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Abstract

The Frobenius–Schur indicators of characters in a real 2-block with dihedral defect groups have
been determined by Murray [‘Real subpairs and Frobenius–Schur indicators of characters in 2-blocks’,
J. Algebra 322 (2009), 489–513]. We show that two infinite families described in his work do not
exist and we construct examples for the remaining families. We further present some partial results on
Frobenius–Schur indicators of characters in other tame blocks.
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1. Introduction

Finite groups with dihedral Sylow 2-subgroups were fully classified by Gorenstein
and Walter [20–23] (an alternate proof was given by Bender [2, 3]). The principal
2-blocks of such groups were investigated by Brauer [8], Erdmann [15], Landrock
[29], and recently Koshitani and Lassueur [28]. As a natural next step, it is desirable
to understand arbitrary blocks B of finite groups G with dihedral defect groups D of
order 2d ≥ 4. Brauer [9] has shown that the number of irreducible characters in B is
k(B) = 2d−2 + 3, where four of them have height 0 and the remaining characters have
height 1. However, the number of simple modules in B is l(B) = 1, 2 or 3 depending
on three different fusion patterns. (If B is the principal block, the fusion patterns are
distinguished by the number of conjugacy classes of involutions: there are three, two
or only one such class, respectively.) Based on Brauer’s computations, Cabanes and
Picaronny [10] have constructed perfect isometries between blocks with dihedral defect
groups and the same fusion pattern.
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328 B. Sambale [2]

The algebra structure of B was first investigated for solvable groups G by Erdmann
and Michler [18], and Koshitani [27]. The general case of arbitrary groups was
subsequently studied by Donovan [12] and by Erdmann [16, 17] in the framework
of tame algebras. Some of the algebras with two simple modules described by
Erdmann were not known to occur as block algebras. For l(B) = 3, Linckelmann [30]
has lifted the perfect isometries constructed by Cabanes and Picaronny to derived
equivalences. This applies in particular to Klein four defect groups (that is, d = 2)
where one has stronger results by Linckelmann [31] and Craven et al. [11] on the
source algebra of B (the case l(B) = 2 does not occur here). The derived equivalence
classes for l(B) = 2 were later found by Holm [25]. The possible Morita equivalence
classes in this situation were restricted by Bleher [4, 5] and Bleher et al. [6] using
universal deformation rings. Thereafter, Eisele [14] proved that certain scalars in
Erdmann’s description of the basic algebra cannot arise for l(B) = 2. Finally, using the
classification of finite simple groups, a complete list of all Morita equivalence classes
of blocks with dihedral defect groups was given recently by Macgregor [33].

Some questions on blocks cannot even be answered when the Morita equivalence
class is known. For instance, if B contains real characters χ ∈ Irr(B), it is of interest to
determine their Frobenius–Schur indicators (F-S indicators for short),

ε(χ) :=
1
|G|

∑
g∈G

χ(g2),

in terms of D. Since χ(g2) can only be nonzero when the square of the 2-part of g is
conjugate to an element in D, it is plausible that ε(χ) actually depends on an extension
E of D such that |E : D| = 2. In fact, Murray [35] has described the F-S indicators
when D is a dihedral group using the decomposition matrix and the so-called extended
defect group of B. It is however not clear which combinations of these ingredients can
actually occur. The aim of this note is to eliminate two infinite families of Murray’s
classification and construct explicit examples for the remaining cases.

THEOREM 1.1. Let B be real block of a finite group G with dihedral defect group D of
order 2d ≥ 8 and extended defect group E. Let ε1, . . . , ε4 be the F-S indicators of the
four irreducible characters of height 0 in B. There is a unique family of 2-conjugate
characters of height 1 in Irr(B) of size 2d−3. Let μ be the common F-S indicator of
those characters. The possible values for ε1, . . . , ε4, μ are given in Table 1, while the
remaining 2d−3 − 1 characters (of height 1) all have F-S indicator 1. All cases occur
for all d as indicated.

The proof of Theorem 1.1 is given in Section 2. In Section 3, we refine one of
the conjectures made in [41]. In this context, we present two new general results in
Section 4. We apply these results in Section 5 to obtain partial information on the
F-S indicators of characters in arbitrary tame blocks. Finally, we determine all F-S
indicators in real blocks with homocyclic defect group of type C4 × C4.
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[3] Real blocks with dihedral defect groups 329

TABLE 1. F-S indicators for Theorem 1.1.

Morita equivalence class l(B) E ε1, . . . , ε4; μ

D (nilpotent) 1 D, D × C2 1, 1, 1, 1; 1
D ∗ C4 1, 1, 1, 1;−1
D2d+1 0, 0, 1, 1; 1
SD2d+1 0, 0, 1, 1;−1
C2d−1 � C2

2, d ≥ 4 1, 1, 1, 1; 0
PGL(2, q), |q − 1|2 = 2d−1 2 D, D × C2 1, 1, 1, 1; 1

C2d−1 � C2
2, d ≥ 4 1, 1, 1, 1; 0

PGL(2, q), |q + 1|2 = 2d−1 2 D, D × C2 1, 1, 1, 1; 1
PSL(2, q), |q − 1|2 = 2d 3 D, D × C2 1, 1, 1, 1; 1

D2d+1 0, 0, 1, 1; 1
SD2d+1 0, 0, 1, 1;−1
C2d−1 � C2

2, d ≥ 4 1, 1, 1, 1; 0
PSL(2, q), |q + 1|2 = 2d 3 D, D × C2 0, 0, 1, 1; 1

D2d+1 1, 1, 1, 1; 1
A7, d = 3 3 D, D × C2 1, 1, 1, 1; 1

2. Proof of Theorem 1.1

Our notation is fairly standard and follows [41]. We assume a very basic under-
standing of fusion systems and refer to [32] occasionally. In the following, let B be a
2-block of a finite group G. We may assume that B is real, that is, Irr(B) is invariant
under complex conjugation (otherwise all characters in Irr(B) have F-S indicator 0).
Recall that B determines up to conjugation a unique defect pair (D, E) such that D is
a defect group and E is an extended defect group of B (see [41, Section 3] for details).
We remark that D ≤ E and |E : D| ≤ 2 with equality if and only if B is not the principal
block.

