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Abstract

Computing the value of a high-dimensional integral can often be reduced to the problem of
finding the ratio between the measures of two sets. Monte Carlo methods are often used to
approximate this ratio, but often one set will be exponentially larger than the other, which
leads to an exponentially large variance. A standard method of dealing with this problem
is to interpolate between the sets with a sequence of nested sets where neighboring sets
have relative measures bounded above by a constant. Choosing such a well-balanced
sequence can rarely be done without extensive study of a problem. Here a new approach
that automatically obtains such sets is presented. These well-balanced sets allow for
faster approximation algorithms for integrals and sums using fewer samples, and better
tempering and annealing Markov chains for generating random samples. Applications,
such as finding the partition function of the Ising model and normalizing constants for
posterior distributions in Bayesian methods, are discussed.
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1. Introduction

Monte Carlo methods for numerical integration can have enormous variance for the types of
high-dimensional problems that arise in statistics and combinatorial optimization applications.
Consider a state space � with measure μ, and B ⊂ � with finite measure. Then the problem
considered here is approximating, for B ′ ⊂ B, the value of

A = μ(B)

μ(B ′)

to within a guaranteed level of relative error with a specified probability of success. This
problem has a number of applications, including model selection in Bayesian statistics (A can
be used to find the normalizing constant for a posterior distribution), approximation algorithms
for #P complete problems, and likelihood functions for spatial statistics models (such as in [8]).
Specific applications are discussed in Section 4.

The classical Monte Carlo approach is to create a random variable X such that E(X) = A,
where X has variance as small as possible. Unfortunately, it is often not possible to know the
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Random interpolating sets for integration 93

variance of X ahead of time, and this must be estimated as well. How good the estimate of the
variance is depends on even higher moments which are even more difficult to estimate, and so
this approach typically cannot guarantee a bound on the error of the result.

The method presented here is entirely new. It obtains an estimate of A of the form eX/k ,
where k is a known constant and X is a Poisson random variable with mean k ln(A). Because
the mean and variance for a Poisson random variable are the same, we simultaneously obtain
our estimate of A and knowledge of the variance of our estimate. In fact, the output from our
method allows us to handle the following tasks.

• Estimate A to within a specified relative error with a specified failure probability using
O(ln(A)2) samples.

• Obtain a well-balanced sequence of nested sets useful in building annealing and tempering
Markov chains that can be used to generate Monte Carlo samples.

• Develop an omnithermal approximation for partition functions arising from spatial point
processes and Gibbs distributions.

The following definition makes the notion of a randomized approximation algorithm precise.

Definition 1. Let I be a set of problem inputs, T : I → R
+ be the true answer to the

problem, and (�, F , P) be a probability space. Then T̂ : I × � × R
+ × (0, 1] → R

+ is
a (1 + ε, δ)-randomized approximation algorithm if, for all I ∈ I, for all ε > 0, and for all
δ ∈ (0, 1], we have

P((1 + ε)−1T (I) ≤ T̂ (I, ω, ε, δ) ≤ (1 + ε)T (I)) ≥ 1 − δ.

In other words, given a source of randomness to work with, the randomized approximation
algorithm returns a result within a factor of 1+ε of the true answer with a probability of at least
1 − δ. The new algorithm presented here is a (1 + ε, δ)-randomized approximation algorithm
that, for B ′ ⊆ B, approximates A = μ(B)/μ(B ′) using

2 ln(4δ−1)ε̃−2(1 + ε̃)[ln(A) + 1 + (ln(A) + 1)2(1 − ε̃)−1] (1)

samples on average, where ε̃ = min{ln(1 + ε), 1
2 } (see Theorem 2, below, for the proof).

Note that limε→0 ε̃/ε = 1. This compares favorably with previous algorithms such as self-
reducibility [9], which uses roughly 150 times as many samples to achieve the same result (see
Section 2.1). A recent algorithm for approximating normalizing constants of Gibbs distributions
by S̆tefankovic̆ et al. [19] (here referred to as SVV) uses a number of samples that is nearly
linear rather than quadratic in ln(μ(B)/μ(B ′)). However, the constant hidden by the big O
notation is at least 1010, making the algorithm impractical for real problems. We call the new
algorithm presented here the Tootsie Pop Algorithm (TPA); there is a good reason behind the
unusual name (see Section 3). It has several advantages over the self-reducibility and SVV
approaches. It is easy to implement, requiring only a few lines of code. Yet the output can be
analyzed precisely, giving rise to the number of samples given in (1).

