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LETTER TO THE EDITOR

Dear Editor,
Remarks on the asymptotics of the Luria—Delbriick
and related distributions

The Luria—Delbriick distribution models the number of mutant cells in a cell population
initiated with one or more wild-type cells. The distribution is defined by the generating function

: 1
Gox) =) pjzl = exp{rn(Z - 1) log(1 — z)}, (1)

jz0
where m is a positive real number. In the 1990s several authors investigated the asymptotics of
this distribution, including Ma et al. [5], Pakes [6], Kemp [4], Goldie [2], and Prodinger [7].
Thus, there exist several proofs of the asymptotic relations

m . m
Pn~ and PnZZPj"’; (n — 00). 2
j>n
The approach taken by Prodinger [7] to derive (2), which is based on the singularity analysis
technique perfected by Flajolet and Odlyzko [1], seems the most suitable for studying asymp-
totics of so-called mutant distributions that include the Luria—Delbriick distribution and several

related distributions.

One important mutant distribution sprang from the assumption that, at the end of the
experiment, each mutant has a probability ¢ € (0, 1) of being observed (see [8] and [10]).
The generating function for the number of observed mutants is thus Go(1 — ¢ — £z), which

takes the form
(1 —2z)logle(1 — 2)]
14+&z }
with & = ¢/(1 — ¢). Asymptotics of this distribution are currently unknown.
Following Flajolet and Odlyzko [1], we let [z"] f(z) be the nth Maclaurin coefficient of

f(2), that is, the coefficient a, in a power series expansion f(z) = ZZO:O a,7". Furthermore,
forn > 0 and ¥ € (0, 7/2), we define A(y, n) to be the region

Gi(d) = eXP{WS

{zilzl < T+, |arg(z = D] = ¥/}

in the complex plane. Asymptotic information about mutant distributions can often be obtained
by applying results similar to Corollary 2 of [1], which we quote as follows.

Proposition 1. ([1].) Let f(z) be analytic in A(Y, n) \ {1} for some n > 0 and ¥ € (0, 7/2).
Assume that, as z — 1 in A(Yr, n),

f@~K(1-2)*
for some real constants o and K. If o is a nonnegative integer then

[2"1f () = o(n™* D).
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Otherwise,
[ () ~ ——n o]
I'(—a) ’
We now apply Proposition 1 to the generating function G (z) to establish an analogue of (2).
Note that the point z = —1/£ is a removable singularity of G(z). Since we use the principal

branch of the logarithm, G (z) has only one singularity at z = 1 in A(¥, n) for arbitrarily fixed
n > 0and ¥ € (0, 7/2). After a little calculation we find that

(1 —2z2)logle(1 — 2)]

=1 —-e)(—2)log(l —z)+ Ry

14+£z

with log(1 -
o —2z)+loge
Ro = (loge)(1 —e)(1 —z) 4 e—2 "L TO8E (2.
14+£z
Clearly,
Ry ~ (loge)(1 —e)(1 —z) asz— lin A(Y, n).

Consequently,

Gi(z) =1+ me(l —z)log(l —2) + Ry (3)
with

Ri~K(l—z) asz— lin A(Y,n)

for some real constant K. Because G1(z) is analytic in A(y, n) \ {1}, so is R; in view of (3).
If follows at once from Proposition 1 that

[z"]1R| = o(n™?).

Furthermore, [z"](1 — z) log(1 — z) = n=% + o(n~2). Combining these two results, we infer

from (3) that
em

Dn ™~ o
(We henceforth use p, and p, as generic symbols for the probability and tail probability,
respectively.) Because jon 1/j% ~ 1/n as n — oo, we further obtain
- em

Pn ™~ —-
n

Another mutant distribution of practical interest is defined by the generating function

m (1
Ga(z) = eXp{ —(- - 1> log(1 — ¢z)},
P \z
where ¢ € (0, 1). Pakes [6] was the first to give an asymptotic expression equivalent to

P 1 ma-ee1 @
¢"  T'(m(l—¢)/P)

It is easy to see that, as z — 1— on the real axis,

Ga(p~'z) ~ (1 — 5 ™mI=9)/P, (5)
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Citing a Tauberian theorem, Jaeger and Sarkar [3] used (5) to conclude (4). However, as
Flajolet and Odlyzko [1] noted, application of Tauberian theorems requires so-called Tauberian
side conditions. In this case positivity of ¢~ p, is easy to verify, and, hence, the asymptotic
relation holds at least in the following Cesaro sense:

n—1
LS~ pi ! ym(=6)/6=1

n = ¢/ Tm(—¢)/p+1)

To prove (4) itself, we need to verify the monotonicity condition that p,,+1 < ¢p, for sufficiently
large n, which seems a cumbersome task. On the other hand, it is simple to verify that

G2(¢7lz) = exp{m(l - l) log(1 — z)}
z ¢

has just one (logarithmic) singularity at z = 1 in the whole region of A(y, 1), the pointz =0
being a removable singularity. Moreover, (5) holds for z — 1 in A(y, ). The validity of (4)
therefore follows readily from Proposition 1 (see [11]).

Our third mutant distribution is defined by the generating function

(1—¢)z T

(6)
l—¢z—0-20 —¢2)*

where o, ¢ € (0, 1) and k is a positive integer. A detailed derivation of G3(z) as a valid
probability generating function for k = 1 is given in [9]. It was shown in [11] that, as z — 1

in A(Y, n),

G3(z) = [

Gi(¢~') ~ (1 -7
This expression implies that
- " ka1
I (ka)
provided that G3(¢~'z) is analytic in A(y, ) \ {1} for some n > 0 and ¥ € (0, 7/2). Buta

proof of the analyticity of G3 (¢~ '2)in Ay, ) \ {1} was missing in [11]. For completeness,
we give one here. It is readily seen from (6) that

l1-¢

Pn

k
Gi(p'2) = [ a(z)(1 — z)‘“}

with
Z

(1—9) —(1-¢"2)

Since we use the principal branch of the logarithm, both (1 — z) ™ and (1 — z)!~* are analytic
in A(y, n) \ {1}. Furthermore, because a(z) — ¢>*1[1 — (1 — a)¢] as z — 0, zero is not
a singularity of a(z). Therefore, it suffices to ascertain that the denominator of a(z) does not

vanish in A(y, n) \ {0, 1}. This can be accomplished by considering three cases. First, if
z € (0, 1) then

a(z) =

Z
Q- >1—z7z>1-2=,
¢

Second, if z € (—o0, 0) then

Q) cloz<l-2
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Third, consider the case Im(z) # 0. Let arg z denote the principal branch satisfying —7 <
argz < m. Because 0 < ¢ < 1, we have

larg(1 — 2)| < arg(1 — ¢~ "'2)].
Using the above inequality and the fact that 0 < 1 — o < 1, we arrive at
larg(1 — 2)' 7% = |(1 — @) arg(1 — 2)| = (1 — a)|arg(l — 2)| < |arg(l — ¢~ '2)|.

Combining the above three cases we conclude that the denominator of a(z) has no zeros in
A, M\ {0, 1}.

In summary, singularity analysis is a powerful tool for tackling asymptotics of mutant
distributions. To reinforce this message, we conclude by outlining a proof of the first expression
in (2). We note that (1) implies that

Go(z) =1 —I—m(% — 1) log(1 —z) + R, (7)

where R = O((1 — z)210g2(1 — 7)) asz— lin A(¥, n). According to another result
(Theorem 2) of [1], we have
[Z"1R = O(n "3 log?(n)).

Thus, p, ~ m/n? is evident from (7).
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