Now let D be a dihedral group of order 2d ≥ 4. Then B is nilpotent if and only
if l(B) = 1. For l(B) > 1 and d ≥ 3, we have observed that two type (b) cases in
[35, Table 2] have no counterparts in [34, Theorems 1.7, 1.8] for d = 2 (that is, D
is a Klein four-group). In fact, the following proposition shows that these two cases in
[35, Table 2] do not occur.

PROPOSITION 2.1. Let B be a real 2-block of a finite group G with defect pair (D, E)
such that D � D2d with d ≥ 3. If l(B) > 1, then E � D × C2 or CE(D) = Z(D).

PROOF. Let bD be a Brauer correspondent of B in DCG(D). Then by [35, Lemma 2.2],
we may choose E in such a way that bECG(D)

D is real with defect pair (D, E). In other
words, (D, bD, E) is a Sylow B-subtriple in the notation of [35]. Since B is not nilpotent,
there exists a so-called essential subgroup Q ≤ D in the fusion system F of B. Then
Q is a Klein four-group and there exists a unique B-subpair (Q, bQ) ≤ (D, bD) (see [37,
Theorem 1]). Moreover, bQ is nilpotent with defect group CD(Q) = Q (see [1, Theorem
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330 B. Sambale [4]

IV.3.19]). Since Q is essential,

NG(Q, bD)/CG(Q) � AutF (Q) � S3.

The block BQ := bNG(Q,bQ)
Q has defect group ND(Q) � D8 by [1, Theorem IV.3.19].

By [36, Corollary 9.21], BQ is the only block of NG(Q, bQ) that covers bQ. Since
every subgroup of S3 has trivial Schur multiplier, each ψ ∈ Irr(bQ) extends to its
inertial group. The number of extensions is determined by Gallagher’s theorem. If ψ
is NG(Q, bQ)-invariant, Irr(BQ) contains three extensions of ψ. Since k(BQ) = 5, there
can be at most one such character ψ. If NG(Q, bQ) has two orbits of length 2 in Irr(bQ),
then we would get six characters in Irr(BQ). Therefore, the four characters in Irr(bQ)
distribute into orbits of length 1 and 3 under the action of NG(Q, bQ). In particular,
Irr(bQ) contains (at least) three characters with the same F-S indicator.

The possible extended defect groups E were determined in [35, Proposition 4.1].
Suppose that our claim is false. Then we are in case (b), that is, E � D ∗ C4 is a
central product. By [35, Lemma 2.6], bQ is real and has extended defect group CE(Q) =
Q ∗ E � C4 × C2. However now, [34, Theorem 1.7] implies that exactly two characters
in Irr(bQ) have F-S indicator 1. This contradicts the observation above. �

To show that the remaining cases in [35, Table 2] occur, we provide a general
construction.

PROPOSITION 2.2. Let H < Ĥ be finite groups such that |Ĥ : H| = 2. Let E be a
Sylow 2-subgroup of Ĥ and let D := E ∩ H. Let H × C3 < G < Ĥ × S3 such that
H × S3 � G � Ĥ × C3. Then G has a real 2-block B with defect pair isomorphic to
(D, E). Moreover, B is Morita equivalent to the principal block B0(H) of H, and B and
B0(H) have the same fusion system.

PROOF. Note that B0(H) is isomorphic to a (nonreal) block B0(H) ⊗ b of H × C3,
where b � F is a nonprincipal block of C3. Clearly, B0(H) and B0(H) ⊗ b have the
same fusion system. Let

B := (B0(H) ⊗ b)G

be the Fong–Reynolds correspondent of B0(H) ⊗ b in G. By [32, Theorem 6.8.3], B is
Puig equivalent to B0(H) ⊗ b (that is, the blocks have the same source algebra). This
implies that B is Morita equivalent to B0(H) and both blocks have the same fusion
system (see [32, Theorem 8.7.1]). In particular, B has defect group D.

Let Irr(b) = {θ}. Then χ := (1H × θ)G ∈ Irr(B) is a real character and therefore B
is real. Moreover, B is not the principal block of G since otherwise, B cannot cover
B0(H) ⊗ b. Therefore, an extended defect group of B must be a Sylow 2-subgroup of
G, because |G : H × C3| = 2. Let e ∈ E \ D and x ∈ S3 an involution. Then, D〈ex〉 is a
Sylow 2-subgroup of G and

E → D〈ex〉, g �→
⎧⎪⎪⎨⎪⎪⎩

g if g ∈ D,
gx if g � D

is an isomorphism. �
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Choosing (H, Ĥ) = (D, E) in Proposition 2.2 shows that there are nilpotent real
blocks for every given defect pair (D, E). Similarly, the choice Ĥ = H × C2 leads to
G = H × S3 and a block with extended defect group E � D × C2.

