
Proceedings of the Edinburgh Mathematical Society (1998) 41, 517-537 ©
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We give arithmetic characterizations which allow us to determine algorithmically when the semigroup ring
associated to a simplicial affine semigroup is Cohen-Macaulay and/or Gorenstein. These characterizations
are then used to provide information about presentations of this kind of semigroup and, in particular, to
obtain bounds for the cardinality of their minimal presentations. Finally, we show that these bounds are
reached for semigroups with maximal codimension.
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Introduction

Given a semigroup S, one can consider the semigroup ring K[S] = ©jeS Kys. Some
properties of K[S] can be characterized in terms of S, such as being a Cohen-Macaulay
ring or a Gorenstein ring. If the semigroup S is affine (a finitely generated
subsemigroup of Nl for some positive integer k), some work has been developed in this
line, see for example [4, 2, 11, 5]. In [11] a characterization of Cohen-Macaulayness
(and Gorensteiness) of semigroup rings is given in terms of a property of the semigroup
and a property of the extended homology of a certain simplicial complex related to
the semigroup S.

In numerical semigroups, every element can be written in an unique way as a sum
of an element in the Apery set associated to a generator of the semigroup and a
multiple of the aforementioned generator (see [1]). In this paper, we show that a similar
condition characterizes Cohen-Macaulayness of K[S], provided that S is simplicial.
Instead of taking the Apery set of a given generator (which is infinite in general) we
consider the intersection of the Apery sets of the extremal rays of the given semigroup.
This characterization allows us to give an algorithmic method to decide if K[S] is
Cohen-Macaulay when S is a simplicial affine semigroup.

Another feature is that a numerical semigroup is symmetric (Gorenstein) if and only if
the Apery set associated to an element of the semigroup has a maximum (with respect to
the ordering s < s' if and only if s' — s e S). In this paper, we show that a simplicial affine
semigroup is Gorenstein if and only if it is Cohen-Macaulay and the intersection of the
Apery sets of the extremal rays has a maximum. Thus, we have an algorithmic way to
check if K[S] is Gorenstein when S is a simplicial affine semigroup.
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The above-mentioned properties of the intersection of the Apery sets of the extremal
rays of a given simplicial affine semigroup, together with the fact that this set is finite,
is used to generalize the algorithm given in [7] to compute a minimal system of
generators for the congruence associated to a Cohen-Macaulay semigroup. This
construction is then used to give bounds for the number of elements of such a system
of generators for the Cohen-Macaulay and Gorenstein case. These bounds are reached
and characterize the so-called Cohen-Macaulay and Gorenstein simplicial affine
semigroups with maximal codimension, generalizing in this sense the results obtained
for numerical semigroups in [8], [9].

1. How to know if a simplicial affine semigroup is Cohen-Macaulay

Let S be the semigroup of Nr generated by A = {«,,..., nr, nr+l,..., nr+m], with r > 1
and m > 1. The semigroup S is simplicial if r — dim(S) and LQ+(5) = LQ+({«|, . . . , nr}),
where LQ+(B) is the set {J3"=1 gAltf, e Q+. &i e &)• Assume that A is a minimal system
of generators for S (i.e. nk & (A\{nk}), for all k e {1 , . . . , r 4- m}). The natural number m
is called the codimension of S.

We say that S is Cohen-Macaulay (Gorenstein) if K[S] is Cohen-Macaulay
(Gorenstein), where K[S] is the S-graded ring ®S£S Kys (see [3]).

It is possible to translate Cohen-Macaulayness of K[S] in terms of properties of S.
The same holds for Gorensteiness. This problem has been studied by S. Goto, N.
Suzuki and K. Watanabe in [2]; by N. V. Trung and L. T. Hoa in [11]; and by Y.
Kamoi in [5]. We are going to use two results given by these authors for the special
case of simplicial affine semigroups which connect Cohen-Macaulayness and
Gorensteiness of K[S] with properties of S.

We define the i-th face of LQ+(S) as Ff = LQ+({w,,.... nr}\{n,}). We define also the set
S, = S - (S n Ft), that is, the set of elements in ®(S) (the group generated by S) that are the
difference of an element in S and an element in the i-th face of the cone which is also in
S. We define the set G(, r] = ®(S)\ (J!=i $. The following theorem gives different conditions
to check whether a simplicial affine semigroup is Cohen-Macaulay.

Theorem 1.1. Under the above hypothesis, the following conditions are equivalent:

(i) K[S] is Cohen-Macaulay;

(ii) for any a J e S with a + n, = /? + n̂ (l < i j^j < r), a. - n; = ft - nt e S;

( i i i ) f o r a n y a e N * , if a. - n,, e S a n d a - n ; e S , t h e n a - ( « , + ny) e S ( l < i ^ j < r);

Proof. The equivalence between (i), (ii) and (iv) is given in [11]. The equivalence
between (ii) and (iii) is trivial. •

A version for the Gorenstein case can be found in [11, Corollary 4.4].
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Theorem 1.2. Let S be a simplicial affine semigroup. Then the following conditions
are equivalent:

(i) K[S] is Gorenstein;

(ii) there exists g e (5(S) such that g - S — G(, r).

These results translate properties in the semigroup ring K[S] to properties of the
semigroup S. In this paper we give a method to check if the semigroup S fulfils these
conditions. In order to do that, we still need some background.

Definition 1.3. Given n e S — {0} we define the set

S(n) = {seS:s-n#S).

These sets are called the Apery-sets (see [1]). In the case of numerical semigroups, these
sets are finite, but in general they are infinite. For simplicial affine semigroups, the
set P)j=1 S(n() is finite. Note that, since A is a minimal system of generators for S,
{0, nr+ , nr+m) c pl'=1 S(n,-). This set is going to play a very important role in the
present paper.

Let us see that P),=1 S(n,) is finite, and let us give a bound for its cardinality.
Since S is simplicial, then for each i e { 1 , . . . , m], there exists the following natural

number:

cr+l — min{/c e N - {0} : knr+i e («,, n2,..., nr)}.