The rest of the paper is organized as follows. Section 2 highlights previous work, and
compares our new approach to these previous methods. Section 3 describes the TPA procedure
in detail, then Section 4 shows some applications. Section 5 analyzes the expected running
time of the method, and introduces a two-phase approach to TPA. Section 6 shows how to
obtain an approximation that simultaneously works for all members of a continuous family of
sets at once. Section 7 describes how TPA can be used to build well-balanced nested sets for
tempering. Finally, Section 8 discusses further areas of exploration with TPA techniques.
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2. Previous work

The new method presented here follows a long line of work using interpolating sets.
For instance, Valleau and Card [21] introduced what they called multistage sampling where
an intermediate distribution was added to make estimation more effective, although they did
not analyze precisely the behavior of the resulting algorithm. Jerrum et al. [9] used a similar
idea of self-reducibility, and carefully analyzed the computational complexity of the resulting
approximation method.

2.1. Self-reducibility

The self-reducible methodology of [9] can be viewed using the following framework,
although originally the authors described their method in a very different fashion. Suppose
that we are given two sets B ′ and B of finite measure such that B ′ ⊂ B and μ(B ′) is known.
Self-reducibility requires a sequence of sets that interpolate from B ′ up to B, i.e.

B ′ = B� ⊆ B�−1 ⊆ B�−2 ⊆ · · · ⊆ B0 = B,

such that the relative measures of the sets μ(Bi+1)/μ(Bi) ≥ α for a fixed constant α ∈ (0, 1).
Then an unbiased estimate b̂i of μ(Bi+1)/μ(Bi) is obtained for each i. The product of these
estimates will then be an unbiased estimator for A = μ(B)/μ(B ′).

For fixed α ∈ (0, 1), it is easy to estimate μ(Bi+1)/μ(Bi) with small relative error simply
by drawing samples from μ(Bi) and counting the percentage of samples that fall in μ(Bi+1).
The relative standard deviation of a Bernoulli random variable with parameter α is (1−α)/α, so
it is important not to make α too small. On the other hand, if α is too large, then the nested sets
are not shrinking much at each step, and it will require a lengthy sequence of such sets. To be
precise, the number of sets � must satisfy � ≥ lnα(μ(B ′)/μ(B)) = ln(μ(B)/μ(B ′))/ ln(α−1),
which goes to infinity as α goes to 1. So there is an optimal value of α that balances these
considerations (see the proof of Lemma 3, below). Dyer and Frieze [3] proved the following
lemma, presented here in a form given in [19].

Lemma 1. ([19, Theorem 2.2].) Let W1, . . . , W� be independent random variables with

E[W 2
i ]

E[Wi]2 ≤ α−1 for i ∈ [�].

Let Ŵ = W1W2 · · · W�. Let Si be the average of 16α−1�ε−2 independent random samples from
Wi for i ∈ [�]. Let Ŝ = S1S2 · · · S�. Then

P((1 − ε)E[Ŵ ] ≤ Ŝ ≤ (1 + ε)E(Ŵ )) ≥ 3
4 . (2)

This is similar to the (1 + ε, δ)-randomized approximation algorithm with δ = 1
4 . Since

(1 − ε)E[Ŵ ] ≤ (1 + ε)−1
E[Ŵ ], the event in (2) is slightly weaker than that required by an

(1 + ε, 1
4 )-randomized approximation algorithm. In other words, to use self-reducibility to

construct a (1 + ε, 1
4 ) randomized approximation algorithm will require at least 16α−1�ε−2

samples.
The next lemma shows how to move from δ = 1

4 to an arbitrary δ > 0.

Lemma 2. With Ŝ as described in Lemma 1, let k = 
ln(δ−1)(2)(ln(4) − 1)−1 + 1
2�, let

Ŝ1, . . . , Ŝ2k−1 be 2k − 1 independent random variables each with the same distribution as Ŝ,
and let Ŝ(k) be the median of these random variables. Then

P((1 + ε)−1
E[Ŵ ] ≤ Ŝ(k) ≤ (1 + ε)E[Ŵ ]) ≥ 1 − δ.
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Proof. If at least half of {Ŝ1, . . . , Ŝ2k−1} are in (a, b), then the median will be as well.
Let N = #{i : Ŝi /∈ (a, b)}. Then N has a binomial distribution with parameters 2k − 1 and
p ≤ 1

4 . From a Chernoff bound analysis (see, for instance, [13, Theorem 4.1]) we have

P(N > 2E[N ]) = P

(
N <

(1 + 1)(2k − 1)

4

)
≤

[
e

22

](2k−1)/4

.

To make this right-hand side less than δ, it is necessary that k ≥ ln(δ−1)(2)(ln(4) − 1)−1 + 1
2 .

The next lemma then states how well self-reducibility does in terms of the number of samples
required.