PROOF OF THEOREM 1.1. By Proposition 2.1 and [35, Table 2], it remains to construct
examples for each Morita equivalence class and each defect pair. By the remark above,
we may assume that B is not nilpotent. Then by [33, Theorem 2.1], B is Morita
equivalent to B0(H), where H is one of the following groups:

(1) PGL(2, q) with |q − 1|2 = 2d−1;
(2) PGL(2, q) with |q + 1|2 = 2d−1;
(3) PSL(2, q) with |q − 1|2 = 2d;
(4) PSL(2, q) with |q + 1|2 = 2d;
(5) A7 with d = 3.

Note that for every d ≥ 3, there exists a prime q congruent to ±1 + 2d modulo 2d+1

by Dirichlet’s theorem. Thus, appropriate groups H exist for every d. Moreover, if
q ≡ 1 + 2d (mod 2d+1), then q2 ≡ 1 + 2d+1 (mod 2d+2). This will be used later on.

For the cases (2) and (5), Murray [35, Table 2] has shown that only E � D × C2 is
possible. Here, we take G = H × S3 as explained above. In case (4), we find E � D2d+1

in [35, Table 2]. Since

H � SL(2, q)Z(GL(2, q))/Z(GL(2, q)) ≤ PGL(2, q),

we can take Ĥ := PGL(2, q) with the required properties.
Suppose now that case (1) occurs. By the remark above, we find a prime p such that

q = p2 ≡ 1 + 2d (mod 2d+1). Let σ be the Frobenius automorphism Fq → Fq, x �→ xp.
Then the semilinear group Ĥ := H � 〈σ〉 has Sylow 2-subgroup E � C2d−1 � C2

2, where
C2

2 acts faithfully on C2d−1 . (This is type (e) in [35, Proposition 4.1].)
Next, consider case (3). The choice Ĥ := PGL(2, q) realises E � D2d+1 . We

may therefore assume that q = p2 as above. Then there exists a subgroup Ĥ of
PGL(2, q) � 〈σ〉 of index 2 with semidihedral Sylow 2-subgroup E � SD2d+1 . (This
group is denoted by PGL(2, q)∗ in [19].) Finally, let d ≥ 4. Here, Ĥ := H � 〈σ〉 has
Sylow 2-subgroup E � C2d−1 � C2

2 as above. �

3. A refined conjecture

In [41, Conjecture C], the following conjecture was proposed.

CONJECTURE 3.1. Let B be a real, nonprincipal 2-block with defect pair (D, E) and a
unique projective indecomposable character Φ. Then,

ε(Φ) = |{x ∈ E \ D : x2 = 1}|.

Let Φϕ be the projective indecomposable character attached to some ϕ ∈ IBr(B).
Murray [34, Lemma 2.6] has shown that ε(Φϕ) is the multiplicity of ϕ as a constituent

https://doi.org/10.1017/S0004972723000436 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000436


332 B. Sambale [6]

of the permutation character on {x ∈ G : x2 = 1} (see Lemma 4.1 for a refinement).
I now believe that the conjecture holds orbit-by-orbit as follows.

CONJECTURE 3.2. Let B be a real, nonprincipal 2-block with defect pair (D, E) and a
unique projective indecomposable character Φ. Then, for every involution x ∈ G,

[ΦCG(x), 1CG(x)] = |xG ∩ E \ D|,

where xG denotes the conjugacy class of x in G.

Note that [ΦCG(x), 1CG(x)] = |D|[ϕCG(x), 1CG(x)]0, where IBr(B) = {ϕ} in the situation of
Conjecture 3.2.

THEOREM 3.3. If Conjecture 3.2 holds for B, then Conjecture 3.1 holds for B.

PROOF. LetΩ := {x ∈ G : x2 = 1}. Note that the equation in Conjecture 3.2 is also true
for x = 1 since B is not principal. Recall that Φ vanishes on the elements of even order.
By the definition of F-S indicators and Conjecture 3.2,

ε(Φ) =
1
|G|

∑
g∈G
Φ(g2) =

1
|G|

∑
x∈Ω

∑
h∈CG(x)0

Φ(h2) =
∑

x∈Ω/G
[ΦCG(x), 1CG(x)]

=
∑

x∈Ω/G
|xG ∩ E \ D| = |Ω ∩ E \ D| = |{x ∈ E \ D : x2 = 1}|. �

4. Two general lemmas

In this section, we prove two new results, which are related to Conjecture 3.1. These
will be applied in the subsequent sections.

Recall that a B-subsection is a pair (x, bx), where x ∈ D and bx is a Brauer
correspondent of B in CG(x). In [41, remark before Theorem 13], we explained
that, after conjugation, we may assume that bx has defect pair (CD(x), CE(x)) (if
bx is nonreal, then CD(x) = CE(x)). For χ ∈ Irr(B) and ϕ ∈ IBr(bx), we denote the
corresponding generalised decomposition number by dx

χϕ. In analogy to principal
indecomposable modules, we set Φx

ϕ :=
∑
χ∈Irr(B) dx

χϕχ.
The following result generalises [34, Lemma 2.6].

LEMMA 4.1. Let B be a real 2-block with defect pair (D, E) and subsection (x, b).
Let π be the Brauer permutation character of the conjugation action of CG(x) on
Ωx := {y ∈ G : y2 = x}. Then the multiplicity of ϕ ∈ IBr(b) as a constituent of π is

ε(Φx
ϕ) =

∑
χ∈Irr(B)

ε(χ)dx
χϕ.

In particular, ε(Φx
ϕ) is a nonnegative integer. If there is no e ∈ E \ D such that e2 = x,

then ε(Φx
ϕ) = 0.

https://doi.org/10.1017/S0004972723000436 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000436


[7] Real blocks with dihedral defect groups 333

PROOF. By Brauer’s formula [8, Theorem 4A] (see also [41, Lemma 2]),

ε(Φx
ϕ) =

∑
ψ∈Irr(b)

ε(ψ)dx
ψϕ.