Note also that these numbers can be easily computed. We can see n, as a vector in
Q', for all i € { l r + m}. Given {n , , . . . , nir) c { « , , . . . , nr+m], let us denote the
determinant of [nh,..., nit) by d e t ( n f | , . . . , nir). Since { « , , . . . , nr] is a basis of Q ' , then
for each i e { 1 , . . . , m], we can find A , , , . . . , Xir such that

where the A,y's are exactly

Using this information, it is easy to show that

det(n , nr)

= det(n, nJ_| ,nJ +, , . . . ,nf)

* det(n nr)

r+l g c d { d e t ( n , , . . . . nM,nrM, nj+l nr) :j e {1 r}}'

where gcd denotes greatest common divisor.
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We define the set

J2yr+in'+i '• >V+. < cr+i forallie{l,...,m)

I f " e f)i=i s("i)> t h e n " trivially belongs to T, and therefore #f)i=i S(n.) < #T. Note
also that this property allows us to compute the elements of p)'=1 S(n,)> because we only
have to check among a finite number of elements of S whether they belong to
Dfei S(«,-) or not, and this is easy to check.

Now, we show that every element in a Cohen-Macaulay simplicial affine semigroup
can be written in a "unique" way. This property will allow us to give a method to
characterize Cohen-Macaulay simplicial affine semigroups.

Lemma 1.4. Let S = ( n , , . . . , nr, nr+u ..., nr+m) c N' be an affine simplicial semigroup.
Then every element s e S can be written as

S —

where x € f]r
i=i S(n.) and a, e Nfor all i e {1 r}.

Proof. Take s e S. If s € f*)'=1 S(n,), then we are done. Otherwise, there exists
i G {1 r} such that s & S(n,). This means that Si = s - n, e S. If s, e f]'= l S(«,), then
we have that s — n, + s,; otherwise there exists j e {1 , . . . , r] such that s, £ S(n;). Take
s2 = s, - rij. Once we have sk, we can construct sM in a similar way. Note that this
process must stop because we cannot have an infinite descending chain of elements in
Nr (s,+i < Sj, with < the usual partial ordering in Nr). Hence, there must be / e N such
that s, G P|j=1 S(n,). Passing all the n,'s to the other side we have what we want. •

Note that the last result holds also for affine semigroups not being simplicial. If
the given semigroup is Cohen-Macaulay, then the expression appearing in the previous
lemma is unique, for every element in S. Furthermore, the reverse is also true.

Theorem 1.5. Under the above hypothesis, the following statements are equivalent:

(i) K[S] is Cohen-Macaulay;

(ii) for every s e S such that

r r

^2 ^T »,«, + y

with x,ye pj[=1 S(n,), and at, bt e N for all i e { 1 , . . . , r}, we have that a, = bt for
all i e { 1 , . . . , r} and x — y.
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Proof. Assume that K[S] is Cohen-Macaulay and that the second statement is false.
Take a the least element in S (with respect to an ordering in Nr compatible with the
addition) verifying

x =

with a, ^ bj for some i or x ^ y. Note that not all a,'s and b,'s can be zero, because
this would mean that y — x and a, = b, for all i. Hence, there must be an i such that
a, ^ 0. Note also that not all the b/s can be zero, because this would lead to the
fact that y g P|'=1 S(n,). Thus, there exists j such that bj ^ 0. (By the minimality of a,
we have that at = b, = 0.) This means that a — «, e S and a — n, e S which, by 1.1,
leads to a — («, + nt) e S. By the previous lemma, we have that there exist
c , , . . . , c , e N and z e f]r

i=l S(M,) such that a — (n,, + rij) = £V=1 C,M, + z. Therefore, we
have the equality

a '= a — n, = a,M, H + (a ; — l)«j H hflr«, + x = c,n, + • • • +(c;- 4-1)«; H YcrnT + z,

with a;- = 0 ^ (Cy + 1), which is a contradiction with the fact that a was the minimum
verifying this.

Assume now that the second statement is true and let us show that K[S] is Cohen-
Macaulay. Take a € S such that a — n, e S and <x — nt e S. By 1.1, it is enough to prove
that a — (n, + rij) e S. Using the previous lemma, we have that

- n i = ^2 aknk + x

k=\

and therefore

a{nx H h (a,•+ I K H 1- arnr + x = b,n, H Kfy + \)ns H h fernr + y.

Using the hypothesis we get a, + 1 = b,, which means that fc, / 0. Hence,

OL — (n.- + Wj) = fc|Mi + • • • + (fcj — 1)M, + • • • 4- brnr -\- y & S.

Corollary 1.6. Under the above hypothesis, the following statements are equivalent:

(i) K[S] is Cohen-Macaulay,

(ii) for all x,ye | X , S(«,). ifx^y. then x-y$ ®({n, nr}).
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Since we can compute the equations of ©({n,,.. .,nr}) and the set p)'=1 S(n,), this
corollary gives an algorithmic way to check if the semigroup ring of a given affine
simplicial semigroup is Cohen-Macaulay.

Corollary 1.7. IfS is a Cohen-Macaulay simplicial affine semigroup, then

(i) ®(S) = {EL, zrnr + x\z, eZ,xe ( X , S(n,)};

(ii) every element in ®(S) is equal to an unique expression of the form
z,n, H \- z,nr + x with z, e Z and x e (X , S(M,)/

(iii) the element zxnx A h zrnr + x with z, e Z <W x e fX, $(«,) M WI S if and only
ifzj > 0 for all i.

Proof. Let A = {£'=1 zrnr + x|z,, e Z,x e | X i s(n.)}- F o r e v e ry i e {1,...,»»}, we
have that nrM e LQ+({n,,..., nr}), and therefore there exists cr+, e N such that
cr+inr+i € (n, nr).