Lemma 3. With a sequence of Bi sets such that μ(Bi+1)/μ(Bi) = α, the number of random
samples used in an (1 + ε, δ)-randomized approximation algorithm with the self-reducible
method is at least

306 ln(A)2ε−2 ln(δ−1).

Proof. From Lemma 1, we know that 16α−1[ln(#B/#B ′)/ ln(α−1)]2ε−2 samples are
necessary, and then this procedure must be repeated 2
ln(δ−1)(2)/(ln(4) − 1) + 1

2� + 1 ≥
4/(ln(4) − 1) ln(δ−1) times. The value for α that minimizes this expression is 1/e2, giving
a number of samples that is at least[

16e2(4)

(ln(4) − 1)/4

]
ε−2 ln(δ−1) > 306.048ε−2 ln(δ−1).

In other words, even if the best conditions prevailed, and we were handed a sequence of Bi

sets where the ratio from step to step was optimal or nearly optimal, a nuisance factor of over
three hundred still appears in the number of samples. Of course, in practice we do not have
such a sequence of sets available, and sequences that are constructed ad hoc are unlikely to be
near the optimal α value. Because such sets are likely to be close to, but not match exactly, a
fixed value of α, a well-balanced sequence can only require that they come close to this value.

Definition 2. For fixed constants 0 < α1 < α2 < 1, a sequence of sets B ′ = B� ⊆ · · · ⊆
B0 = B where the ratios μ(Bi+1)/μ(Bi) fall in [α1, α2] for all i is well balanced.

Well-balanced sequences have uses other than self-reducibility. The various methods of
designing Markov chains such as simulated annealing [11], simulated tempering, and parallel
tempering [5], [12], [20], all require such a sequence of well-balanced sets in order to mix
rapidly (see [22] and [23]).

2.2. Gibbs distributions

Given a finite state space � and function H : � → R, a Gibbs distribution is a family of
probability distributions indexed by a parameter β, where, for x ∈ �,

π({x}) = exp(−βH(x))

Z(β)
,

where Z(β) = ∑
y∈� exp(−βH(y)) is a normalizing constant known as the partition function.

For βB ′ < βB , let A = Z(βB)/Z(βB ′).
For the case where H(x) ∈ {0, 1, . . . , n}, S̆tefankovic̆ et al. [19] gave an algorithm (SVV)

that yields an (1 + ε, δ)-randomized approximation algorithm for A that used at least

1010ε−2 ln(A)(ln(n) + ln(ln(A)))5 ln(δ−1)

samples ([19, Corollary 1.5]).
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As shown in Section 4.1, it is possible to obtain such an approximation using TPA
with the average number of samples given in (1). While TPA is O(ln(A)2) and SVV is
O(ln(A) ln(ln(A))5), the respective constants of 2 and 1010 mean that TPA is the logical choice
to use even for very large problems. Also, ln(A) < ln(ln(A))5 up to around ln(A) ≈ 332 000.

Naturally, the best outcome would be to merge the TPA and SVV ideas: work in this direction
is ongoing by the authors [6].

2.3. Nested sampling

A special case is when approximating A is equivalent to approximating the normalizing
constant of a posterior distribution of a Bayesian analysis. Skilling [18] introduced nested
sampling as a way of generating a random sequence of nested sets. Unlike with self-reducibility,
there is no need to have the sequence of sets in hand ahead of time. Instead, it builds up sets
from scratch at random according to a well-defined procedure.

Unfortunately, nested sampling also has several disadvantages. The first is that it loses the
property of self-reducible algorithms that the variance of the output can be bounded prior to
running the algorithm. Because deterministic numerical integration was used in the method,
the error can be determined only up to a factor that depends upon the derivatives of a function
that is difficult to compute. Therefore, nested sampling falls in the class of methods where the
variance must be estimated, rather than bounded ahead of time as with self-reducibility.

Perhaps more importantly, the sets Bi will become disconnected when nested sampling is
applied to a multimodal distribution. Therefore, the method is really only appropriate for the
fairly restrictive case of unimodal posterior distributions.

2.4. Summary of relationship to previous work

The relationship between these ideas and TPA can be summarized as follows. Nested
sampling [18] does not give a randomized approximation algorithm. Self-reducibility is the
most general: it can handle the widest variety of problems. A subset of these problems can
be handled by TPA. On these problems TPA should be used since it is about 150 times as fast
as self-reducibility. The problem of approximation for Gibbs distributions is a special case of
problems handled by TPA. For these problems SVV is theoretically faster but in practice much
slower than TPA. A simple example of a problem that can be handled by TPA which is not a
Gibbs distribution is the normalizing constant of a posterior distribution where the family of
sets are truncated posteriors. This application is presented in Section 4.2.