Since Ωx = {y ∈ CG(x) : y2 = x}, we may assume that x ∈ Z(G) and B = b. By Brauer’s
second main theorem, the claim only depends on ϕ, and not on B. For g ∈ G0, we
compute ∑

ϕ∈IBr(G)

ε(Φx
ϕ)ϕ(g) =

∑
χ∈Irr(G)

ε(χ)
∑

ϕ∈IBr(G)

dx
χϕϕ(g) =

∑
χ∈Irr(G)

ε(χ)χ(xg)

= |{y ∈ G : y2 = xg}| = |{y ∈ CG(g) : y2 = xg}|
[26, page 49]. Since g has odd order, there exists a unique power

√
g of g such that√

g2 = g. It is easy to check that the map {y ∈ CG(g) : y2 = x} → {y ∈ CG(g) : y2 = xg},
y �→ y

√
g is a bijection. Hence,∑

ϕ∈IBr(G)

ε(Φx
ϕ)ϕ(g) = |{y ∈ CG(g) : y2 = x}| = |CG(g) ∩Ωx| = π(g)

for all g ∈ G0. Therefore, ε(Φx
ϕ) is the multiplicity of ϕ in π.

Now assume that there is no e ∈ E \ D such that e2 = x. Then [35, Lemma 1.3]
implies

0 =
∑

χ∈Irr(B)

ε(χ)χ(x) =
∑

χ∈Irr(B)

ε(χ)
∑

ϕ∈IBr(b)

dx
χϕϕ(1) =

∑
ϕ∈IBr(b)

ε(Φx
ϕ)ϕ(1),

and the second claim follows. �

Our second lemma generalises [41, Theorem 10].

PROPOSITION 4.2. Let B be a real, nonprincipal 2-block with defect pair (D, E). Let
(x, b) be a B-subsection such that b is nilpotent with defect pair (CD(x), CE(x)), where
CD(x) is abelian. Then ε(Φx

ϕ) = |{e ∈ E \ D : e2 = x}|, where IBr(b) = {ϕ}.

PROOF. As in the proof of Lemma 4.1, we may apply Brauer’s formula. Since b has
defect pair (CD(x), CE(x)) and

{e ∈ E \ D : e2 = x} = {e ∈ CE(x) \ CD(x) : e2 = x},
we may assume that x ∈ Z(G) and B = b. Now D is abelian and Conjecture 3.1 holds
for B by [41, Theorem 10]. Since every Brauer correspondent β of B in a section of
G is nilpotent with abelian defect groups, Conjecture 3.1 also holds for β. The claim
follows from [41, Theorem 13]. �

In the situation of Proposition 4.2, it is tempting to formalise a local version of
Conjecture 3.2: for every y ∈ G with y2 = x,

[ΦCG(y), 1CG(y)] = |yCG(x) ∩ E \ D|
(note that CG(y) ⊆ CG(x)). We did not find any counterexamples to this equation.
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5. Tame blocks

By Murray [34, Theorems 1.7 and 1.8], the F-S indicators of blocks with Klein four
defect group are known. As in the proof of Theorem 1.1, one can show that all cases
listed there occur. It is tempting to do a similar analysis for other tame blocks, that
is, 2-blocks with quaternion or semidihedral defect groups. In this section, we gather
some partial results along these lines.

PROPOSITION 5.1. Let B be a real tame block of a finite group with defect at least 3.
Then B has two or four real irreducible characters of height 0 and they all have F-S
indicator 1.

PROOF. Let (D, E) be a defect pair of B. It is well known that B has exactly four
irreducible characters of height 0 (see [38, Theorem 8.1]). By [24, Theorem 5.1], at
least one such character has F-S indicator 1. Since nonreal characters come in pairs of
the same degree, B has two or four real irreducible characters of height 0.

To prove the second claim, it suffices to show that D/D′ has a complement in
E/D′ by [24, Theorem 5.6]. Since D/D′ � C2

2, we may assume that E/D′ � C4 × C2 by
way of contradiction. In particular, |E : E′| ≥ 8. A theorem of Alperin–Feit–Thompson
asserts that the number of involutions in E is congruent to 3 modulo 4 (see [26,
Theorem 4.9]). By the remark after [26, Theorem 4.9], the number of involutions in D
is congruent to 1 modulo 4. Hence, there exists an involution x ∈ E \ D. However, then
〈x〉D′/D′ is a complement of D/D′ in E/D′, which gives a contradiction. �

A nonprincipal block of G = (C3 � C4) × C2 shows that Proposition 5.1 fails for
tame blocks of defect 2 (that is, blocks with Klein four defect group).

We now apply Proposition 4.2 to a concrete example.

PROPOSITION 5.2. Let B be a block with defect pair (D, E), where D � Q8. Then B has
exactly two real irreducible characters of height 0 if and only if one of the following
holds:

(1) l(B) = 1 and E ∈ {Q16, SD16};
(2) B is Morita equivalent to the principal block of SL(2, 3) and E � {Q16, SD16};
(3) B is Morita equivalent to the principal block of SL(2, 5) and E ∈ {Q16, SD16}.

