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Isochronous centers and flat Finsler
metrics (I)
Xinhe Mu, Hui Miao, and Libing Huang
Abstract. The local structure of rotationally symmetric Finsler surfaces with vanishing flag curva-
ture is completely determined in this paper. A geometric method for constructing such surfaces is
introduced. The construction begins with a planar vector field X that depends on two functions of
one variable. It is shown that the flow of X could be used to generate a generalized Finsler surface with
zero flag curvature. Moreover, this generalized structure reduces to a regular Finsler metric if and
only if X has an isochronous center. By relating X to a Liénard system, we obtain the isochronicity
condition and discover numerous new examples of complete flat Finsler surfaces, depending on an
odd function and an even function.

1 Introduction

In many situations, the role of flag curvature in Finsler geometry is analogous to
that of sectional curvature in Riemannian geometry. Understanding the geometric
significance of flag curvature is a central theme in the study of Finsler geometry. As a
first step in this direction, the study of manifolds with constant flag curvature (CFC)
has always been popular [3, 7, 17, 20].

In B. Riemann’s famous speech, which gave birth to both Riemannian geometry
and Finsler geometry, contains only one displayed equation (see [21]). The equation
provides the local normal form of a Riemannian manifold with constant sectional
curvature. It shows that, for each constant K, the local structure of Riemannian space
forms with sectional curvature K is unique up to isometry. In Finsler geometry,
the local structure of metrics with CFC is more complicated. There are many non-
isometric local structures that share the same CFC K. For example, on R

n , all
Minkowski metrics have vanishing flag curvature; all Hilbert metrics1 have CFC
K = −1 (for more details, refer to textbooks like [9]). R. Bryant [7] constructed several
non-isometric Finsler metrics on Sn with CFC +1.

Thus, there are three natural questions concerning CFC. (A) Given a constant
number K, how many non-isometric CFC local structures are there? (B) Can we find
a way to explicitly describe these structures? (C) Which local structures can be made
global, i.e., complete?
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1Traditionally, a Hilbert metric is defined on a strongly convex domain Ω in R

n . Since Ω is
diffeomorphic to R

n , the Hilbert metric can also be thought of as defined on R
n .
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2 X. Mu, H. Miao, and L. Huang

These problems can be studied in both the generalized and classical senses. In 2002,
R. Bryant proved a celebrating result that provides an answer to question (A) when
K = +1.

Theorem 1.1 [7] The space of local isometry classes of generalized Finsler structures in
dimension n that have CFC K = +1 depends on n(n − 1) functions of n variables (in the
sense of Cartan–Kähler).

We conjecture that the theorem also applies to other constants. Moreover, as
indicated by the results in the current paper, the distinction between generalized
Finsler structure and classical Finsler structure is subtle. It is expected that classical
Finsler structures of CFC also depend on n(n − 1) functions of n variables.

When n = 2, Bryant provides descriptions of metrics with K = 1 that depend on two
functions of two variables (refer to [6] for details, and for an alternative explanation,
see [7]), this addresses question (B) for generalized Finsler structures when n = 2 and
K = 1.

The above questions are sometimes studied with symmetry conditions. Let Iso(M)
be the isometry group of the n-dimensional Finsler manifold (M , F). When F is
Riemannian, it is well known that dim Iso(M) ≤ n(n + 1)/2, and the equality holds
only if (M , F) has constant sectional curvature (see [10]). Moreover, S. Kobayashi
proved that when n ≠ 4, the isometry group Iso(M) does not contain any closed
subgroup whose dimension strictly lies between 1 + n(n − 1)/2 and n(n + 1)/2 (see
[15, Theorem 3.2]). Later, Yano [24] classified all Riemannian manifolds M with
dim Iso(M) = 1 + n(n − 1)/2 (for a systematic treatment of results of this type, refer
to [15]). It is easy to see that the same classification holds true if the metric is assumed
to be Finslerian. Hence, the maximal possible dimension of Iso(M), which could
produce interesting non-Riemannian examples in Finsler geometry, is n(n − 1)/2.
There are indeed such metrics with CFC, as the following classical examples show.

(1) The Funk metric on Bn(1) can be written as

F(x , y) =
√

(1 − ∣x∣2)∣y∣2 + ⟨x , y⟩2

1 − ∣x∣2 + ⟨x , y⟩
1 − ∣x∣2 .

It has CFC K = −1/4.
(2) The Hilbert metric on Bn(1) is given by

F(x , y) =
√

(1 − ∣x∣2)∣y∣2 + ⟨x , y⟩2

1 − ∣x∣2 .

It has CFC K = −1.
(3) Berwald’s metric on Bn(1) is given by

F(x , y) =
(
√

(1 − ∣x∣2)∣y∣2 + ⟨x , y⟩2 + ⟨x , y⟩)2

(1 − ∣x∣2)2
√

(1 − ∣x∣2)∣y∣2 + ⟨x , y⟩2
.

It has CFC K = 0.
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Isochronous centers and flat Finsler metrics 3

(4) The very special Bryant’s metric on Sn can be locally written as

F(x , y) =
√√

A + B
D

+ ( C
D

)
2
+ C

D
,

where C =
√

1 − ε2⟨x , y⟩, D = ∣x∣4 + 2ε∣x∣2 + 1, B = (ε + ∣x∣2)∣y∣2 − ⟨x , y⟩2,
A = B2 + (1 − ε2)∣y∣4, ε ∈ (−1, 1). This metric has CFC K = +1.

A common feature of the above examples is that they admit O(n) or SO(n) as the
isometry group. Thus, it is interesting to know if there are other Finsler n-manifolds
of CFC that admit O(n) or SO(n) symmetry. The O(n) invariant metrics are also
referred to as spherically symmetric by some researchers (see [12, 25]).