T a k e gf e ©(5) ; t hen the re m u s t be s,s'eS such tha t g = s — s. By 1.4, we have
that s — a^A \-arnr+x and s' = a\n]A \-a'rnr + x, with ait a\ e N and
x, x' e HLi S(n,-)- To show ®(S) = /4, it is enough to show that x — x' e A, for every
x, x' e PlLi S(n,). Since x — x' e ®(S), there must be z, zr+m such that x — x' =
zxny-\ h z,nr + zr+lnr+1 H h zr+mnr+m. For every i e {1 , . . . , m), take q,- e Z, b, € N
such that zr+i = qtcr+i + bj. Thus, x - x' can be written as x-x' — z\nx-\ h
z'rnr + bxnr+x -\ h bmnr+m, with z\ e Z and b, € N. Note that bxnr+x H h bmnr+m e S,
and by 1.4, we have that there exist dx,..., d, e N and y € p[=1 S(n,) such that
bxnr+x H h bmnr+m — dxnx H \- d,n, + y. Putting all together we get x - x' =
z"xnx H h z"nr + y, with z" e Z.

The second statement is a direct consequence of 1.5 and the third statement is a
consequence of 1.4 and 1.5. •

2. On relations of Cohen-Macaulay simplicial affine semigroups

In this section we give, using the fact that p)'=1 S(«,) c F, a bound for the number
of elements in a minimal system of generators for the congruence associated to a
Cohen-Macaulay simplicial affine semigroup. After that, we sharpen this bound using
some extra results.

Let cp be the map defined in the following way:

<p : K+m - • S

Let us denote the kernel congruence of q> by a. Then S is isomorphic to K+m/a.

https://doi.org/10.1017/S0013091500019866 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019866


COHEN-MACAULAY AND GORENSTEIN AFFINE SEMIGROUPS 523

We say that p is a minimal system of generators for a if p generates a and its cardinal
is minimal among the cardinal of the sets generating a. It can be shown that
#p>r + m — r = m (see [3]).

Definition 2.1. Let n e S - {0}. We define the graph Gn as the graph whose vertices are

V(Gn) = {n,: n - B, e S, i e { 1 , . . . , r + m}},

and whose edges are

E(GJ = [n-fTj : n - (n, + «,) g S, ij g { 1 , . . . , r + m], i ?j).

A minimal system of generators, p, for a can be constructed in the following way
(which follows from a straightforward generalization of the results given in [7] and is
presented in [10]). For any n e S, define pn as follows:

1. If Gn is connected, then pn = 0;

2. If Gn is not connected and G\,..., G'n are the connected components of Gn, then
choose a vertex njt e V(GJ,) and an element a" = (a1,,..., a[+m) e Nr+m such that
<p(a") — n and du ^ 0; define

3. p UnesPn

Lemma 2.2. /f S w Cohen-Macaulay, then the elements in {n , , . . . , nr) n V(Gn) are
a// «i Me same connected component of Gn.

Proof. This result is a consequence of 1.1. •

This result is the main idea used in this paper to generalize the results achieved for
subsemigroups of N in [7].

Lemma 2.3. Under the above hypothesis, if Gn is not connected, then there exist
j G {1 m} and s e f]r

i=i S(n,) such that

Proof. Assume that for all nr+k e V(Gn)\{n,,..., nr], there exists i e {1 r} such
that n - n,+k $ S(n,)- This would mean that n - (nr+k + n,) e S, and therefore nr+k would
be in the same connected component as {n, , . . . , nr) n V(Gn). As a consequence of this
fact, Gn would be connected, a contradiction. Thus, there exists j e { 1 , . . . , m) such that
n — nrH G P|j=l S(n,). This concludes the proof. D
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Thus, a bound for #p could be m2 ["[£, cr+, (there are at most m f]™,, cr+, non-
connected Gn and each of them has at most m connected components).

In order to find a better bound for #p, we need some technical lemmas.

Lemma 2.4. Let S be a Cohen-Macaulay simplicial affine semigroup and n G S be
such that Gn is not connected. Then there exist a number k > r and an element
s € nj=i' S(«j) such that:

(i) n = nk 4- s;

(ii) n & n 'Ji ' S(n,-)/

(iii) for all s e S, s / s W s £ S(s'), s' + nt e plJT/ S(«,-).

Proof. Let «, be such that i = min{j : n, e V(Gn)}. Since Gn has more than one
connected component, we can choose another vertex of Gn which is not in the same
connected component of nt. Let C, be the connected component of Gn which contains
rij. Choose nk so that k — m\n{j : n, e V(GJ\C,}. Since S is Cohen-Macaulay, then if
{« , , . . . , nr} n V(Gn) / 0, we have that / < r and therefore k > r, because nk is in a
connected component different from the one of {« , , . . . , «r} DV(GB); if
{n , , . . . , n,} n V(Gn) = 0, then i > r and so is k.

Since nk € Gn, then 5 = n — nk e S. Moreover, for any ;' < k, n~h~k is not an edge of
Gn, so s — n), = n — («; + nt) ^ S and therefore s e n*Ji' S(«/). This proves (i) and we also
have (ii), since n — n,, e S.

Now, suppose that s' e S is such that s ^ s and s £ S(s'). Then 0 ^ s — s' e S and so
there is a generator n, such that s — s — n, e S. This generator, nt, is a vertex of Gn,
since n — n, — (s — s' — «,) + s' + nk e S. Moreover, it is clear, from the above
expression, that n — (n, + nk) e S. Therefore, n, and nk are in the same connected
component of Gn. If there exists j < k - 1 such that s + nk & S(n;) (i.e. s +nk — n} e S),
then we have that n — nt, = (s — s' — n,) + «, + (s' + nt — n̂ ) e S. Thus, M; is a vertex of Gn

which is in the same connected component that n, (notice that n — (n, + nt) e S). We
conclude that n; and Mn are in the same connected component; but j < k, which is a
contradiction. •

Note that the first statement of the previous lemma sharpens the result given in
2.3.