PROOF. Let ε1, . . . , ε4 be the F-S indicators of the height 0 characters λ1, . . . , λ4 ∈
Irr(B). We may choose a B-subsection (x, b) such that |〈x〉| = 4 and b has defect pair
(〈x〉, CE(x)). Clearly, b is nilpotent with abelian defect group 〈x〉. Let IBr(b) = {ϕx}. By
the orthogonality relations of generalised decomposition numbers (see [38, Theorem
1.14]), we have dx

λi,ϕx
= ±1 for 1 ≤ i ≤ 4 and dx

χ,ϕx
= 0 for χ ∈ Irr(B) \ {λ1, . . . , λ4}.

These numbers depend on the ordinary decomposition matrix of B.

Case 1: l(B) = 1.
Here, B is nilpotent with decomposition matrix (1, 1, 1, 1, 2)t. We may choose

our labelling in such a way that (dx
λ1,ϕx

, . . . , dx
λ4,ϕx

) = (1, 1,−1,−1). Similarly, there
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[9] Real blocks with dihedral defect groups 335

are elements y, xy ∈ D of order 4 such that (dy
λ1,ϕy

, . . . , dy
λ4,ϕy

) = (1,−1, 1,−1) and
(dxy
λ1,ϕxy

, . . . , dxy
λ4,ϕxy

) = (1,−1,−1, 1) with appropriate labelling. If there exists no
e ∈ E \ D such that e2 ∈ {x, y, xy}, then (ε1, . . . , ε4) = (1, 1, 1, 1) by Propositions 4.2
and 5.1. Now suppose that e2 = x for some e ∈ E \ D. Then e has order 8 and it
follows easily that E � {Q16, SD16}. In both cases, we have |{e ∈ E \ D : e2 = x}| = 2
and (ε1, . . . , ε4) = (1, 1, 0, 0) by Propositions 4.2 and 5.1.

Now suppose that l(B) > 1. By Macgregor [33, Corollary 2.4], there are two cases
to consider.

Case 2: B is Morita equivalent to the principal block of SL(2, 3).
Here, l(B) = 3 and B has decomposition matrix

Q :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . .
. 1 .
. . 1
1 1 1
1 1 .
1 . 1
. 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We see that λ4 is real and ε4 = 1. The orthogonality relations imply that
(dx
λ1,ϕx

, . . . , dx
λ4,ϕx

) = ±(1, 1, 1,−1). If there exists e ∈ E \ D with e2 = x (that is,
E ∈ {Q16, SD16}), then (ε1, . . . , ε4) = (1, 1, 1, 1) and otherwise (ε1, . . . , ε4) = (0, 0, 1, 1)
by Propositions 4.2 and 5.1 (after relabelling if necessary).

Case 3: B is Morita equivalent to the principal block of SL(2, 5).
Here, B has decomposition matrix

Q :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
. 1 .
. . 1
2 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows that λ1, λ4 are real and (dx
λ1,ϕx

, . . . , dx
λ4,ϕx

) = ±(1,−1,−1, 1). If E ∈ {Q16, SD16},
then (ε1, . . . , ε4) = (1, 0, 0, 1), and (ε1, . . . , ε4) = (1, 1, 1, 1) otherwise. �

To compute the remaining F-S indicators in the situation of Proposition 5.2, we
restrict ourselves further to E ∈ {Q16, SD16}.

PROPOSITION 5.3. Let B be a real block of a finite group G with defect pair (D, E)
such that D � Q8 and E � {Q16, SD16}. Then the F-S indicators of characters in Irr(B)
are given in Table 2, where the first four characters have height 0. Moreover, all cases
occur.
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TABLE 2. Some F-S indicators for D � Q8.

E Morita equivalence class l(B) F-S indicators

Q16 D 1 0, 0, 1, 1;−1
SL(2, 3) 3 1, 1, 1, 1;−1,−1,−1
SL(2, 5) 3 0, 0, 1, 1; 0, 0,−1

SD16 D 1 0, 0, 1, 1; 1
SL(2, 3) 3 1, 1, 1, 1; 1, 1, 1
SL(2, 5) 3 0, 0, 1, 1; 0, 0, 1

PROOF. We reuse the notation from the proof of Proposition 5.2.

Case 1: l(B) = 1.
By Proposition 5.2, (ε1, . . . , ε4) = (1, 1, 0, 0). Let Irr(B) = {λ1, . . . , λ4,ψ} and

IBr(B) = {ϕ}. Then,

2 + 2μ = ε1dλ1,ϕ + · · · + ε4dλ4,ϕ + μdψ,ϕ ≥ 0

with equality if and only if E � Q16 by [35, Lemma 1.3]. Hence, μ = −1 if
E � Q16 and μ = 1 if E � SD16. Examples for both cases can be constructed by the
remark after Proposition 2.2. The groups are SmallGroup(48, 18) for E � Q16 and
SmallGroup(48, 17) for E � SD16 in the small groups library [42].

Now let l(B) = 3 and IBr(B) = {ϕ1,ϕ2,ϕ3}. Let ψ1,ψ2,ψ3 ∈ Irr(B) be the characters
of height 1. Let μi := ε(ψi) for i = 1, 2, 3.

Case 2: B is Morita equivalent to the principal block of SL(2, 3).
By Proposition 5.2, (ε1, . . . , ε4) = (1, 1, 1, 1). Assume first that E � Q16. Then

Lemma 4.1 implies

dλ1,ϕi + · · · + dλ4,ϕi + μ1dψ1,ϕi + μ2dψ2,ϕi + μ3dψ3,ϕi ≥ 0

for i = 1, 2, 3. The shape of the decomposition matrix of B yields μ1 = μ2 = μ3 = −1
as claimed. For the purpose of constructing an infinite family of examples, let q be an
odd prime and H := SL(2, q). Let ζ ∈ F×q2 of order 2(q − 1). Then,

Ĥ := H
〈 (
ζ 0
0 ζ−1

)〉
≤ SL(2, q2)

is a nonsplit extension with Sylow 2-subgroup E � Q2d+1 . Thus, we can apply
Proposition 2.2 to the pair (H, Ĥ). For q = 3, we end up with the (unique) nonprincipal
block of G = SmallGroup(144, 124).