When studying spherically symmetric metrics, there is a significant difference
between the two-dimensional case and the higher-dimensional case. For example, the
CFC condition is a single PDE in two dimensions, while it consists of a system of two
PDEs in higher dimensions (see [12, 19, 25] for related discussions). It is easily seen
that when n ≥ 3, an O(n)-invariant Finsler manifold has plenty of totally geodesic
submanifolds of dimension two. Moreover, such a manifold has CFC if and only if
it has scalar flag curvature and any one of the totally geodesic surfaces has constant
Gauss curvature. Thus, it is desirable to understand the two-dimensional case before
studying the higher-dimensional case. For this reason, we shall only address the two-
dimensional case in this paper; the treatment of the higher-dimensional case will be
addressed in a subsequent paper.

To be more focused, we will concentrate on the case where K = 0. Notice that the
SO(2) symmetry implies the existence of a Killing field. A prior result is as follows.

Proposition 1.2 Let M be a smooth surface that admits a generalized Finsler structure
with vanishing flag curvature. If in addition M possesses a Killing field, then at every point
of M there is a local coordinate system (x , y) such that (i) the Killing field X is given by
X = (yP(x) + Q(x)) ∂

∂x − x ∂
∂ y for some smooth functions P(x) > 0 and Q(x); (ii) the

vector field Y = ∂
∂ y has constant length 1.

Conversely, we have the following local construction.

Theorem 1.3 Let P and Q be smooth functions of x, and let X = (yP(x) + Q(x)) ∂
∂x −

x ∂
∂ y be a vector field defined on a plane region M. Let φt be the flow generated by X, and

let Σ be the flow domain. Define a map ι ∶ Σ → TM as follows:

ι(p, t) = (φt∗
∂

∂y
)p , ∀p ∈ M , t ∈ R.

If P(x) > 0, then ι is a generalized Finsler structure on M with vanishing flag curvature,
and X is a Killing field. Moreover, the generalized Finsler structure is complete if P(x)
and Q(x) are defined for all x ∈ R, P(x) is bounded, and Q(x) grows sublinearly.

It is natural to ask, when will this generalized structure reduce to a classical Finsler
structure? This is answered in the following.
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4 X. Mu, H. Miao, and L. Huang

Theorem 1.4 Define the generalized Finsler structure as stated in Theorem 1.3. Then
the generalized structure is a classical Finsler structure if and only if the vector field X
generates an SO(2) action on M, if and only if X admits an isochronous center and M is
in the isochronous period annulus. In this case, the Finsler structure possesses rotational
symmetry.

To obtain concrete examples, we need to identify the isochronicity condition.
Notice that without loss of generality, we may assume Q(0) = 0, so X has a unique
singular point at (0, 0).

Theorem 1.5 Suppose P(x) and Q(x) are analytic functions near 0 and Q(0) = 0. The
vector field X = (yP(x) + Q(x)) ∂

∂x − x ∂
∂ y has an isochronous center at (0, 0) if and

only if there exists a function α and an odd function b such that the following relations
hold:

x = −A(u),
P(x) = A′(u),

Q(x) = −P(x)∫
u

0
B(s) d s,

A(u) = α′(u)(α(u) + 1
α3(u)(∫

α(u)

0
zb(z) d z)

2
),

B(u) = α′(u)b(α(u)),

where the function α is invertible near 0 and its inverse function α−1 satisfies that
α−1(x) − x is even.

A few comments on the organization of this paper are in order. Section 2 reviews
the basics of Finsler geometry, focusing on generalized Finsler structure and the
dynamical approach to flag curvature as outlined in [11] and [14]. In Section 3, we
prove Theorem 1.3 using knowledge from previous works by Bryant, Huang, and Mo
[8]. In Section 4, Theorem 1.4 will be proved after closely examining the relationships
between the shape of indicatrices and the isochronicity properties of the phase flow.
We analyze the isochronicity condition and prove Theorem 1.5 in Section 5. Several
examples of flat Finsler surfaces are also provided there.

2 Generalized and classical Finsler structures

This section mainly serves to review some fundamental concepts in Finsler geometry
and establish notation.

Let M be a smooth manifold of dimension n. A Finsler metric on M is a smooth
assignment of Minkowski norms to the tangent spaces of M. Each Minkowski norm
is uniquely determined by its indicatrix, i.e., the set of vectors of unit length. By the
definition of a Minkowski norm, each indicatrix must be strongly convex (toward the
origin) and diffeomorphic to Sn−1 [2]. To generalize the concept of a Finsler structure,
we recall the following definition.
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Isochronous centers and flat Finsler metrics 5

Definition 2.1 Let π ∶ TM → M be the tangent bundle of the manifold M. Let
ι ∶ Σ → TM be an immersed hypersurface in TM. If π ○ ι ∶ Σ → M is a submersion
with connected fibers, and for each point p ∈ M, the immersion ιp ∶ (π ○ ι)−1(p) →
Tp M is strongly convex toward the origin, then the triple (M , Σ, ι) is called a gener-
alized Finsler structure on M (sometimes we simply say that ι is a generalized Finsler
structure on M). If all the ιp are embeddings and their images are diffeomorphic to
Sn−1, then ι is called a classical Finsler structure, a regular Finsler structure, or simply a
Finsler structure.

Remark 2.2 R. Bryant’s definition of a generalized Finsler structure differs slightly
from the one presented here; for more details, refer to [6, 7]. In [7], a generalized
Finsler structure is defined as the manifold Σ along with an adapted dual coframe field
that satisfies some structure equations (refer to (1) for the two-dimensional scenario).

Now, let ι ∶ Σ → TM be a generalized Finsler structure. At each point p ∈ M, the
tangent vectors to the fiber Σp ∶= (π ○ ι)−1(p) will be referred to as vertical. All the
vertical vectors constitute the vertical subbundle of TΣ. We shall denote by V Σ
the smooth sections of the vertical subbundle. The immersed hypersurface ι(Σp) will
be referred to as the indicatrix at point p. Sometimes we will not distinguish between
Σp and ι(Σp), so we will also refer to the tangent vectors of ι(Σp) as vertical.

One can construct a globally defined contact form ω on Σ as follows. For each
u ∈ Σ, let � = ι(u) be the corresponding point on the indicatrix at p = π(�). There is a
unique 1-form αu in T∗p M that annihilates T�ι(Σp) ⊂ Tp M, and such that αu(�) = 1.
Define the 1-form ω on Σ as follows:

ω∣u = (π ○ ι)∗(αu).