Lemma 2.5. For any r + 1 < k < r + m, let Dk be the set

k-l k-\

Dk = {S e P ) S(nj): s + n k $ P ) S ( n , ) and for all s1 e S , s ' ^ s

k-\

with s $ S(s'), s' + nt e P | S(nt)}
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and let Ut=M-iA oe tne disjoint union of the sets Dk. Then there is an injective map

' : P -»• LU+i*V

Proof. For every n e S, let G\,..., Gj," be the connected components of Gn. We
can assume that G\ contains the vertex of Gn with the lowest index and tn > 2. Recall
that pn is of the form

P . = {(«;.«?).... .«.«?)}.

where each a" is associated to Gj,. Let us define, for each n and each (a", aj), i > 2,
the element i(a", a"). Take n,-( e Gj, such that ;', = min{fc : nk e V(GJ,)}. Similar to the
proof of the previous lemma, it is not difficult to show that n — ns. e D;. We define
i(oT, oT) = n - n,f.

Assume now that i{a, b) — i(a', b'). There must be a natural number k such that
i(a, b) = i(a', b') e Dk, and therefore (p(a) — nk — i(a, b) = i{a', b') = <p(a) - nk. Thus,
(p(a) = cp(a'). Hence, (a, b) and (a',b') are both in p^. This implies that
b — b' = afa). If a ̂  a', then their corresponding connected components are
different and therefore i(a, b) and i(a'y b') belong to different Dk's, which is a
contradiction. •

Putting all together, we get the following theorem.

Theorem 2.6. The cardinality of a minimal system of generators for a is less than or
equal to

where d = #{X~i Sin,).

(2d-m)(m-l) | 1

Proof. Using the previous lemma, we only have to compute the number of elements
in Dk for r + 1 < k < r + m. Let c be the least natural number such that
cnr+m e (n,,..., nr+m_t) (note that c < cr+m). Then, it can easily be shown that

r+m— I

S(n,) = {0, nr+m (c - l ) n r + j .

Hence, the only element in Dr+m is (c — l)nr+m, and therefore #Dr+m = 1.
For any r+l<k<r + m— 1,

A c f ] S(n,)\{0} c P | S(«,)\{0, B p + I f . . . , nk_t}.
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Since {0, nr+l,..., nk_t} c f|;=1 S(n,), #Dr+i <d-i for all i e ( l m - 1 ) , and there-
fore, by 2.5,

D

Note that this bound is reached if m = 1. In this case, the bound in 2.6 is 1, and
therefore, on the one hand, 2.6 ensures #p < 1 and, on the other hand, the results given
in [3] ensure that #p > 1 —m. Thus #p = 1. Note that these semigroups are a complete
intersection and therefore they are all Cohen-Macaulay.

Another consequence of this result and 1.6 is the following. Let us consider the
quotient group Zr/©({" «,})• Each equivalence class has a representative in the
"box" whose vertices are £Li eini> v̂ith e, 6 {0, 1} for all i. Note also that, since for all
x, y € P|'=1 S(n,), with x ^ y, we have that x — y g ©({« , «r}), the representatives
of [x] and [y] in the mentioned box must be different. Since there are det(«,,..., nP)
elements in the box, we have that #0/=! S(n,-) < det(«, nr). This gives the following
bound for the cardinality of a minimal relation for S:

(2det(w, wf) - m)(m - 1)
2

There are semigroups for which # P|[=1 S(n,) = det(«,,..., nr), as the following
example shows:

Example 2.7. Take r = m = 2 and S = ((2, 0), (0,4), (1, 2), (1, 1)). It is not hard to
show that

f | S(n() = {(0,0), (1, 2), (1,1), (2, 2), (3, 3), (2, 3), (3,4), (4, 5)},

and therefore #f|-=i S(«,) = det((2,0),(0,4)). Note that, by 1.6, K[S] is Cohen-
Macaulay.

In the next section we are going to prove that in the case m = d — 1, the bound is
also reached.

3. Cohen-Macaulay affine simplicial semigroups with maximal codimension

Let 5 = (n,,..., nr, nr+1,..., nr+m) c Nr be a simplicial affine semigroup with
D/=i S(n,-) = {0, x , , . . . , xd_t}. Note that m must be less or equal than d — 1. We say that
S has maximum codimension when m = d — 1. For this kind of semigroup it is very easy
to compute a minimal relation as the next theorem shows:
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Theorem 3.1. Let S be a Cohen-Macaulay simplicial affine semigroup with maximal
codimension. Then #p — d(d — l)/2.

Proof. If m - d - 1, then the bound given by 2.6 is #p < *&=&. Recall that there
are as many elements in pn as connected components of Gn minus one. Thus, what we
have to do is to count the number of connected components of each Gn. Observe
that:

1. Since m — d— 1, then

2. If Gn is not connected, then, by 2.3, there exist s e p)!=i S(nf) (note that s ^ 0)
and j e [l,...,m] such that n = s + nr+j. Hence, n — nr+i + nr+j, for some
1 < i,j < m.

3. I f n = nr+i + n r + j , 1 < i, j < m , t h e n n = nr+i + nr+j 4 {0, n r + 1 , . . . . nr+m] = f][=] S(nk).
Thus, there exists k e { l , . . . , r } such that n&S(nk) and therefore

4. If « = «r+, + nr+j, 1 < i, j < m, then

(a) If i^j then {nr+1,nr+;} is a connected component of Gn. This is because
nr+i, nr+j € V(GJ, and if M — (nr+I + nk) e S with k ^ r+j (which would mean that
there is an edge between nr+i and nk), then nr+j — nk e S, which is not possible.

(b) If i=j then, reasoning as in the previous case, {nr+,} is a connected
component of Gn.

Taking all of this into account, we have that there are as many elements in pn as
possible expressions of the form nr+i + nr+j = n, 1 < i, j < m. Thus, there are at least
d(d — l)/2 elements in p. •

Let us see that the reverse is also true.

Theorem 3.2. Let p be a minimal relation for S. If Up = d(d— l)/2, then S has
maximal codimension.

Proof. By 2.6, #p < {Id - m)(m - l)/2 + 1. Thus d(d - l)/2 < (Id - m)(m - l) /2 + 1.
Making some computations, this leads to m2 — (2d + l)m + d2 + d — 2 < 0, which implies
that m € [d — 1, d + 2], and since m < d — 1 we have that m = d — 1. •

The next theorem shows how to construct a Cohen-Macaulay simplicial affine
semigroup with maximal codimension from an arbitrary Cohen-Macaulay simplicial
affine semigroup.
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Theorem 3.3. Let S = ( « , , . . . , nr, n, + x , , . . . , n, + x,,,,). If S is Cohen-Macaulay,
then the following statements hold.

