a
» : ' . >
al-oA t

FIGURE 2. Approximation 1 ofE(inf 7, (o — oa)).
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The first approximated value of the asymptotic unavailability as a function of the
alarm threshold\ is

a 1 T 1
prt <l+p215>7+p2 <A+ E) —J; Fau,B<L—A—£> du

Uz(A) = A8 1
put (122 ) (- + 220 )
B @ 2a
(4.15)
In this expressioyonly one integral remains to be evaluated
As a remarknote that fol. — A < 1/28,
fTF (L A 1>d 0 (4.16)
wu —A——|du=0. .
o 28

As a consequencé¢he approximated valubell overestimates the asymptotic un-
availability when the alarm threshohlis close to the failure threshold
4.3. Second Approximation of the Asymptotic Unavailability

In order to avoid an integration of the Gamma density with respect to the shape
parameter in Eq4.15), the following approximation is proposgahich is derived
from the properties of the functiop
Since the functio decreases quickly and tends tattomes forBL —y = BA,
and hencefor0=y=g(L—A),

p(BL—y) =1
From Eq (4.6), we have

fOTG(s) ds=

1 (BL-A
= ;J;) Fﬂr,l(y) dy' (417)

BUL=A)
f Fara(y) o(BL —y) dy

o

We know that(see Eq(3.7))

E(inf(7, (o, — aa))) = g E(Xinf(r, (o —ra))-

Hence this approximation aims at replacing the mean deterioration level attime
inf(7, 0. — oa) by the minimum between the differente- A and the mean deteri-
oration at timer (see Fig 3):

E(Xinf(r,((r,_—(rA))) ~ E(inf(X,,(L — A))).
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FIGURE 3. Approximation 2 ofE(inf 7, (o, — oa)).

The second approximated value of the asymptotic unavailability as a function of
the alarm threshold is given by

o 1\ 1 (LA
P1+<1+P25>T+P2 <A+ E)‘;J; Fura(y) dy
UZ(A) = . (4.18)

p1+<1+%ﬁ72> <T+E+i>

@ 2a

5. NUMERICAL EXPERIMENTS

The alarm threshold is set on the system deterioration level for triggering a delayed
preventive maintenance operatidrhe mathematical model developed in the pre-
vious sections aims at finding the value of this alarm threshold that minimizes the
asymptotic unavailability of the system

A" = argminU_(A). (5.1)
A

Several numerical optimization have been performed successfully for different val-
ues of the problem parametdrsr, py, po, &, andB using a quasi-Newton method
As an examplgTable 1 shows the evolution of the optimal alarm threshgidor
degradation characteristics with a fixed given mean per time(ui@ = 2) and a
decreasing variance per time uit/82?). As the variance decreasdbe optimal
valueA* increases and the associated asymptotic unavailahliity U (A*) de-
creaseskFor a small variancehe value of the degradation mean per time unit is a
significant parameteAn increase of the variance lead to choosing a more conser-
vative alarm threshold in order to avoid frequent unexpected failures

The given optimization resulisee Table Lhave been obtained with the “ex-
act” expression of the asymptotic unavailabilithis leads to burdensome and slow
numerical computatiaThe two proposed approximations give the same numerical

https://doi.org/10.1017/50269964803172063 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803172063

MAINTENANCE POLICY 247

TABLE 1. Evolution of the Optimal Asymptotic Unavailability as a
Function of the Variance of the Deterioration per Unit of Time
[E(X)) =a/B=2,L=20,7=2,p;=2,p,=01].