This form is known in the literature as the Hilbert form.
The geodesic spray (or Reeb field in another terminology) is the unique vector field

on Σ determined by the following relations:

ω(ξ) = 1, d ω(ξ, ⋅ ) = 0.

If γ is an integral curve of ξ, then π ○ ι(γ) is a unit speed geodesic on M. Thus, if ξ is
a complete vector field on Σ, then every unit geodesic on M is defined on R. In this
case, we say that the manifold M is complete.

2.1 Dynamical approach to flag curvature

To define the concept of flag curvature in a generalized Finsler structure, it is preferable
to introduce the dynamical approach developed by P. Foulon [11], see also [13].

The vertical endomorphism V is the unique (1, 1) tensor on Σ that satisfies the
following equations:

V ([ξ, v]) = −v , V(ξ) = V (v) = 0, ∀v ∈ V Σ.

The horizontal endomorphism H is the unique (1, 1) tensor on Σ that satisfies the
following equations:
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6 X. Mu, H. Miao, and L. Huang

H (v) = − [ξ, v] − 1
2
V [ξ, [ξ, v]] ,

H (H(v)) = H(ξ) = 0, ∀v ∈ V Σ.

The image of H is the horizontal subbundle of TΣ. So TΣ can be decomposed into the
direct sum of the horizontal subbundle, the vertical subbundle, and the line bundle
spanned by ξ. We shall denote by HΣ the set of smooth sections of the horizontal
subbundle.

The Riemann curvature tensor or Jacobi endomorphism R is defined on the vertical
subbundle as follows:

R(w) = VH [ξ,H(w)] , ∀w ∈ V Σ.

Notice that in [11], the Jacobi endomorphism R is also defined for horizontal vectors,
and R(ξ) = 0. However, only the vertical component is essential for us to define flag
curvature.

The following (0, 2) tensor h is a Riemannian metric on the vertical subbundle,
known as the angular metric:

h(u, v) = d ω([ξ, u], v) = d ω(u,H(v)), ∀u, v ∈ V Σ.

Finally, the flag curvature K is given by

K(v) = h(R(v), v)
h(v , v) , ∀v ∈ V Σ/{0}.

Notice that R is self-adjoint with respect to h, so the flag curvature of a generalized
Finsler structure is identically zero if and only if R ≡ 0.

Remark 2.3 If ι ∶ Σ → TM is a classical Finsler structure, then the definition of K
above actually corresponds to a function defined for flags. Recall that a flag (P, y) in
Tp M, is a two-dimensional subspace P in Tp M together with a nonzero vector y in
P, where y is referred to as the flagpole. We may replace y with a unit vector � in y
direction, so � represents a point on the indicatrix ι(Σp). The subspace P is spanned
by � and a vertical vector v that is tangent to the indicatrix at �. The flag curvature
K(P, y), in traditional notation, is equivalent to our K(v).

2.2 Two-dimensional case

In two dimensions, the above scenario is significantly simplified. First, for a gener-
alized Finsler structure on a surface, the indicatrix at each point is simply a strongly
convex curve toward the origin. Moreover, the generalized Finsler structure reduces
to a classical one if all the indicatrices are simple closed curves. Let us recall a simple
criterion for strong convexity in [2, Chapter 4].

Lemma 2.4 An immersed curve � ∶ R → R
2 is strongly convex toward the origin if it

never passes through the origin and satisfies the following condition:

det(�′ , �′′)
det(�, �′) > 0, ∀t ∈ R.
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Isochronous centers and flat Finsler metrics 7

Now, the vertical subbundle is of rank one, so there is a globally defined vertical
vector field e3 satisfying h(e3 , e3) = 1. Put e2 = H(e3); then e2 is a globally defined
horizontal vector field. In this way, {e1 = ξ, e2 , e3} becomes a global frame field on Σ,
known as the Berwald frame. Notice that e3 is unique up to a minus sign. The dual
coframe field {ω1 = ω, ω2 , ω3} satisfies the following structure equations (see [6, 8]):

d ω1 = −ω2 ∧ ω3 ,
d ω2 = −ω3 ∧ ω1 − Iω2 ∧ ω3 ,
d ω3 = −Kω1 ∧ ω2 − Jω2 ∧ ω3 ,

(1)

where I, J, and K are known as the Cartan scalar, the Landsberg curvature, and the
Gauss curvature, respectively. In two dimensions, the flag (P, y) can only be (Tx M , y),
so the flag curvature K(P, y) can be written as K(y), and it is referred to as the Gauss
curvature.

2.3 Flat Finsler structures

Since we are mainly interested in the K = 0 (flat) case, we will now review some
relevant results in this context. A basic model of flat Finsler space is Rn equipped with
a Minkowski norm; it is called a Minkowski space. A Finsler manifold is called locally
Minkowski if every point has a neighborhood that is isometric to an open subset of a
Minkowski space. For a locally Minkowski space, the Cartan scalar is bounded, and
the Landsberg curvature vanishes. A classical theorem by Akbar-Zadeh [2] states that
if the flat Finsler structure is complete and the Cartan scalar is bounded, then it is a
locally Minkowski space.

When n = 2, the Bryant normal form provides the local model of a flat Finsler
structure (see [6]). It expresses the Berwald coframe using two arbitrary functions
of two variables.

ω1 = d y − x d z,
ω2 = P̂−1 d x + (P̂ y + Q̂) d z,
ω3 = P̂ d z,

(2)

where (x , y, z) is an adapted local coordinate system on Σ, P̂ and Q̂ are arbitrary
functions of x and z, and P̂ ≠ 0. Notice that when P̂ and Q̂ are only functions of
x, the corresponding Finsler structure admits a Killing vector field ∂

∂z , since the
transformations (x , y, z) ↦ (x , y, z + c) leave the above coframe field unchanged.

Under the assumption that the Finsler structure admits a Killing vector field,
Bryant, Huang, and Mo [8] derived another local normal form.