(i) The set {« , , . . . , nr, n, + x , , . . . , n, + xd_,} is a minimal set of generators ofS.

(ii) The semigroup S is simplicial.

(iii) The semigroup S verifies

(iv) The semigroup S is Cohen-Macaulay with maximal codimension.

Proof, (i) Assume that

n, + xd_x — axnx H h arn, + ft,(n, + x\) H H ^-i(«i + ^ - i ) ;

then

"i + xd-\ =(al+bl-\ h fod_,)«, + a2n2 H h a r« r + ft)X, H h bd_xxd^.

There are two possible cases:

(a) a, +bi-\ h fc,,,, = 0. Then n, + x,,., = a2n2 H h arnr. Since n, + x,,., ^ 0,
there must exist i such that a^O. This means that (n, +x,,_i) — «, e S and
(«i + X j _ , ) - n, e S and, by 1.1, (n, +x,,_,) - (n, +n() = xd_t - n, e S, which is a
contradiction with the fact xd_t e f)[=1 S(w,).

(b) a, + ft, H h bd_t y£ 0. Since xd_t e f%=i S(«,), a, + ft, H h fe,,_, = 1 and
a2 = • • • = ar = 0. Two subcases must be considered:

(i) ax = 1 and ft, = 0 for all i. This leads to n, + xd_, — n,, a contradiction.

(ii) a, = 0, ft, = 1 for some i and bj — 0 for j / i. This leads to nx + xd_x = n, + x,,
which is again a contradiction.

This proves that n, + xrf_, cannot be written as a linear combination with natural
coefficients of the rest of the generators of S. For the generators of the form n, + x, the
proof is analogous, and it is clear that nt, for i e { 1 , . . . , r), cannot be written as a linear
combination of the rest of the generators.

(ii) Trivial.
(iii) Since {« , , . . . , nr,«, + x , , . . . , n, 4- xd_x) is a minimal system of generators,

{0, n, + x , , . . . , n, + xd_x} c p | ' = ] S(n,). In order to show the other inclusion, let us prove
that every element s e S \ (« , , . . . , nr) can be written as

s = a,n, H (- arnr + («, + x,),
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for some i. Take s e S\(n,,.. . , nr), then

s = b,n, H + brn, + c,(n, + x,) H + cd_x(nx + xd_x)

with ck ^ 0 for some fc. Since c,x, H h cd_xxd_x e S, then there exist e , , . . . , er g N
and _/ such that c,x, + h cd_xxd_x = e,n, + • • • + ernr + x;. Therefore,

s = (i, + c, + • • • + c4 - 1 + • • • + Q_, + e,)«, + (b2 + e2)n2 + • • • + (br + er)nr + (Xj + n,).

(iv) This is trivial using 1.6 and (~]r
i=l S(n,) = {0, n, + x , , . . . , « , + x,,_,}. •

We can repeat this process as many times as we want, each time adding a different
generator in {« , , . . . , nT). Then we have the following result:

Corollary 3.4. Let b e (n , , . . . , nr), b^O, and S - <n, nr,b + x , b 4- xd_,>.
If S is Cohen-Macaulay, then S is a simplicial Cohen-Macaulay affine semigroup with
maximal codimension.

Next, we show how to construct some other Cohen-Macaulay simplicial affine
semigroups with maximal codimension.

Let n, = kfij where fc, e N and e, e Nr has all its coordinates equal to zero but
the i-th coordinate, which is equal to one. Let < be a total degree ordering in Nr

compatible with the addition. Let p = {(n,,0): i e { 1 , . . . , r}} and let a — (p) be the
congruence generated by p. We can define the map

H : K/a -+ Nr

H([n]) = minjn]

It is easy to prove the following lemma (see [6]).

Lemma 3.5. (i) The set p is a canonical ("good") system of generators for a.

(ii) For every n e Nr there exist a, , . . . , ar e N such that n = /*([«]) + £f=i a.nf

(iii) Im(/z) is the set of elements included in the box whose vertices are the points
Yl'i=i eini with £i € {0,1}, removing the faces not containing the zero element.

(iv) The element (x, y) e a if and only ifx — ye ®({n,,..., nr}).

The next definition and lemma give a useful way to check if a given set is
IT, Sfa).

Definition 3.6. Let H be a subgroup of II and let {x,,... .x,} c Zr. The set
{x,, . . . , xp] is a complete system modulo H if the following two conditions hold:
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(i) For all i,j e { 1 , . . . , p}, if x, - xy e H then i = ; ;

(ii) For all i,j e { 1 , . . . , p) there exists k e { 1 , . . . , p] such that x, + x; - xk e H.

Lemma 3.7. Let {«, nr} c FT, H = ©({n,, . . . , n,}), and let [x0 = 0, x,, x2 x,,.,}
6e a complete system modulo H. Assume that S = (n , , . . . , nr, x , , . . . , xrf_, > C.K isa simplicial
affine semigroup as usual. Then, the following conditions are equivalent:

(i) |%i Sfa) = {0 = xo, x, x,_,};

(ii) For all i,j e {0, 1 , . . . , d - 1} there exist k e {0, 1 d - 1} and (a, ajef

Proof. Let us assume that Hi=i $(/!,-) = {0 = x0> x , , . . . , Xj_,}. Since x( + x̂  e S, then
by 1.4 there exists ( a , , . . . , ar) e Nr such that xf + x; = 52[=1 atnt + xk.