Now assume that E � SD16. Here, we need to investigate the generalised decompo-
sition matrix Qz with respect to a B-subsection (z, bz), where Z(D) = 〈z〉. The columns
of Qz lie in the orthogonal complement of the Z-module spanned by the columns of
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the ordinary decomposition matrix and the column dx
.,ϕx

. It is easy to find a basis of
this Z-module. Therefore, there exists an integral matrix S ∈ GL(3,Q) such that

Qz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . .
. 1 .
. . 1
1 1 1
−1 −1 .
−1 . −1
. −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S.

By Lemma 4.1, (ε1, . . . , ε4, μ1, μ2, μ3)Qz = (0, 0, 0). After we multiply both sides with
S−1, we get μ1 = μ2 = μ3 = 1 as desired. To construct examples, let H := SL(2, q)
for an odd prime q. Let F×q = 〈ζ〉. The conjugation with

( 0 ζ
1 ζ

) ∈ GL(2, q) induces
an automorphism α on H of order 2. Then Ĥ := H � 〈α〉 has Sylow 2-subgroup
E � SD2d+1 , so we can apply Proposition 2.2. For q = 3, this gives the nonprincipal
block of G = SmallGroup(144, 125).

Case 3: B is Morita equivalent to the principal block of SL(2, 5).
Here we have (ε1, . . . , ε4) = (1, 0, 0, 1) with the labelling of the proof of Proposition

5.2. The decomposition matrix shows further that ϕ2 = ϕ3 and therefore μ1 = μ2 = 0.
As before, we have

(1 + μ3)(2ϕ1(1) + ϕ2(1) + ϕ3(1)) = λ1(1) + λ4(1) + μ3ψ3(1) ≥ 0

with equality if and only if E � Q16. Hence, μ3 = −1 if E � Q16 and μ3 = 1 if E � SD16.
The former case occurs for a nonprincipal block of G = SmallGroup(720, 414) and the
latter for a nonprincipal block of G = SmallGroup(720, 415) (same construction as in
Case 2 with q = 5). �

If E � {Q16, SD16}, then one can show that E ∈ {D, D × C2, D ∗ C4}. It is possible to
obtain some further information in these cases, but ultimately, we do not know the F-S
indicator μ of the unique (real) character of height 1 when l(B) = 1 and E � D × C2.
Conjecture 3.1 would imply that μ = −1.

6. Homocyclic defect groups

Since tame blocks have metacyclic defect groups, it is reasonable to look at
other classes of 2-blocks with metacyclic defect groups. The corresponding Morita
equivalence classes have been determined in [13, Theorem 1.1] (combined with [38,
Theorem 8.1]). The only nonnilpotent wild blocks B occur for D � C2

2n , where n ≥ 2.
In this case, B is Morita equivalent to F[D � C3]. In particular, the Morita equivalence
class is uniquely determined by l(B). We determine the F-S indicators in the special
case n = 2. Again, these numbers only depend on the extended defect group.
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TABLE 3. F-S indicators for D � C2
4.

l(B) id F-S indicators

1 D, 21 (D × C2), 24, 33 1, 1, 1, 1; 012

3 (C8 × C4), 4 (C8 � C4) 1, 1,−1,−1; 012

25 (D8 × C4), 31 1, 1, 1, 1; 1, 1, 1, 1, 08

26 (Q8 × C4), 32 1, 1, 1, 1;−1,−1,−1,−1, 08

12 (C4 � C8) 1, 1,−1,−1; 1, 1,−1,−1, 08

35 (C4 � Q8) 1, 1, 1, 1; 1, 1, 1, 1, (−1)8

11 (C4 � C2) 1, 1, 0, 0; 1, 1, 010

34 116

3 D, 21 (D × C2), 33 1, 0, 0, 1; 0, 0, 0, 0
11 (C4 � C2) 1, 1, 1, 1; 0, 0, 1, 1
34 1, 0, 0, 1; 1, 1, 1, 1

THEOREM 6.1. Let B be a real 2-block with defect pair (D, E) such that D � C2
4,

E = D or E � SmallGroup(32, id). Then (k(B), l(B)) ∈ {(16, 1), (8, 3)} and exactly four
characters in Irr(B) are 2-rational. The F-S indicators of characters in Irr(B) are given
in Table 3, where the first four characters are 2-rational. If l(B) = 3, then the first three
characters are irreducible modulo 2. All cases occur.

PROOF. Let l(B) = 1. Then B is nilpotent and the generalised decomposition matrix
of B coincides with the character table of D. This shows that k(B) = 16 and exactly
four characters are 2-rational. The possible groups E can be computed with GAP
and examples can be found among the groups of order 96 as in Proposition 2.2. If
B is the principal block (that is, E = D), then Irr(B) = Irr(G/O2′(G)) = Irr(D). In this
case, the claim is easy to check. Otherwise, the F-S indicators are determined by [41,
Theorem 10]. We note that the embedding of D in E is not always unique, but the F-S
indicators are independent of this embedding (in our situation).