3. The Tootsie Pop Algorithm

The new method presented here is called The Tootsie Pop Algorithm (TPA), and combines
the best features of the self-reducibility and nested sampling approach. Like self-reducibility,
it is very general, working over a wide variety of problems. This includes the nested sampling
domain of Bayesian posterior normalization, but also includes many other problems where self-
reducibility has been applied such as the Ising model. Portions of this work were presented at the
Ninth Valencia International Meetings on Bayesian Statistics, and appeared in the conference
proceedings of that meeting [7] with a discussion.

The name is somewhat unusual, and references an advertising campaign run for Tootsie
Pop candies. A Tootsie Pop is a chocolate chewy center surrounded by a candy shell. The
advertisement campaign asked ‘How many licks does it take to get to the center of a Tootsie
Pop?’. Our algorithm operates in a similar fashion. Our set B is slowly whittled away until the
center B ′ is reached. The number of steps taken to move from B to B ′ will be Poisson with
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mean ln(A), thereby allowing approximation of A. Therefore, the ‘number of licks’ is exactly
what is needed to form our estimate!

TPA has four general ingredients.

1. A measure space (�, F , μ).

2. Two finite measurable sets B and B ′ satisfying B ′ ⊂ B and μ(B ′) > 0. The set B ′ is the
center and B is the shell.

3. A family of nested sets {A(β) : β ∈ R ∪ {∞}} such that β ′ < β implies A(β ′) ⊆ A(β),
μ(A(β)) is a continuous function of β, and the limit of μ(A(β)) as β goes to −∞ is 0.

4. Special values βB and βB ′ that satisfy A(βB) = B and A(βB ′) = B ′.

With these ingredients, the TPA method is very simple to describe.

1. Start with i = 0 and βi = βB .

2. Draw a random variable Y from μ conditioned to lie in A(βi).

3. Let βi+1 = inf{β : Y ∈ A(β)}.
4. If Y ∈ B ′ stop and output i.

5. Else set i to be i + 1 and go back to step 2.

Another way of describing the draw in step 2 is that, for measurable D,

P(Y ∈ D) = μ(D ∩ A(βi))/μ(A(βi)).

At each step, the set A(βi) shrinks in measure with probability 1, and so is slowly worn away
until the sample falls into the region B ′.

Step 2 deserves special attention. Drawing a random sample Y from μ conditioned to lie
in A(βi) is in general a very difficult problem. The good news is that the importance of this
problem means that a vast literature for solving this problem exists. Markov chain Monte
Carlo (MCMC) methods are critical to obtaining these samples, and variations on the early
methods have blossomed over the last fifty years. Readers are referred to [4], [16], [17], and
the references therein for more information.

Of course, any other method for turning samples into approximations either implicitly or
explicitly depends on the ability to execute some variant of step 2 as well, so our algorithm is
not actually demanding anything above and beyond what other algorithms in this area require.
The algorithm is easily modified to handle different methods of simulating random variables.
For instance, nested sampling [18] can be run so that it draws several such Y variables in
parallel, and TPA can be written to do so as well.

The key fact about this process is given in the following result.

Theorem 1. At any step of the algorithm, let

Ei = ln(μ(A(βi))) − ln(μ(A(βi+1))).

Then the Ei are independent and identically distributed exponential random variables with
mean 1.
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Proof. To simplify the notation, let m(β) = μ(A(β)) and fix βi ≥ βB ′ . Suppose that
Y is drawn from μ conditioned to lie in A(βi) and βi+1 = inf{β : Y ∈ A(β)}. Let Ui =
m(βi+1)/m(βi). Since βi+1 ≤ βi , Ui ∈ [0, 1].

We now show that Ui has a uniform distribution over [0, 1]. Fix a ∈ (0, 1). Then, since
m is a continuous function with limβ→−∞ m(β) = 0, there exists a b ∈ (−∞, βi] such
that m(b)/m(βi) = a. If Y ∈ A(b) then βi+1 ≤ b and Ui ≤ m(b)/m(βi) = a. Hence,
P(Ui ≤ a) ≥ P(Y ∈ A(b)) = a.

Let n be any positive integer, as before there is a value bn such that m(bn) = a + 1/n.
If Y /∈ A(bn), then inf{β : Y ∈ A(β)} ≥ a + 1/n and Ui ≥ a + 1/n. Hence, if Ui ≤ a, then
Y ∈ A(bn) and P(Ui ≤ a) ≤ P(Y ∈ A(bn)) = a + 1/n. Since n was arbitrary, this means
that P(Ui ≤ a) ≤ a. Combining with P(Ui ≤ a) ≥ a gives that Ui is uniformly distributed
on [0, 1].

Finally, since Ui is uniform over [0, 1], − ln(Ui) = ln(μ(A(βi))) − ln(μ(A(βi+1))) is an
exponential random variable with mean 1, completing the proof.