Assume now that the second statement holds. Let us show that {0 =
x0, x , , . . . , x,,_,} c (~y.=l S(n,). If this were not true, then there would exist /',; such that
Xj — «;- 6 S. Hence, x,- — «;- = $2i=i a'n> + Yli=! ^ix<- Applying several times the hypothesis
we get X^J,' fcjX, = 5Zi=i cini + xk, a n d therefore xt - rij — 53-=,(af + c,)«, + xt which leads
to x, — xk 6 H. By hypothesis this means that x, = xk, and this is a contradiction,
because —»; cannot be equal to X!i=i(ai + ci)n.-

Now take s e (")/=! $(»,)• Then 5 = ^ J , 1 b,x,. As before, we can apply several times
the hypothesis, getting s — J2'=i c>"f + x* f ° r some ( c , , . . . , cr) e Nr and some
k e {0, 1 , . . . , d — 1}. Since s 6 P)'=1 S(n,), we have that c, = 0 for all i, and therefore
s — xk. This concludes the proof. •

Proposition 3.8. Let {0 = x0, x , , . . . , x,,.,} c Im(/z) Z>e a complete system modulo
(5({«| , . . . , nr}). TAe/i S = ( « i , . . . , « , , M i + x , , . . . , « ] H-x^i) is a Cohen-Macaulay
simplicial affine semigroup with maximal codimension.

Proof. It is enough to prove that p)i=i S(n() = {0,«, + x , , . . . , « , +x,,_,} and that
{ « , , . . . , nr, n, + X | , . . . , « , + ^ - i ) is a minimal system of generators for S.

In order to prove the first condition, let us use 3.7. Note that, since {0, x , , . . . , xp_,}
is complete, then for all ij there exists k such that x, + x; - xk e ©({«i, • • •, nr)). Note
also that xi + xi- /i([x, + x;]) e ©({n,,. . . , nr}), and that xk e lm(pi), which implies that
xk = Klxi + xj\)- Using 3.5, we get that there exist a , ar € N such that x, + x; =
xk + E L i aini- T h u s > ("i + */) + ("i + xl) = 2n\ + E'=i aini + xk = («i + xk)+ («i + i)«i+

Let us prove now that {M,, . . . , nr,«, + x , , . . . , n, H-x,,.,} is a minimal system of
generators for S. It is enough to prove that n, 4- x, cannot be expressed as
Ylj=)j# bj(nt + xj)- If there exists such an expression, then £ fy rnust be greater than
one, because {0, x , , . . . , xp_,} is a complete system modulo ®({n, nr}). Applying
several times the same procedure used before, we get that there must be c cr such
that YltyXji = xk + X^Cjn,, for some k e {0 , . . . , p— 1}. Therefore, xt = xk-\-y, with
y e ©({«! n,.}), and since {0, x , , . . . , x ,} is a complete system modulo
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(5({n,,..., nr}), i must be equal to k and therefore y = 0, which leads to c, = 0 for all
i and 51 ty, = 1, which is a contradiction.

Finally, it is easy to check that S — («, nr, n , + x , , . . . , n,+xp_,) is Cohen-
Macaulay using the definition of complete system modulo a group and 1.6. •

We can do the same for the rest of n,'s and get the same result as before. Using this
fact and 3.4 we get the following corollary.

Corollary 3.9. If {0, x , , . . . , xp_,} c lm(ji) is a complete system modulo
©({n,,..., nr\), then S = (nu ..., n,, b + x , , . . . , b + xp_t) is a Cohen-Macaulay simplicial
affine semigroup with maximal codimension for all b e (n, nr)\{0}.

Note also that, in particular, Im(/i) is a complete system modulo ®({«|,..., nr}).

4. How to know if a simplicial affine semigroup is Gorenstein

In this section, we are going to give a characterization for Gorenstein simplicial
affine semigroups so that we are able to check algorithmically if a given simplicial
affine semigroup is Gorenstein. We show that a simplicial affine semigroup, S, is
Gorenstein if and only if it is Cohen-Macaulay and the set HLi S(n,-) has a maximum
with respect to the ordering: s < s, s,s € S if and only if there exists s" e S such that
s = s + s". In the following, when we refer to an ordering concept, we always mean the
ordering just described.

Once we get the aforementioned result, it will be easy to check if S is Gorenstein,
because we can compute f\l=l S(«,) and then see if it has a maximum and if S is Cohen-
Macaulay. Note that this test is not as hard as it would seem to be at first glance,
because 's < s, s, s e fXi S(«j) then s = s + s" for some s" € S' forces s" to be in

Throughout this section, S denotes a Cohen-Macaulay simplicial affine semigroup.

Lemma 4.1. The set SC\ Ft is the set of elements ofS having the i-th coordinate (with
respect to the basis {«,,.. . , nr}) equal to 0.

Proof. Trivial. •

Lemma 4.2. Consider s e S and g e ®(S) such that g - S = G[ir]. Then g + s e S if
and only if s & (Ji=i(S n ^i) ('e- s 's not 'n any face of the cone).

Proof. Assume g + s e S; then — s = g - (g + s) e G(, r), which means that -s &
ULi S,, and this implies that s £ LXi(s n Fi)-

Assume now that s £ U/=i(S n Ff). If - s e \Jr
i=l Sh then -s = s' - s, for some s' e S

and s , e S n Fh for some i e {\,... ,r). Thus, s; = s + s' and therefore the i-th coordinate
of s with respect to the basis {n,,..., nr] is zero. Using the previous result, we get that
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s 6 S n Ff, which is a contradiction. This shows that — s g [Jr
j=l S,, and therefore

—s e G(, r) = g — S. Hence, —s = g — s for some s e S, which means that g + s — s e S. •

Lemma 4.3. Let g e (5(S) be such that g - S = G,, r). 77/e/i g - x € S for all x e G[, r).

Proof. Take x e G(! rl = g — S. Then there exists s e S such that x = g - s, and
therefore g — x = s e S. •

Lemma 4.4. Let g e ©(S) be such that g — S = G[lr]. Then g 4- (w, + \- nr) is in
the set ofmaximals off)r

i=l S(n,).

Proof. First of all, note that —(n, 4 h« r )€ G[t r], otherwise there would be
s e S and s, e S n Ff such that -(n, + • • • + nr) — s — s,, and therefore s, =
n, 4 + nr + s. Hence s, has all its coordinates bigger than zero, and this contradicts
the fact that s, e S n F,. By 4.3, we have g 4- (n, 4 h nr) e S.