Now let l(B) = 3. Suppose first that B is the principal block. By a result of Brauer
[7, Theorem 1], we have Irr(B) = Irr(G/O2′(G)) = Irr(D � C3). The F-S indicators can
be computed easily here. Now let E � D. We argue as in Proposition 2.1 to exclude
most candidates for E. Let (D, bD) be a fixed Brauer pair. By [41, Proposition 8(i)],
the extended stabiliser has the form NG(D, bD)∗ = ENG(D, bD). It can be checked that
NG(D, bD)/CG(D) is isomorphic to a Sylow 3-subgroup S of Aut(D). Moreover, the
normaliser of S in Aut(S) has three conjugacy classes of involutions. Hence, there are
at most four possible actions of E on D (including the trivial action). This excludes the
cases id ∈ {4, 12, 24, 25, 26, 31, 32}. Now let id = 3, that is, E � C8 × C4. Then bD is
real and nilpotent. By the first part of the proof, bD has exactly 12 nonreal characters.
Under the action of NG(D, bD), the 16 characters in Irr(bD) distribute into five orbits of
length 3 and one orbit of length 1. In particular, the number of nonreal characters in
Irr(bD) cannot be 12, which gives a contradiction.
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Next assume that id = 35. Here, E acts on D by inverting its elements. In particular,
E centralises D1 := 〈x2 : x ∈ D〉 � C2

2. Fix a B-subpair (D1, b1). Then b1 has defect
pair (CD(D1), CE(D1)) = (D, E). In particular, b1 is real. Since S does not centralise
D1, b1 is nilpotent. By the first part of the proof, b1 has exactly eight characters with
F-S indicator −1. However, this leads to a contradiction by considering the action of
NG(D, bD) in Irr(b1) as above. This leaves the cases id ∈ {11, 21, 33, 34}. In all of those,
E splits over D. Hence, all F-S indicators are nonnegative by [24, Theorem 5.6].

By [13], the decomposition matrix of B is

Q :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Up to conjugation, there are five nontrivial B-subsections (x, bx), (y, by), (y−1, by),
(z, bz) and (z−1, bz), where x is an involution and y, z have order 4. Thus, the complex
conjugation fixes exactly four columns of the generalised decomposition matrix Q̂. By
Brauer’s permutation lemma, there are exactly four 2-rational characters. We stress
that the 2-conjugate characters can still be real since y might be conjugate to y−1 via an
element not fixing by. By the shape of Q, we may assume that the first four characters
are 2-rational. By [24, Theorem 5.3], two or four of them have F-S indicator 1.

By [39, Theorem 15], B is isotypic to the principal block of H := D � C3. This
implies via [40, Proposition 7.3] that Q̂ coincides up to basic sets with the generalised
decomposition matrix of H. However, since l(bx) = l(by) = l(bz) = 1, the columns of Q̂
corresponding to x, y, z are uniquely determined up to signs. Using the orthogonality
relations, the signs can be chosen such that

Q̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 εx εy εy εz εz
0 1 0 εx εy εy εz εz
0 0 1 εx εy εy εz εz
1 1 1 3εx −εy −εy −εz −εz
1 1 1 −εx (−1 + 2i)εy (−1 − 2i)εy εz εz
1 1 1 −εx (−1 − 2i)εy (−1 + 2i)εz εz εz
1 1 1 −εx εy εy (−1 + 2i)εz (−1 − 2i)εz
1 1 1 −εx εy εy (−1 − 2i)εz (−1 + 2i)εz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where εx, εy, εz ∈ {±1} and i =
√
−1. Since bx, by and bz are nilpotent with abelian defect

group, we can apply Proposition 4.2 for each E. This gives a linear system on the vector
of F-S indicators. We have checked by computer that there is a unique solution (up to
permuting the first three characters). Examples are given by G = SmallGroup(288, a),
where a = 67, 407, 406, 405 for id = 11, 21, 33, 34, respectively. �
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It might be possible to conduct a similar analysis for defect groups D � C2
2n with

arbitrary n ≥ 2. However, for n = 3, there are already 27 extended defect groups to
consider.

Acknowledgments

I thank John Murray for some helpful discussions on the open cases in Section 5.
Parts of this paper were written at the University of Valencia, from which I received
great hospitality.

References
[1] M. Aschbacher, R. Kessar and B. Oliver, Fusion Systems in Algebra and Topology, London

Mathematical Society Lecture Note Series, 391 (Cambridge University Press, Cambridge, 2011).
[2] H. Bender, ‘Finite groups with dihedral Sylow 2-subgroups’, J. Algebra 70 (1981), 216–228.
[3] H. Bender and G. Glauberman, ‘Characters of finite groups with dihedral Sylow 2-subgroups’,

J. Algebra 70 (1981), 200–215.
[4] F. M. Bleher, ‘Universal deformation rings and dihedral defect groups’, Trans. Amer. Math. Soc.

361 (2009), 3661–3705.
[5] F. M. Bleher, ‘Dihedral blocks with two simple modules’, Proc. Amer. Math. Soc. 138 (2010),

3467–3479.
[6] F. M. Bleher, G. Llosent and J. B. Schaefer, ‘Universal deformation rings and dihedral blocks with

two simple modules’, J. Algebra 345 (2011), 49–71.
[7] R. Brauer, ‘Some applications of the theory of blocks of characters of finite groups. II’, J. Algebra

1 (1964), 307–334.
[8] R. Brauer, ‘Some applications of the theory of blocks of characters of finite groups. III’, J. Algebra

3 (1966), 225–255.
[9] R. Brauer, ‘On 2-blocks with dihedral defect groups’, in: Symposia Mathematica. Volume XIII

(Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) (Academic Press, London,
1974), 367–393.

[10] M. Cabanes and C. Picaronny, ‘Types of blocks with dihedral or quaternion defect groups’, J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 39 (1992), 141–161. Revised version: http://www.math.jussieu.fr/
cabanes/type99.pdf.