ω1 = d ỹ + v(x̃) d x̃ + x̃ d z̃,
ω2 = −u(x̃)−1 d x̃ + ỹu(x̃) d z̃,
ω3 = u(x̃) d z̃,

(3)

where (t, a, b) is a local coordinate system on Σ, u and v are functions of a, and u ≠ 0.
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The above two normal forms are related as follows. Let V(a) = ∫ v(a) d a; then the
change of coordinates

z̃ = z, x̃ = −x , ỹ = y − V(−x)

transforms the Bryant–Huang–Mo normal form into the Bryant normal form, with
the constraint that P̂ and Q̂ depend only on x. Thus, it is fair to say that these two
normal forms are equivalent when the Finsler structure admits a Killing field.

3 Construction of flat surfaces

In this section, we shall demonstrate how the above normal forms can be utilized to
construct flat Finsler surfaces that admit a Killing field. To begin with, we shall gather
some information about such a surface M. Recall that the indicatrix bundle Σ̂ of M
has the following Bryant normal form:

ω1 = d y − x d z,
ω2 = P̂−1 d x + (yP̂ + Q̂) d z,
ω3 = P̂ d z,

where (x , y, z) is a local coordinate system on Σ̂, P̂0 and Q̂ are functions of x, and
P̂ ≠ 0. The dual frame field is given by the following:

e1 = ∂
∂y

,

e2 = P̂ ∂
∂x

,

e3 = P̂−1 ∂
∂z

− (yP̂ + Q̂) ∂
∂x

+ xP̂−1 ∂
∂y

.

By definition, e1 = ∂
∂ y is the geodesic spray, e2 spans the horizontal subbundle, and e3

spans the vertical bundle.
The leaves of the foliation defined by ω1 = ω2 = 0 are simply integral curves of e3;

they represent the indicatrices of the Finsler structure. Thus, M is locally diffeomor-
phic to a submanifold of Σ̂ that is transverse to the integral curves of e3. Since P̂ ≠ 0, the
integral curves of P̂ ⋅ e3 are the same as those of e3 (as point sets) and they are always
transverse to the slice z = 0 in Σ̂. For this reason, we may identify M as this slice, i.e.,
M = {(x , y, z) ∈ Σ̂ ∣ z = 0}. Thus (x , y) forms a local coordinate system on M.

The integral curve of P̂ ⋅ e3 passing through a point (x , y, 0) in Σ̂ is the indicatrix
at that point. Therefore, the projection π ○ ι ∶ Σ̂ → M is given by

(π ○ ι)(x , y, z) = φ̂−z(x , y, z),

where φ̂t is the (local) flow generated by P̂ ⋅ e3. As such, the Killing field ∂
∂z on Σ̂ is

projected to the following vector field on M:
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Isochronous centers and flat Finsler metrics 9

X = d
d t

φ̂−z+t(x , y, z + t)∣
t=0

= φ−z∗
∂

∂z
− P̂ ⋅ e3

= (yP̂2 + P̂Q̂) ∂
∂x

− x ∂
∂y

.

Thus, we have proved that the Killing field X on M has a local expression

X = (yP + Q) ∂
∂x

− x ∂
∂y

,(4)

where P = P̂2, Q = P̂Q̂. It is easy to see that the flow φt of X is related to φ̂t via

φ̂t(x , y, z) = (φ−t(x , y), t + z).(5)

Moreover, since the integral curves of e1 = ∂
∂ y are of the form t ↦ (x , y + t, z), the

projected curves t ↦ (π ○ ι)(x , y + t, z) are unit speed geodesics on M. Consequently,
the tangent vector Ŷ of the curve t ↦ (π ○ ι)(x , y + t, z) has a unit length. We have

Ŷ = d
d t

(π ○ ι)(x , y + t, z)∣
t=0

= d
d t

φ̂−z(x , y + t, z)∣
t=0

= φz∗
∂

∂y
.

Since X is a Killing field, its flow φt consists of isometries. Thus, the tangent vector
∂

∂ y = φ−z∗Ŷ also has unit length. Proposition 1.2 has been proven.

3.1 A motivating example

In the proof of Proposition 1.2, we have seen that for each fixed t, the vector field

Ŷ = φt∗
∂

∂y

has a unit length on M. Thus, at any point p ∈ M, the curve

t ↦ γ(t) ∶= (φt∗
∂

∂y
)

p

traces a portion of the indicatrix at point p.
For example, when P = 1 and Q = 0, the vector field X has the following expression:

X = y ∂
∂x

− x ∂
∂y

.

It is defined on the entire plane M = R
2 and it generates the S1 action φt on M, where

φt(x , y) = (x cos t + y sin t, −x sin t + y cos t), ∀(x , y) ∈ M .
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10 X. Mu, H. Miao, and L. Huang

Now, let Y = ∂
∂ y , then it is easy to see that

γ(t) = (φt∗Y)p = sin t ∂
∂x

∣
p
+ cos t ∂

∂y
∣

p
.

Thus, at each point p ∈ R2, the curve γ(t) = (φt∗Y)∣p is a circle of radius one, known
as the indicatrix of the Euclidean metric.

Motivated by the above example, we restate Theorem 1.3 as follows.

Theorem 3.1 Let P and Q be two smooth functions defined near 0 in R such that
P(x) > 0 for all x. Let M be the maximal plane region where the vector field X =
(yP(x) + Q(x)) ∂

∂x − x ∂
∂ y is defined. Let φt be the local flow generated by X with a

flow domain Σ ⊂ M ×R. Define a map ι ∶ Σ → TM as follows:

ι(p, t) ∶= (φt∗
∂

∂y
)

p
, ∀(p, t) ∈ Σ.(6)

Then ι is a generalized Finsler structure on M with vanishing flag curvature, and X
is a Killing field. Moreover, if P and Q are defined on R, P is bounded, and Q grows
sublinearly, then M covers the entireR2, and the generalized Finsler structure is complete.

The proof of this theorem shall consists the rest of this section and it is divided into
three subsections.