Note also that, for every i e [l,...,r], (n, + • •• + nr) — n, e SOFj and hence
I,- — («i + • • • + «r) £ S,- This implies that M, — (n, 4 + nr) ^ G(1 r] for all i e {1 r}.
Thus, ff — («, — («i + • • • + nr)) = (g 4- (n, 4 + nr)) - n, ^ S. This implies that
g + («, H + nr) e n[=i s(".)-

Let us show that g + (nl -\ + nr) belongs to the set of maximals of P|[_, S(n,). For
this purpose, let us show that g + (n, H + nr) + s, with s ^ 0, does not belong to
Hi=i S(nf). We can compute the coordinates of the element (n, + • • • + nr) + s with
respect to the basis {« , , . . . , nr}. Let (X| , . . . ,x r ) be these coordinates. It is clear that
x, > 1 for all i, and since s ^ 0, then there must exist; e { 1 , . . . , r} such that Xj > 1. This
means that the element (n, + ...,nr) + s — nj has all its coordinates greater than zero,
and therefore it does not belong to Sn F, for any i. Using 4.2 we get that
g + (n, H \-nr) + s- rij e S. Hence gr + (n, H \-nr) + s & S(n;). This concludes the
proof. •

Lemma 4.5. Let u = x — (n, + • • • + nr), w///i x e P|[=1 S(«j). Then u e G[lry

Proof. Assume that u & G[lr]. This means that u e St for some i. Without loss of
generality, let us suppose that u e S{. Then, u = s — sx for some s e S, s, € S D F,. Thus,
M + s, e S, which implies that w + s, + s e S for all s e S. Since s, 6 F,, then there exists
fe e N such that kst e (n2,..., nr). Hence, u + s{ + (k — l)s, = u + (a2n2 H + arnr) e S
with a, e N. Using 1.4 we get that u 4- (a2n2 -\ 4- arnr) = b,/i, 4- • • • + fcrnr 4- y with
bt e N for all i and y e n!=i S(n,-)- Since u = x - (n, 4 1- «r), we get that
a2n2 4- • • • 4- aTn, 4- x = (fc, 4- l)Mi 4- (b2 4- l)n2 4- • • • 4- (b, 4- l)»r 4- y and by 1.5 we get
that x = y and 6 , 4 - 1 = 0 , which is a contradiction. •

Theorem 4.6. If S is Gorenstein, then there is exactly one maximal element in the
set f i t , S(n,)-

Proof. Since S is Gorenstein, g — S = G(1 r) for some 3 e ©(S). By 4.4, we know that
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g + (n, H + nr) = x is a maximal element of (~]r
i=i S(n,). Take y another maximal

element of f^, S(«,). By the previous lemma we have that y — («, + ••• + nr) e G{1 r),
and therefore y — (n, + • • • + nr) e g - S. This implies y + s = x, for some s e S. Since y
is maximal, s must be the zero element and x = y. •

The reverse is also true, as the next results show.

Lemma 4.7.

G,,,] c {Z,n, + • • • + zrnr + z|z, < 0, z 6 f] S(n,)}.

Proof. By 1.7, we know that

] {z,n, + • • • + zrnr + x|z, eZ,x

Take z, z, e Z, xe f)Li s(".)> s u c h t h a t zini "! 1- zrn, -H x e G,,,,,. If z, > 0 for
some i", then 5 ẑy>0

 z;«; + x ~ (X)2;<o ~zy";) e S - ( S n f i ) = S,, a contradiction. •

Theorem 4.8. If S is Cohen-Macaulay and the set P)!_, S(n,) has exactly one maximal
element, then S is Gorenstein.

Proof. Let x be the maximal element of f\j=] S(n,). Define g — x — (M, H + nr).
Let us show that g — S — G(, r).

Take an element h e G(, r). By the previous lemma, h can be written as
h = z l n l - \ hzA + z, with z, e Z, z, < 0, z 6 HLi S(nf). Since x is maximal in
DLi S(«i), we have that there must be an element s e S such that z 4- s = x. Thus,

/i = x - ( « , + • • • + nr) - s + ((z, + 1) + n, + • • • + (zr + l)nr)
= x - (n, + • • • + nr) - (s + (-(z, + l)n, (z, + l)nr)),

and since z, < 0, —(z, + 1) > 0, which implies that h e g — S.
Now take g — s e g — S. If g — s $. G(, r), then g — s e S, for some 1. Hence there exist

s' e S, s, e S D Ff such that g — s = s — s,, and therefore g = (s' + s) — s, 6 Sj, a
contradiction with 4.5. •

5. On relations of Gorenstein simplicial affine semigroups

If S is Cohen-Macaulay, we already have a bound for the number of elements of a
minimal system of generators for the associated congruence of S. We are going to show
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that if, in addition, S is Gorenstein, then this bound can be improved.
In this section, S is a simplicial affine semigroup with minimal system of generators

{«, , . . . , nr, Mr+ nr+m] and m > 1 (if m = 1, S is a complete intersection semigroup
and therefore it has the minimum possible number of elements in a system of
generators for the congruence associated to S).

Lemma 5.1. If S is Gorenstein and x = max fXi=l S(«,), then Gx+rh+. is a connected
graph.

Proof. Note that:

1. Clearly nr+i e V(Gx+nJ.

2. Since nr+j e p|i=i S(«,-) and x — max Pfi=l S(n,) we have that x - nr+j e S, and
therefore (x + nr+i) - nr+j e S. Thus, nr+j e V(Gx+nr+i).

3. For every ; e { l m], j ^ i, we have that (x + nr+i) - nr+j — nr+i — x - nr+; 6 S.

This means that all the elements in [nr+l,.. .,nr+m] are connected. By 2.2, the same
holds for the elements in {« , , . . . , nr) nV(Gx+,r+i). Thus, the number of connected
components is less or equal than two.