For t (β) = ln(μ(A(β))), Theorem 1 says that the values of t (βi) − t (βi+1) in a run of
TPA are exponential random variables of mean 1, so {t (β1), . . . , t (βi)} forms a homogeneous
Poisson point process on [t (βB ′), t (βB)] of rate 1.

3.1. Taking advantage of Poisson point processes

Poisson point processes have several nice properties that will be of use to us. First, consider
the total number of points used by a run of TPA, that is, the value of i at the end of the algorithm.
Because the t (βi) values form a Poisson point process, the distribution of i is Poisson with mean
t (βB) − t (βB ′) = ln(μ(B)/μ(B ′)) = ln(A).

Furthermore, the union of k independent Poisson point processes of rate 1 is also a Poisson
point process of rate k. Therefore, after k runs of TPA, the distribution of the total number of
samples used is still Poisson, but with a mean of k ln(A).

4. Applications

The following examples illustrate some of the applications of TPA.

4.1. The Ising model

The Ising model is an example of a Gibbs distribution as described in Section 2.2.
In the Ising model, begin with a graph G = (V , E) with #V nodes and #E edges. Each

node of a graph G = (V , E) is assigned one of two values, −1 and 1. In order to use TPA with
Gibbs distributions, it is easiest to first write the model so that H(x) ≥ 0.

For the Ising model, this can be accomplished by setting H(x) = 1 + #E −∑
i<j x(i)x(j).

Note that adding a constant (such as 1 + #E) to H(x) does not change the distribution.
In order to embed this problem in the framework of TPA, add one auxiliary dimension to

the #V dimensional configuration x. The new state space is then

�aux(β) = {(x, y) : x ∈ {0, 1}V , y ∈ [0, exp(βH(x))]}.
Note the following observations on �aux(β).

• The state space is a collection of one dimensional line segments in #V + 1 dimensional
space.

• The total length of the line segments in �aux(β) is just Z(β). That is to say, μ(�aux(β)) =
Z(β) where μ is the one dimensional Lebesgue measure of the union of the line segments.
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• Let β ′ < β. Then, since H(x) > 0, �aux(β
′) ⊂ �aux(β). Moreover, Z(β) is a

continuous function that goes to 0 as β → −∞. Therefore, Condition 2 of the TPA
ingredients (see Section 3) is satisfied.

• For β = 0, y ∈ [0, 1] for all x ∈ {0, 1}. That means Z(0) = 2V .

• Let β > 0. Then �aux(β) is the shell, and �aux(0) is the center.

With this in mind, the TPA algorithm works as follows.

1. Start with i = 0 and β0 = β.

2. Draw a random sample X from πβi
, then draw Y (given X) uniformly from

[0, exp(βiH(X))].
3. Let βi+1 = ln(Y )/H(X).

4. If βi+1 ≤ 0 stop and output i.

5. Else set i to be i + 1 and go back to step 2.

The expression in step 3 uses the fact that ln(Y )/H(X) = inf{b : exp(bH(X)) = Y }.
One run of TPA will require on average 1 + ln(Z(β)/Z(0)) = 1 + ln(Z(β)) − #V ln(2)

samples from the model with different values of β.
This simple method of adding a single auxiliary variable allows TPA to be used on a variety

of discrete distributions by changing the measure to one that varies continuously in the index.

4.2. Posterior distributions

In Bayesian analysis, often it is necessary to find the normalizing constant of a posterior
distribution. This is known as the evidence for a model, and can be written

Z =
∫

x∈�

f (x) dx,

where f (x) is a nonnegative density (the product of the prior density and the likelihood of the
data) and � ⊆ R

n.
For a point c ∈ � and ε > 0, let B1

ε (c) be the points within L1 distance ε of c. Suppose
that, for a particular c and ε, B1

ε (c) ⊂ � and there is a known M such that 1
2M ≤ f (x) ≤ M

for all x ∈ B1
ε (c).

Then to estimate Z(ε) = ∫
x∈B1

ε (c)
f (x) dx, draw N independent and identically distributed

samples X1, . . . , XN uniformly from Bε(c), and let the estimate be

Ẑ(ε) = (2ε)−n
∑

i

f (Xi)

N
.

Then Ẑ(ε) is an unbiased estimate for Z(ε) with standard deviation bounded above by
Z(ε)/

√
N .