3.2 The strong convexity of the indicatrices

To show that ι is a generalized Finsler structure, we only need to prove that
γ(t) ∶= ι(p, t) is a strongly convex curve toward the origin in Tp M for each p ∈ M.
Let Y ∶= ∂

∂ y ; then direct computation shows that

−[X , Y] = P ∂
∂x

, [X , [X , Y]] = (PQ′ − QP′)) ∂
∂x

− P ∂
∂y

.

Thus, it is easy to obtain

det(Y , −[X , Y]) = ∣0 P
1 0∣ = −P,

det(−[X , Y], [X , [X , Y]]) = ∣P PQ′ − QP′
0 −P ∣ = −P2 .

Notice that these two determinants are negative at any point.
By successively using [16, Corollary 1.10], we have

d
d t

(φt∗Y) = −φt∗[X , Y], d2

d t2 (φt∗Y) = φt∗[X , [X , Y]].

Restricting to the point p, we have

det (γ(t), γ′(t)) = det ((φt∗Y)p , −(φt∗[X , Y])p) = det(φt∗) det(Y , −[X , Y]),
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where the last two determinants are evaluated at the point φ−t(p). Similarly, we have

det (γ′(t), γ′′(t)) = det(φt∗) det(−[X , Y], [X , [X , Y]]).

Thus
det (γ(t), γ′(t))

det (γ′(t), γ′′(t)) = det(Y , [Y , X])
det([Y , X], [X , [X , Y]]) = 1

P
,

where the function P is evaluated at the x-coordinate of the point φ−t(p). Since
P > 0, we have proved that the curve γ(t) is strongly convex toward the origin (see
Lemma 2.4).

Remark 3.2 Since φt is a local diffeomorphism, det(φt∗) never vanishes. Together
with the fact that det(φ0∗) = 1, we have det(φt∗) > 0. Thus, we can actually prove
det(γ(t), γ′(t)) < 0, i.e., γ(t) travels clockwise around the origin.

3.3 Computation of flag curvature

Now we compute the flag curvature of the above generalized Finsler structure.

3.3.1 Hilbert form

As above, let (x , y, t) be the natural coordinate system on the flow domain Σ. We
define another coordinate system (u, v , s) on Σ as follows:

(u, v) = φ−t(x , y), s = t.

By the definition of the flow, we know that

u′ = −vP(u) − Q(u), v′ = u,(7)

where ′ denotes derivative with respect to t.
Let π ∶ TM → M be the natural projection, then π ○ ι(x , y, t) = (x , y). Recall that

at each point p = (x , y), the indicatrix is parameterized by the curve

γ(t) = (φt∗Y)p ,

and it satisfies

γ′(t) = −(φt∗[X , Y])p .

Now, since the 1-form d y satisfies

(d y)(Y) = 1, (d y)[−X , Y] = 0,

we find that the 1-form �∗ = (φ∗−t d y)p ∈ T∗p M satisfies

�∗(γ) = 1, �∗(γ′) = 0.

As a result, the Hilbert form ω is given by

ω = (π ○ ι)∗(�∗) = d v − vt d t = d v − u d s.(8)
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3.3.2 Riemann curvature tensor

The geodesic spray ξ is the unique vector field on Σ determined by

ω(ξ) = 1, d ω(ξ, ⋅ ) = 0.

Since ω = d v − u d s, it is easy to see that ξ = ∂
∂v .

Within the coordinate system (u, v , s), the vertical vector field ∂
∂t is expressed as

V ∶= ∂
∂t

= vP(u) ∂
∂u

− u ∂
∂v

+ ∂
∂s

.

Direct calculation shows that

[ξ, V] = P(u) ∂
∂u

, [ξ, [ξ, V]] = 0.

Consequently, we have

H(V) = −[ξ, V] − 1
2
V[ξ, [ξ, V]] = −P(u) ∂

∂u
.

Therefore, the Riemann curvature tensor R is given by

R(V) = VH[ξ,H(V)] = VH [ ∂
∂v

, −P(u) ∂
∂u

] = 0,

meaning that the generalized Finsler surface we constructed is indeed a flat one.

3.4 Completeness

Recall that a generalized Finsler structure (M , Σ, ι) is called complete if the geodesic
spray vector field on Σ is complete.

Lemma 3.3 If the vector field X is complete on the entire plane M = R
2, i.e., its

flow domain Σ is M ×R = R
3, then the corresponding generalized Finsler structure

(R2 ,R3 , ι) is complete.
Proof As the above computation shows, within the (u, v , s) coordinate system, the
geodesic spray is given by ∂

∂v . Hence, the geodesic spray is complete if and only if the
function v can take all real values. Now, the vector field X is complete on the entire
plane M = R

2, so its flow φt is defined for all t ∈ R. By the relation (u, v) = φ−t(x , y),
it is readily seen that v can take any real values, thus the generalized Finsler structure
is complete. ∎
Lemma 3.4 Let P and Q be smooth functions on R. If P is bounded and Q grows
sublinearly, i.e., there exist positive real numbers C1 and C2 such that

∣P(x)∣ ≤ C1 , ∣Q(x)∣ ≤ C2∣x∣, ∀x ∈ R,

then the vector field X = (yP(x) + Q(x)) ∂
∂x − x ∂

∂ y is complete on R
2.

Proof To prove that the vector field X is complete on R
2, we need to show that for

any (x0 , y0) ∈ R2, the solution of the initial value problem

(x , y)′ = (yP(x) + Q(x), −x), (x , y)∣t=0 = (x0 , y0)
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is defined for all t ∈ R. Let C3 = (2C2
1 + 2C2

2 + 1)1/2, then one can easily verify that

((yP(x) + Q(x))2 + (−x)2)1/2 ≤ C3 ⋅ (x2 + y2)1/2 .

By using Theorem 2.17 in [22, p. 53], the above estimate guarantees that the solution
of the above initial value problem is defined for all t ∈ R. ∎

Together the above two lemmas, we have proved the last assertion in Theorem 1.3.
This finishes the proof of Theorem 1.3.

4 Isochronicity and rotational symmetry

Given the generalized Finsler surface constructed above, our main goal in this section
is to determine the conditions under which the generalized Finsler structure reduces
to a classical one.