Variancea/32

4 2 1
Optimal alarm thresholé* 136012 141137 145656
Optimal asymptotic unavailability ; 0.3094 03027 02976

results with a significant time savingss an examplgFigure 4 shows the evolution

of the asymptotic unavailability as a function of the alarm threshold for an average
amount of deterioration per time urif3 = 1. In this configurationthe approxima-
tions of E(os) andE(X,,,,) can be usedA > 1 andL — A > 1). Such a set of
parameters makes the two approximation& hf (7, (o — oa))) accurate and the
results point out that the three computed values of the asymptotic unavailability are
very close to each other

0.5 T T T T T T T T T
]
0.45} i
L=20
z 0.4r 4 =1 *+ Us| ]
% o=1 OU:Q
T 035} ® =1 o U3 -
Q ] p2=01
g 03 .
£’ o
£ o
< 025} ® i
]
® ]
0.2} ® % P
[} Py ®
¢ o o
0.15 i 1 1 1 ' 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Alarm Threshold (A)

FiGure 4. Comparison of the numerical computations of the asymptotic
unavailability
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6. CONCLUSION

We have studied a condition-based maintenance policy based on a control limit
structure for a continuously deterioratyfgntinuously monitored syster math-
ematical model has been developed in order to evaluate the asymptotic unavailabil-
ity of the maintained system and to allow the optimization of the maintenance
parametefi.e., of the threshold value of the control limit ryleThe mathematical
model is based on the regenerative properties of the maintained systenit siate

been elaborated in the special case of a deterioration modeled by Gamma stochastic
processedNumerical experiments have shown that minimizing the asymptotic un-
availability, an optimal setting of the alarm threshold value can adapt the mainte-
nance policy to the deterioration characteristics of the system
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APPENDIX
A. PROOF OF PROPOSITION 3.2

It is easy to obtain the survival functidfi(u,v) of (oa, o1 ) forv > u > 0:
H(u,v) = P(ga> u,00 >v)
=P(X,=AX,=L)

- Fap 0 e () ey
{0<x<A,0<x+y<L,0<y}
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Then

_ 9%H
G(s) =
v—u>s} UV
*(oH . oH
= — (v —sv)— lim — (uy,0) | dv
s \ v u—0 Jv

Since the Gamma probability lafy, s(x) dx converges toward the Dirac probability law at
zero ifu tends to zero

oH OF . 5(L)
lim = (uv) = —22 ().
u—0 av al}

Then

) e s(y)
G@=f<ﬂ' R ”ydd9m+awm
{0<x<A,0<x+y<L,0<y}

oo 8 (2% ( )
_f<ﬂ' fan s (0 “ydMQm+aWM-
0 {0<x<A,0<x+y<L,0<y} s

We know that the convolution of the functiofyg z(-) andf, () is equal tdfy , +u), g ().
Then we can write

J <fj fow, 5(X) Tag g (Y) dXdY> dv
0 {0<x,0<x+y<L,0<y}
oS} L
:f <f fa(sm,ﬁ(z)dz) dv
0 0

L =)
=J <f faW,B(Z)dW> dz
0 s
and by differentiating

[l 2 )
0 {O<X,O<x+y<L,O<y}

L
= —f fos p(2) dzZ
0
= _FaSB(L)'
We obtain
- * asp(Y)
G(s):—J <ﬂ oo p(X) S’Byddydv.
6] {A<x<L,0<x+y<L,0<y}
This ends the proof u
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B. PROOF OF PROPOSITION 3.3

By integration of Eq(3.11) with respect ts between any > 0 andr,

T T o afu{
f G(s)ds —f (H (f fnu,,;(x)du) Lw)dxdy) ds
€ € {A<x<L,0<x+y<L,0<y 0 Js
- ff <f fau,B(X) du) ( fa‘r,B(y) - fae,ﬁ(y)) dX dy
{A<x<L,0<x+y<L,0<y} 0

—LL<LOO f[,u,ﬁ(x)du><J0LX(fM,B(y) — faes(Y)) dy> dx.

With z= L — x, we obtain after integration with respect g

f G(s)ds= ffo . <fo fou (L — z)du)(FM,ﬁ(z) — Foe.p(2)) dz,

whereF,; s =1— lfat,ﬁ is the distribution function of the Gamma probability functign,.
Let e tend to zeroThe Gamma probability la,. 5 converges toward the Dirac probability
law at zeroHence F,. 5(2) tends to one iz > 0. As a conclusion

fofé(s) ds= LLA<J:O foup(L — z)du) Forp(2)dz -
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