Now we connect this problem to TPA. The family of sets is {A(β) = B1
β(c) ∩ �}, and the

measure is μ(A(β)) = ∫
x∈A(β)

f (x) dx. The shell will be A(∞) (so Z = μ(A(∞))) and the
center A(ε) (with measure Z(ε)). TPA can then be used to estimate Z/Z(ε), and the estimate
of Z(ε) can then finish the job.
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5. Running time of TPA

Suppose that TPA is run k times, and the k values of the i variable at the end of each
run are summed together. Call this sum N . Then N has a Poisson distribution with mean
k ln(μ(B)/μ(B ′)). This makes N/k an unbiased estimate of ln(μ(B)/μ(B ′)). The variance of
N/k is ln(μ(B)/μ(B ′))/k.

Let W be a normal random variable of mean 0 and variance 1, and Wα be the inverse
cumulative distribution function of W so that P(W ≤ Wα) = α. Then the normal approximation
to the Poisson gives [

N

k
− Wα/2

√
N

k
,
N

k
+ Wα/2

√
N

k

]

as an approximately 1 − α level confidence interval for ln(μ(B)/μ(B ′)). Exponentiating then
gives the 1 − α level for μ(B)/μ(B ′).

For a specific output, it is also possible to build an exact confidence interval for μ(B)/μ(B ′)
since the distribution of the output is known exactly.

Similarly, it is easy to perform a Bayesian analysis and find a credible interval given a prior
on ln(μ(B)/μ(B ′)).

But we are interested in more than confidence intervals! Consider how to build a (1 + ε, δ)-
randomized approximation scheme whose output Â satisfies

P((1 + ε)−1A ≤ Â ≤ (1 + ε)A) > 1 − δ.

From Section 3, the output of one run of TPA is a Poisson random variable with mean ln(A).
It is well known that the sum of independent Poisson random variables is another Poisson
random variable. Hence, after running TPA k times, the result is a Poisson random variable
with mean k ln(A). The following lemma gives a bound on the tails of the Poisson distribution.

Lemma 4. Let a > 0 and N be a Poisson random variable with mean k ln(A). Then

P

(∣∣∣∣Nk − ln(A)

∣∣∣∣ ≥ a

)
≤ 2 exp

(
− ka2

2[ln(A) + a]
)

.

(This result follows from Lemma 5, below.)
To obtain our (1 + ε, δ)-randomized approximation algorithm, we would like to make

a = ln(1 + ε), and set k so that 2 exp(−ka2/(2[ln(A) + a])) ≤ δ. In other words, we wish to
set k to be something like 2 ln(1 + ε)−2 ln(A)(1 + ln(1 + ε) ln(2δ−1)). But ln(A) is unknown
at the start of the algorithm!

There are many ways around this difficulty, here we use a two-phase method. First obtain a
rough estimate of ln(A), then refine this estimate to the level demanded by ε.

Phase I. Let ε̃ = min{ln(1 + ε), 1
2 } and k1 = 2 ln(4δ−1)ε−2(1 + ε̃). Then let N1 be the sum of

the outputs from k1 runs of TPA.

Phase II. Set k2 = (N1 + k1)(1 − ε̃)−1. Let N2 be the sum of the outputs from k2 runs of TPA.
The final estimate is Â = exp(N2/k2).

Note that ε̃ = min{ln(1 + ε), 1
2 } is equivalent to requiring ε ≤ exp( 1

2 ) − 1 ≈ 0.648 7.
This is necessary to ensure that (1 − ε̃)−1 is bounded above.

After Phase I has been run, N1/k1 estimates ln(A) to within an additive error of ε̃ ln(A) with
a probability of at least 1 − δ/2. Phase II then uses the Phase I estimate of ln(A) to obtain the
better estimate N2/k1 of ln(A) to within an additive error of ε̃.
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Theorem 2. The output Â of the above procedure is a (1 + ε, δ)-randomized approximation
scheme for A = μ(B)/μ(B ′).The running time is random, with the expected number of samples
bounded above by

2 ln(4δ−1)ε̃−2(1 + ε̃)[ln(A) + 1 + (ln(A) + 1)2(1 − ε̃)−1].
Proof. Call Phase I a success if N1/k1 is within a distance of ε̃(ln(A) + 1) of ln(A). From

Lemma 4, with a = ε̃ ln(A), we have

P

(∣∣∣∣N1

k1
− ln(A)

∣∣∣∣ ≥ ε̃(ln(A) + 1)

)
≤ 2 exp

(
− k1(ln(A) + 1)2ε̃2

2(ln(A) + ε̃(ln(A) + 1))

)

≤ 2 exp

(
−k1ε̃

2(ln(A) + 1)

2(1 + ε̃)

)

≤ δ

2
.