4.1 A sufficient condition

Let P and Q be smooth functions near 0 inR and P > 0. The vector field X = (yP(x) +
Q(x)) ∂

∂x − x ∂
∂ y has a unique singular point at (0, −Q(0)/P(0)). By suitably translat-

ing the coordinates along the y-axis, we may assume the singular point is (0, 0), i.e.,
Q(0) = 0.

Recall that for a vector field X, the singular point (0, 0) is called an isochronous
center if all the integral curves near (0, 0) are closed and have a constant period. The
maximal domain enclosing all such integral curves is called the period annulus.

Lemma 4.1 If (0, 0) is an isochronous center of the vector field X = (yP(x) +
Q(x)) ∂

∂x − x ∂
∂ y , then for any point p in the period annulus, the curve γ(t) = (φt∗

∂
∂ y )p

is smooth and closed.

Proof Let Y = ∂
∂ y . Suppose that T is the period constant of the isochronous center.

Then, we would have φt = φt+T , ∀t. Hence φ0∗Y = φT∗Y and γ(0) = γ(T). Moreover,
since γ′(t) = (φt∗[Y , X])p , we have γ′(0) = γ′(T). In a similar manner, we can prove
that γ(n)(0) = γ(n)(T), for all n ∈ N. ∎

Now we are ready to derive the following proposition.

Proposition 4.2 Suppose (0, 0) is an isochronous center of the vector field
X = (yP(x) + Q(x)) ∂

∂x − x ∂
∂ y and M is the isochronicity period annulus. Define the

generalized Finsler structure (M , Σ, ι) as in Theorem 1.3. Then this generalized Finsler
structure is actually a classical Finsler structure.

Proof Let p be a point in the period annulus M. Let γ(t) = (φt∗Y)p = φt∗Yφ
−t(p)

as before. We already know from the proof of Theorem 1.3 that γ(t) travels clockwise
around the origin (see Remark 3.2 at the end of Section 3.2). Lemma 4.1 ensures that
γ(t) is smooth and closed. Therefore, we only need to prove now that γ(t) is a simple
curve in Tp M. This amounts to showing that the curve γ(t), 0 ≤ t ≤ T , has a winding
number of −1.
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First, consider the case p = (0, 0). In this situation, we have φ−t(p) = p and
γ(t) = φt∗Yp . By the definition of flow, φt+s = φt ○ φs , we have φ(t+s)∗ = φt∗φs∗. Since
the maps φt∗ ∶ Tp M → Tp M are linear, we find that t ↦ φt∗ is a representation of
S1 = R/TZ on Tp M. Consequently, as the orbit through Yp , the curve γ(t) must be
an ellipse. Moreover, since T is the least period of φt , it must also be the least period
of γ(t). Thus, we have proved that γ(t) has a winding number of −1 when p = (0, 0).

Next, we consider a general point p in the period annulus. Suppose
γ(t) = h1(t) ∂

∂x ∣p + h2(t) ∂
∂ y ∣

p
, then we have the following formula for the winding

number (see [4]):

W = 1
2π ∫

T

0

h1h′2 − h2h′1
h2

1 + h2
2

d t.

Since h1 and h2 in the integrand depend continuously on p, the integral W must also
be a continuous function on M; but we know that the winding number must be an
integer for closed curves, so W ≡ −1. ∎

4.2 A necessary condition

The following proposition suggests that (0, 0) being an isochronous center is also the
necessary condition for the above generalized Finsler structure to become a classical
Finsler structure, at least in a neighborhood of (0, 0).

Proposition 4.3 If the singular point (0, 0) is not an isochronous center of
X = (yP(x) + Q(x)) ∂

∂x − x ∂
∂ y , then for any open subset U ⊂ M, there exists a point

p ∈ U such that the curve γ(t) = (φt∗Y)p is not closed.

Proof It is easy to verify that the conclusion holds if (0, 0) is not even a center of X.
Meanwhile, if (0, 0) is a non-isochronous center of X, then the function

T ∶ M → R, where T(p) is the least period of the orbit containing p, is bound
to be differentiable and non-constant on any open set U and its open subset
U0 ∶= U/ {(x , y) ∈ U ∣ yP(x) + Q(x) = 0}. As the directional derivative of T along the
vector X is already zero, we must have ∂T

∂ y ≠ 0 on U0.
Let p = (x , y) ∈ U0. Consider a curve c(t) in M satisfying c(0) = p and c′(0) = Yp

as well as its image under φT(p). Expanding near t = 0, we have T(c(t)) = T(p) +
t ∂T

∂ y (p) + o(t). Thus

φT(p) (c(t)) = φT(p)−T(c(t))(c(t))
= φ−t ∂T

∂y (p)−o(t)(c(t))

= c(t) − t ∂T
∂y

(p) ⋅ Xp + o(t).

Consequently,

(φT(p)∗Y)p = φT(p)∗c′(0) = Yp − ∂T
∂y

(p) ⋅ Xp .
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By using a similar argument, we have

(φkT(p)∗Y)p = Yp − k ∂T
∂y

(p)Xp , k ∈ N.

Thus, since γ(0) ≠ γ(kT(p)), the curve γ(t) cannot be closed. ∎

Even if the vector field X admits an isochronous center, one can similarly prove
that for any open set U outside the isochronous period annulus of X, there exists a
point p ∈ U such that the indicatrix at p is not closed. Thus, the above two propositions
imply that, for the generalized Finsler structure on M to be a classical one, X must have
an isochronous center and M must be included in the isochronicity period annulus.
Moreover, combining this result with the last assertion of Theorem 1.3, we find that
the constructed generalized structure is classical and complete if and only if (0, 0) is
a global isochronous center on R

2, i.e., the entire R2 is the period annulus.

4.3 Rotational symmetry

At this point, we have almost finished the proof of Theorem 1.4. It remains to show that
X admits an isochronous center if and only if it generates an SO(2) action, but this is
indeed a conceptual transition between dynamical systems and differential geometry.

If X admits an isochronous center, then its flow φt has a constant period T, i.e.,
φt+T = φt holds for all t ∈ R. This means that the action of the flow on M reduces to
R/TZ = S1.