[11] D. A. Craven, C. W. Eaton, R. Kessar and M. Linckelmann, ‘The structure of blocks with a Klein
four defect group’, Math. Z. 268 (2011), 441–476.

[12] P. W. Donovan, ‘Dihedral defect groups’, J. Algebra 56 (1979), 184–206.
[13] C. W. Eaton, R. Kessar, B. Külshammer and B. Sambale, ‘2-blocks with abelian defect groups’,

Adv. Math. 254 (2014), 706–735.
[14] F. Eisele, ‘p-adic lifting problems and derived equivalences’, J. Algebra 356 (2012), 90–114.
[15] K. Erdmann, ‘Principal blocks of groups with dihedral Sylow 2-subgroups’, Comm. Algebra 5

(1977), 665–694.
[16] K. Erdmann, ‘Algebras and dihedral defect groups’, Proc. Lond. Math. Soc. (3) 54 (1987), 88–114.
[17] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in

Mathematics, 1428 (Springer-Verlag, Berlin, 1990).
[18] K. Erdmann and G. O. Michler, ‘Blocks with dihedral defect groups in solvable groups’, Math. Z.

154 (1977), 143–151.
[19] D. Gorenstein, ‘Finite groups the centralizers of whose involutions have normal 2-complements’,

Canad. J. Math. 21 (1969), 335–357.
[20] D. Gorenstein and J. H. Walter, ‘On finite groups with dihedral Sylow 2-subgroups’, Illinois J.

Math. 6 (1962), 553–593.

https://doi.org/10.1017/S0004972723000436 Published online by Cambridge University Press

http://www.math.jussieu.fr/cabanes/type99.pdf
https://doi.org/10.1017/S0004972723000436


[15] Real blocks with dihedral defect groups 341

[21] D. Gorenstein and J. H. Walter, ‘The characterization of finite groups with dihedral Sylow
2-subgroups. I’, J. Algebra 2 (1965), 85–151.

[22] D. Gorenstein and J. H. Walter, ‘The characterization of finite groups with dihedral Sylow
2-subgroups. II’, J. Algebra 2 (1965), 218–270.

[23] D. Gorenstein and J. H. Walter, ‘The characterization of finite groups with dihedral Sylow
2-subgroups. III’, J. Algebra 2 (1965), 354–393.

[24] R. Gow, ‘Real-valued and 2-rational group characters’, J. Algebra 61 (1979), 388–413.
[25] T. Holm, ‘Derived equivalent tame blocks’, J. Algebra 194 (1997), 178–200.
[26] I. M. Isaacs, Character Theory of Finite Groups (AMS Chelsea Publishing, Providence, RI, 2006).
[27] S. Koshitani, ‘A remark on blocks with dihedral defect groups in solvable groups’, Math. Z. 179

(1982), 401–406.
[28] S. Koshitani and C. Lassueur, ‘Splendid Morita equivalences for principal 2-blocks with dihedral

defect groups’, Math. Z. 294 (2020), 639–666.
[29] P. Landrock, ‘The principal block of finite groups with dihedral Sylow 2-subgroups’, J. Algebra 39

(1976), 410–428.
[30] M. Linckelmann, ‘A derived equivalence for blocks with dihedral defect groups’, J. Algebra 164

(1994), 244–255.
[31] M. Linckelmann, ‘The source algebras of blocks with a Klein four defect group’, J. Algebra 167

(1994), 821–854.
[32] M. Linckelmann, The Block Theory of Finite Group Algebras, Vol. II, London Mathematical

Society Student Texts, 92 (Cambridge University Press, Cambridge, 2018).
[33] N. Macgregor, ‘Morita equivalence classes of tame blocks of finite groups’, J. Algebra 608 (2022),

719–754.
[34] J. Murray, ‘Components of the involution module in blocks with cyclic or Klein-four defect group’,

J. Group Theory 11 (2008), 43–62.
[35] J. Murray, ‘Real subpairs and Frobenius–Schur indicators of characters in 2-blocks’, J. Algebra 322

(2009), 489–513.
[36] G. Navarro, Characters and Blocks of Finite Groups, London Mathematical Society Lecture Note

Series, 250 (Cambridge University Press, Cambridge, 1998).
[37] B. Sambale, ‘Fusion systems on metacyclic 2-groups’, Osaka J. Math. 49 (2012), 325–329.
[38] B. Sambale, Blocks of Finite Groups and Their Invariants, Lecture Notes in Mathematics, 2127

(Springer-Verlag, Cham, 2014).
[39] B. Sambale, ‘Cartan matrices and Brauer’s k(B)-conjecture IV’, J. Math. Soc. Japan 69 (2017),

735–754.
[40] B. Sambale, ‘Survey on perfect isometries’, Rocky Mountain J. Math. 50 (2020), 1517–1539.
[41] B. Sambale, ‘Real characters in nilpotent blocks’, Vietnam J. Math., to appear.
[42] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.12.0 (2022).

http://www.gap-system.org.

BENJAMIN SAMBALE, Institut für Algebra,
Zahlentheorie und Diskrete Mathematik,
Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
e-mail: sambale@math.uni-hannover.de

https://doi.org/10.1017/S0004972723000436 Published online by Cambridge University Press

http://www.gap-system.org
mailto:sambale@math.uni-hannover.de
https://doi.org/10.1017/S0004972723000436

	1 Introduction
	2 Proof of Theorem 1.1
	3 A refined conjecture
	4 Two general lemmas
	5 Tame blocks
	6 Homocyclic defect groups