Therefore, the probability that Phase I is a failure is at most δ/2.
When Phase I is a success,

N1 ≥ k1(ln(A) − ε̃(ln(A) + 1)),

so, for k2 = (N1 + k1)(1 − ε̃)−1, we have k2 ≥ [ln(A)+ 1]k1. Substituting this into Lemma 4,
with α = ε̃, yields

P

(∣∣∣∣N2

k2
− ln(A)

∣∣∣∣ ≥ ε̃

)
≤ 2 exp

(
−[ln(A) + 1]2ε̃−2(1 + ε̃) ln(4δ−1)ε̃2

2[ln(A) + ε̃]
)

.

Since (ln(A) + 1)(1 + ε̃) > ln(A) + ε̃, the probability is at most 2 exp(− ln(4δ−1)) = δ/2.
That means the chance of failure in either phase is at most δ/2 + δ/2 = δ, so altogether

|(N2/k2) − ln(A)| ≤ ε̃ with a probability of at least 1 − δ. Since Â = exp(N2/k2),

{
−ε̃ ≤ N2

k2
− ln(A) ≤ ε̃

}
⇐⇒ {(1 + ε)−1A ≤ Â ≤ (1 + ε)A},

and we have our (1 + ε, δ)-randomized approximation algorithm.
The expected number of samples needed in Phase I is k1[ln(A) + 1], while the expected

number needed in Phase II is

E[N1 + k1](1 − ε̃)−1[ln(A) + 1] = (k1 ln(A) + k1)(1 − ε̃−1)−1[ln(A) + 1].
Summing the Phase I and II average samples gives a total bounded above by

2 ln(4δ−1)ε̃−2(1 + ε̃)[ln(A) + 1 + (ln(A) + 1)2(1 − ε̃)−1].

6. Omnithermal approximation

Suppose that, instead of just a single value of interest μ(B)/μ(B ′), it is necessary to obtain
an approximation of μ(A(β))/μ(B ′) that is valid for all values β ∈ [βB ′ , βB ] simultaneously.
We will call this an omnithermal approximation. These problems appear in what are called
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doubly intractable posterior distributions arising in Bayesian analyses involving spatial point
processes. They are usually dealt with indirectly using Markov chain Monte Carlo with auxiliary
variables [14], but an omnithermal approximation allows for a more direct approach.

In Section 3 it was shown that the t (A(βi)) values form a Poisson point process P on the
interval [0, ln(A)]. To move from P to a Poisson process, set

NP (t) = #{b ∈ P : b ≥ βB − t}.
As t advances from 0 to βB − βB ′ , NP (t) increases by 1 whenever it hits a β value. By the
theory of Poisson point processes, this happens at intervals that will be independent exponential
random variables with rate k.

Given NP (t), approximate μ(B)/μ(A(β)) by exp(NP (βB − β)/k). When β = βB ′ , this is
just the approximation given earlier, so this generalizes the description of TPA from before.

The key fact is that NP (t) − kt is a right-continuous martingale. To bound the error in
exp(NP (t)/k), it is necessary to bound the probability that NP (t)− kt has drifted too far away
from 0 for t ∈ [0, ln(A)].
Lemma 5. Let ε̃ > 0. Then, for NP (·), a rate k Poisson process on [0, ln(A)], we have

P

(
sup

t∈[0,ln(A)]

∣∣∣∣NP (t)

k
− t

∣∣∣∣ ≥ ε̃

)
≤ 2 exp

(
− kε̃2

2[ln(A) + ε̃]
)

.

Proof. The approach will be similar to finding a Chernoff bound [2]. Since exp(αx) is
convex for any positive constant α, and NP (t) is a right-continuous martingale, exp(αNP (t))

is a right-continuous submartingale.
Let AU denote the event that (NP (t)/k) − t > ε for some t ∈ [0, ln(A)]. Then, for all

α > 0,
P(AU) = P

(
sup

t∈[0,ln(A)]
exp(αNP (t)) ≥ exp(αkt + αkε)

)
.

It follows from basic Markov-type inequalities on right-continuous submartingales [10, p. 13]
that this probability can be upper bounded for all α > 0, i.e.

P(AU) ≤ E

(
exp(αNP (ln(A)))

exp(αk ln(A) + αkε̃)

)
.

Using the moment generating function for a Poisson with parameter k ln(A), we obtain

E[exp(αNP (ln(A)))] = exp(k ln(A)(exp(α) − 1)),

which means
P(AU) ≤ exp(ln(A)(eα − 1 − α) − αε̃)k.

This is true for any α > 0, so we choose α = ln(1 + ε̃/ ln(A)) which minimizes the right-hand
side. After simplifying,

P(AU) ≤ exp

(
ε̃ + (ln(A) + ε̃) ln

(
1 − ε̃

ln(A) + ε̃

))k

.