Conversely, if X generates an SO(2) = S1 action on M, then every orbit has a
constant period T. Together with the fact that X has a unique singular point, we find
that X must have an isochronous center. The proof of Theorem 1.4 ends here.

Corollary 4.4 If M is a regular Finsler surface with vanishing flag curvature and its
isometry group G is one-dimensional, then necessarily G = S1.

In the following, we shall discuss the difference between rotational symmetry and
spherical symmetry. Let us begin with the following definition.

Definition 4.5 A generalized Finsler structure (Mn , Σ, ι) is called rotationally sym-
metric (resp. spherically symmetric) if M admits an effective SO(n) (resp. O(n)) action
that maps the indicatrices into indicatrices.

Remark 4.6 In general, if a Finsler structure is spherically symmetric, then the
Finsler metric can be expressed as F = ∣y∣ ⋅ ϕ(∣x∣, ⟨x , y⟩/∣y∣) in some well-chosen local
coordinate system (see [12, 25]); but for a rotationally symmetric Finsler structure, this
is not the case in dimension two, as the following example shows.

The difference between rotational symmetry and spherical symmetry is better
illustrated by the following two-dimensional example: Let us consider the usual SO(2)
or O(2) action on R

2. Let

F(x1 , x2; y1 , y2) = ∣y∣ϕ(s),

where ∣y∣ =
√

(y1)2 + (y2)2 is the Euclidean norm, and s = (x1 y2 − x2 y1)/∣y∣. If the
one-variable function ϕ satisfies some open conditions, then F is a Finsler metric
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defined in a neighborhood of (0, 0). It is easy to check that the corresponding Finsler
structure is rotationally symmetric.

F(Ax , Ay) = F(x , y), ∀A ∈ SO(2), x ∈ R2 , y ∈ TxR
2 ≃ R

2 ,

but in general it is not spherically symmetric because the above relation does not
hold for any A ∈ O(n). Actually, this metric is spherically symmetric only if ϕ is an
even function. Indeed, a generalized Finsler structure on R

2 is just an assignment of
indicatrices (strongly convex curves) to the tangent spaces. So along the (positive)
x1-axis, there is a family of such strongly convex curves. If the Finsler structure
is rotationally symmetric, then this family of curves can be freely assigned, and it
completely determines the Finsler structure since the indicatrices at any point (x1 , x2)
can be obtained by rotating the corresponding curve at (∣x∣, 0). However, to make
the Finsler structure spherically symmetric, this family of curves has to be symmetric
about the x1-axis because the reflection on the x1-axis is an element of O(2).

However, in dimensions ≥ 3, one cannot distinguish between rotational symmetry
and spherical symmetry by looking at the expression of the Finsler metric F, because
in both cases, the Finsler metric can be expressed as F = ∣y∣ ⋅ ϕ(∣x∣, ⟨x , y⟩/∣y∣) in some
local coordinate system. For a proof of this fact, one may consult [12], in which the
proof of Proposition 3.1 also works for rotationally symmetric Finsler metrics.

5 Isochronicity conditions

In this section, we will try to find appropriate conditions on P and Q to make the vector
field X isochronous. Although the general case can be settled, we shall treat the Q = 0
case first, not only because the result is more elegant, but also because the method is
more elementary.

5.1 Isochronicity conditions when Q = 0

When Q = 0, the integral curves of X are given by solutions of the dynamical system

x′ = yP(x), y′ = −x .(9)

Let κ = P(0)−1/2, and let b(x) be the solution to the following initial value problem:

κ + b(x) − xb′(x) = P( x
κ + b(x)) ⋅ (κ + b(x))3 , b(0) = 0.(10)

By the following change of variables:

x = x̃
κ + b(x̃) , y = ỹ,

we can rewrite the above system (9) as

x̃′ = ỹ
κ + b(x̃) , ỹ′ = −x̃

κ + b(x̃) .(11)

The isochronicity condition of this system will follow in the next two lemmas.
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Lemma 5.1 Let λ be a smooth function defined on the open interval (−ε, ε). If
∫

2π
0 λ(r cos θ) d θ is a constant for any r ∈ [0, ε), then λ(x) − λ(0) is an odd function.

Proof Let f (x) = λ(x) + λ(−x) − 2λ(0), then f (x) is even and f (0) = 0. Moreover,
the condition implies that

∫
π

0
f (r cos θ) d θ = 0.

By changing variables x = r cos θ, one can rewrite the above equation as

∫
r

−r
f (x)(r2 − x2)−1/2 d x = 0.

Since f is even, we also have

∫
r

0
f (x)(r2 − x2)−1/2 d x = 0.

Now, we use induction to show that ∫
r

0 f (x)x2m(r2 − x2)−1/2 d x = 0 holds for any
nonpositive integer m. The base case m = 0 is already established above. Suppose it
holds for some m ≥ 0, then we have

∫
r

0
f (x)x2m+2(r2 − x2)−1/2 d x

= − ∫
r

0
f (x)x2m(r2 − x2)(r2 − x2)−1/2 d x

= − ∫
r

0
f (x)x2m(r2 − x2)1/2 d x

= − ∫
r

0
d x ∫

r

x
s f (x)x2m(s2 − x2)−1/2 d s

= − ∫
r

0
d s ∫

s

0
s f (x)x2m(s2 − x2)−1/2 d x = 0.

Thus, the equality holds for all nonpositive integers m. From the above deduction, we
also have

∫
r

0
f (x)x2m(r2 − x2)1/2 d x = 0.

Since any continuous even function can be approximated by linear combinations of 1,
x2, x4, . . . , we conclude from the above equation that

∫
r

0
f (x)(r2 − x2)1/2 g(x) d x = 0

holds for any even function g(x). Taking g(x) = f (x)(r2 − x2)1/2 then shows that
f (x) = 0 on [0, r]. ∎

Remark 5.2 If λ is analytic, then one can use its power series expansion to get a
simple proof of this lemma.
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Lemma 5.3 Suppose λ is a smooth function satisfying λ(0) > 0, then the necessary and
sufficient condition for (0, 0) to be an isochronous center of the system

x′ = − y
λ(x) , y′ = x

λ(x)
is that λ(x) − λ(0) is an odd function.
Proof The integral curves of this system obviously share the same shapes as those
of the system x′ = −y, y′ = x, so (0, 0) is a center of this system. By changing to polar
coordinates, i.e., x = r cos θ, y = r sin θ, this system can be written as

r′ = 0, θ′ = 1
λ(r cos θ) .