Recalling that, for γ ≥ 0, ln(1 − γ ) ≤ −γ − γ 2/2 allows us to further bound the right-hand
side as follows:

P(AU) ≤ exp

( −kε̃2

2(ln(A) + ε̃)2

)
.
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The other tail can be dealt with in a similar fashion, yielding the following bound:

P

(
sup

t∈[0,ln(A)]
NP (α)

k
− t ≤ ε̃

)
≤ exp

( −kε̃2

2 ln(A)

)
.

The union bound on the two tails then yields the following theorem.

Theorem 3. The two-phase TPA algorithm generates a (1 + ε, δ)-omnithermal approximation
using a number of samples (on average) bounded by

2 ln(4δ−1)ε̃−2(1 + ε̃)[ln(A) + 1 + (ln(A) + 1)2(1 − ε̃)−1].
Proof. The proof is the same as for Theorem 2, using Lemma 5 instead of Lemma 4.

6.1. Example: omnithermal approximation for the Ising model

Consider the following model. The value of β is drawn from a prior density fprior(·)
on [0, ∞), and then the data (conditioned on β) is drawn from the Ising model. This was
used by Besag [1] as a model for agriculture wherein soil quality of adjacent plots was more
likely to be similar.

Given the data X, the Bayesian posterior density for β is

fβ,post(b) ∝ fβ,prior(b)
exp(−bH(X))

Z(b)
. (3)

The evidence for the model is the integral of the right-hand side of (3) as b runs from 0 to ∞.
This is only a one-dimensional integration, and so should be straightforward from a numerical
perspective, except that Z(b) is unknown.

Here is where the omnithermal approximation comes in: it gives an approximation for Z(b)

that is valid for all values of b at once. Any numerical integration technique can be used, and
the final value for the evidence (not including error arising from the numerical method) will be
within a factor of 1 + ε of the true answer.

Figure 1 presents two omnithermal approximations for log Zβ generated using this method
on a 50 × 50 square lattice. Part (a) is the result of a single run of TPA from β = 0.5 down

1675 1703

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

ln
 (Z

( 
  )

)
β

β β

ln
 (Z

( 
  )

)
β

(a) (b)

Figure 1: Omnithermal approximations for the partition function of the Ising model on a 50 × 50 square
lattice. Part (a) is the result of one run of TPA; part (b) is the result of 16 runs.
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to β = 0. At each β value returned by TPA, the approximation drops by 1. Since the graph
drops 1 675 times, the best estimate for z(0.5) is 1 675. Part (b) is the result of runs of TPA, and
gives the slightly better estimate of z(0.5) ≈ 1 703. Part (b) is smoother, and contains 27 254
β values compared to only 1 675 β values for the one run. The samples used within TPA came
from coupling from the past [15] applied to the random scan Gibbs chain.

Note that methods such as nested sampling [18] only produce an estimate of the partition
function at a single value of β rather than for β in an interval as with TPA.

7. Well-balanced nested sets

Once a user has the ability to obtain an omnithermal approximation to the μ(A(β)) curve,
finding a well-balanced set of βi , as in Definition 2, is easy.

Fix 0 < α1 < α2 < 1 as in Definition 2. Then let ε = α
1/4
2 α

−1/4
1 − 1 so that (1 + ε)2 =

α
1/2
2 α

−1/2
1 . Now find an omnithermal approximation for μ(A(β)) over [βB ′ , βB ]. Call the

approximation μ̂(A(β)). With a probability of at least 1 − δ, for all β ∈ [βB ′ , βB ], we have
μ(A(β)) within a factor of 1 + ε of μ̂(A(β)).

Now find values βB ′ = β� < β�−1 < · · · < β1 < β0 = βB such that

μ̂(A(βi))

μ̂(A(βi−1))
= (α2α1)

1/2,

for all i ∈ {1, . . . , �}.
Since the μ̂ function is within a factor of 1 + ε of the μ function, for any i ∈ {1, . . . , �}, we

have

(1 + ε)−2α
1/2
2 α

1/2
1 ≤ μ(A(βi))

μ(A(βi−1))
≤ (1 + ε)2α

1/2
2 α

1/2
1 ,

and from our choice of ε,

α1 ≤ μ(A(βi))

μ(A(βi−1))
≤ α2,

making the schedule well balanced.

8. Conclusions and further work

The strength of TPA is the generality of the procedure, but that same generality means that
it is possible to do better in restricted circumstances. For instance, when f (x) falls into the
class of Gibbs distributions, S̆tefankovic̆ et al. [19] were able to give an Õ(ln(Z)) algorithm for
approximating Z, but the high constants involved in their algorithm make it solely of theoretical
interest. (Here the Õ notation hides factors of ln(ln(Z)).) TPA can be used in conjunction with
their algorithm [6] to build an O(ln(Z) ln(ln(Z))) algorithm, and work continues to bring this
running time down to O(ln(Z)).
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