Thus, the period of an orbit passing through (r, 0) is given by

T(r) = ∫
T(r)

0
d t = ∫

2π

0
λ(r cos θ) d θ .

The point (0, 0) is an isochronous center if and only if T(r) is independent of r. By
Lemma 5.1, this happens if and only if λ(x) − λ(0) is an odd function. ∎

Using this lemma, we know that the vector field X = yP(x) ∂
∂x − x ∂

∂ y possesses an
isochronous center if and only if the function b is odd. What’s more, after picking a
positive constant κ and an odd function b, we can easily solve for P from the relations

P(x) = (κ + b(x̃) − x̃b′(x̃))(κ + b(x̃))−3 , x = x̃/(κ + b(x̃)).(12)

Example 5.4 If we takeκ = 1 and b(x) = −εx, then one can solve the above equations
to get

P(x) = (1 + εx)3 .

In this case, we have the following well-known polynomial Abel system (see [23,
Theorem 8], see also [5, Theorem 6.2]):

x′ = y(1 + εx)3 , y′ = −x ,

where ε ∈ (−1, 1).
Example 5.5 Set b(x) = εx/(1 + x2), then we have

P(x) = (z2 + 1)2

(z2 + εz + 1)2 ,

where z is determined by the relation x = z(z2 + 1)/(z2 + εz + 1). From the above
expression, it is easy to see that P(x) is bounded on R when ε ∈ (−2, 2). Thus, by
Theorems 1.3 and 1.4, the corresponding Finsler structure is defined on the entire R2,
and it is complete.

5.2 Isochronicity conditions when Q ≠ 0

In the general case, integral curves of X are given by solutions of
x′ = yP(x) + Q(x), y′ = −x ,

where, without loss of generality, we can assume that P(0) = 1 and Q(0) = 0.
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This time, using a change of variables

u = −∫
x

0

1
P(s)ds, v = y + Q(x)

P(x) ,

we can turn this system into a Liénard system

u′ = −v , v′ = A(u) + vB(u),(13)

where the functions A and B are determined by the relations

A(u) = −x , B(u) = Q′(x)P(x) − P′(x)Q(x)
P(x) .(14)

The necessary and sufficient conditions for Liénard systems to have isochronous
centers were studied by Amel’kin and Rudenok, who, in 2018, proved the following
theorem (see [1, Theorem 18] or [18, Theorem 6]).

Theorem 5.6 [1, 18] If A and B are analytic near 0, then the Liénard system (13)
possesses an isochronous center at (0, 0) if and only if there exists a function α and an
odd function b, such that

A(u) = α′(u)(α(u) + 1
α3(u)(∫

α(u)

0
zb(z) d z)

2
),

B(u) = α′(u)b(α(u)),

where the function α is invertible near 0 and its inverse function α−1 satisfies that
α−1(x) − x is even.

To obtain concrete examples, we present the following proposition.

Proposition 5.7 Let A, B, P, and Q be defined as above; then we have the following
relations:

x = −A(u),
P(x) = A′(u),

Q(x)/P(x) = −∫
u

0
B(s) d s.

(15)

Proof As u′(x) = − 1
P(x) , we have x′(u) = −P(x). Together with the relation

x = −A(u), we get P(x) = A′(u).
Meanwhile, the expression for B(u) in (14) can be rewritten into the dif-

ferential equation (Q/P)′ = B(u)/P(x). Together with x′(u) = −P(x), we have
d(Q/P)

d u = −B(u). Thus, Q/P = −∫
u

0 B(s) d s. ∎
Combining Theorem 5.6 and Proposition 5.7, we have proved Theorem 1.5. Now

we shall present several examples.

Example 5.8 Set α(u) = u and b(z) = z in Theorem 5.6, then we get

A(u) = u + u−3(∫
u

0
z2 d z)2 = u + u3/9,

B(u) = u.
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From the relations (15), we have

P(x) = 1 + u2/3,

Q(x) = − 1
2

u2(1 + u2/3),

where x = −A(u) = −u − u3/9.

Example 5.9 Set α(u) = u and b(z) = sin z in Theorem 5.6, then we have

P(x) = 1 + u−4(sin u − u cos u) (2u2 sin u − 3(sin u − u cos u)) ,
Q(x) = −P(x)(1 − cos u),

where u is determined by the relation x = u + (sin u − u cos u)2u−3. One can verify
that this relationship is globally invertible. From the above expression, it is seen that
P(x) and Q(x) are bounded on R. Therefore, the corresponding Finsler structure is
complete on R

2.

5.3 The Bryant–Huang–Mo normal form

So far, our discussions are based on the Bryant normal form (2). If we use the Bryant–
Huang–Mo normal form (3) instead, similar results can be obtained. Since these two
normal forms only differ by a coordinate transformation, the corresponding results
are identical in content, but different in expressions. For example, the vector field to
be considered has the following form:

X = −y ∂
∂x

+ (xu(x)−2 + yv(x)) ∂
∂y

,(16)

where u(x) and v(x) are the arbitrary functions appeared in (3). We may again use
its flow φt to push the vector field Y = ∂

∂ y to generate a generalized Finsler structure.
This generalized Finsler structure reduces to a classical one, if and only if X admits an
isochronous center. However, to find the isochronicity condition, we do not need to
do any coordinate transformations, because it is already a Liénard system.

x′ = −y, y′ = xu(x)−2 + yv(x).

Thus, Theorem 5.6 directly gives the expressions of u and v when the system is
isochronous. Both normal forms suggest the following corollary holds.

Corollary 5.10 The local isometry class of regular rotationally symmetric Finsler
surfaces with vanishing flag curvature depends on two functions of one variable. One
of them is an odd function, and the other is even.
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