Let us suppose that the number of connected components is two. Take
y € H'=1 S(n,)\{x}. Since x is greater than y, there exists s e S such that y + s — x. The
element s must be in Hi=i S(n,-), and therefore there exists dr+J e N, j e { 1 , . . . , m), such
that s = dr+lnr+i -\ h dr+mnr+m. If y + nr+i g p)/=i $(«,), then there must exist ck e N,
k e { 1 , . . . , r + m}, such that

y + n r + i = ctn{-\ + crnr + cr+1nr+1 H + c,+mnr+m,

with Cf -\ h cr > 0 (since y + nr+i & p)j=i S(n,-))- Hence,

x + nr+l- = 3; + s + nr+i = c,n, + • • • + crnr + (cr+1 + dr+l)nr+l + • • • + (cr+m + dr+m)nr+m.

Since we have assumed that there are two connected components, cr+, + dr+x = • • • =
cr+m + dr+m = 0. This leads to s = 0 and therefore x — y, which is not possible.
Therefore, y + nr+i e f X , S(n,) for all y e | % , S(n,)\{x}. Thus

But nr+j e n[=1 S(«,) for _/ > 0 and this would mean that «r+; = tnr+i which is a
contradiction with the fact that {n,,..., nr, n r + l , . . . , nr+m) is a minimal system of
generators for S. This implies that the number of connected components is one. •

Theorem 5.2. If S is Gorenstein and p is a minimal set defining relations for the
associated congruence of S, then
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(2d-m)(m-\) „

Up < - Y + 2 - m,

Proof. Take x = maxf~|;=1 S(n,). Let us define Dk as in 2.5 and let us show that
x ^ Dk, for every r+\<k<r + m. The set Dk is contained in the set f]^ S(n,). Let us

show that x £ f|fei' s(".)- s i n c e x - max Oi=i s("i)> x ~ nr+j e S, for all j e {1 m}.
This implies that x g S(nr+j) for any j € { 1 , . . . , m}.

Besides, x & {nr+1,.. . , nr+m] (otherwise {« , , . . . , nr, nr+l,..., nr+m} would not be a
minimal system of generators for S, since x = max P)'=1 S(n,)).

Thus, as in 2.6, Dk c f|;=1 S(«,)\{0, n r + 1 , . . . . nk_,,x} and

6. Gorenstein simplicial affine semigroups with maximal codimension

Given a Gorenstein simplicial affine semigroup, we are going to show how to
construct a Gorenstein semigroup with maximal codimension. The main difference
between the construction exposed in this section and the one exposed in Section 3 is
that a Gorenstein semigroup can never reach the bound m •= d — 1.

Lemma 6.1. If S is Gorenstein, then m<d-\, with d = # f)r
i=] S(n,). (Note that

m > 1.;

Proof. We already know that m < d - 1. Assume that m — d—\. Then p)[=l S(n,) =
{0, nr+l,..., nr+d_{}. Since S is Gorenstein, there exists i e [I,..., d— 1} such that
nr+i = max f)'j=l S(n,). This means that for every j e [I,... ,d — I], j / i, there exists
Sj e S such that nr+j + Sj = nr+i. No te that st must be in f~)'=1 S(n,). Hence there exists k
such that Sj — nr+k, and this is a contradict ion with the fact that { n , , . . . , n r ,
n r + ] , . . . , nr+m} is a minimal system of generators. •

Thus, if we want to get a Gorenstein simplicial affine semigroup with maximal
codimension, it must fulfil the condition that m — d — 2.

The next theorem tells us the number of elements of a minimal system of generators
p , for the congruence associated to S, in the case S is Gorenstein with maximal
codimension.

Theorem 6.2. Let S be a Gorenstein simplicial affine semigroup with maximal
codimension (m = d- 2). Then #p = d{d - 3)/2.
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Proof. Let S = ( « , , . . . , nr, nr+1,..., nr+m). Since S is Gorenstein with maximal
codimension, f)r

i=l S(n,) = {0, nr+, nr+m,x], with x = max P|[=1 S(n,). In order to
compute #p, let us see for which n e S, Gn is not connected. If Gn is not connected,
then, by 2.3, n = y + nr+j with y e f]'i=l S(n,). Note also that, by 5.1, y ^ x. Hence, if Gn

is not connected, then n = nr+i + nr+j, for some i, j e ( 1 , . . . , m). Let us show that the
reverse is also true. Take i, ; e { l m), and let us prove that Gnr+l+nr+. is not
connected. Two cases must be taken into account:

1. If nr+i + nr+j e f]'i=l S(n,), then, since [n nr, nr+l,..., nr+m] is a minimal system
of generators for S and |~)[=l S(w,) — {0, nr+, n,+m,x}, we have that
nr+i + nr+J = x. Note that x e f]r

j=i S(n,) which means that {« , , . . . , nr) n VCG,,) = 0.
Note also that, since x = max f]r

i=l S(n,), for every I e {1,... ,m}, there exists
fc e { 1 , . . . , m] such that nr+, + nr+k = x. This implies that V(GX) = {Mr+,,..., nr+m]
and that E(GX) = {nr+,nr+k : nr+, + nrU = x).

2. If nr+i: + nr+j,& p)i=i S(nf) then we proceed as in 3.1 and we get that Gnr+j+nr+; is
not connected and has a connected component with vertices in {« , , . . . , np}.

Thus, for every n — nr+t + nr+j, #pn is equal to the number of the expressions of
the form n = n,+l + nr+k, l,ke[l,...,m), provided n / x and it is equal to the
number of such expressions minus one if n — x (this is due to the fact that if n / x,
there is an extra component whose vertices are contained in {u,, . . . ,n r}) . Hence we
must count the expressions of the form nr+i + nr+j, 1 <i,j<m, and subtract one,
getting ( < f - l ) ( J - 2 ) / 2 - l . •

The reverse is also true, as the following result shows:

Theorem 6.3. If S is Gorenstein and #p = d(d — 3)/2, then S has maximal
codimension (m — d — 2).

Proof. The proof is easy and similar to 3.2.

To conclude this section, we are going to construct a Gorenstein simplicial affine
semigroup with maximal codimension from a given Gorenstein simplicial affine
semigroup. Take S as at the beginning of the section and let (l[j=j S(«,) = {0, x , , . . . , xrf_,}.
Assume that S is Gorenstein with xd_t = maxp)'=1 S(MJ). We can define S = ( « , , . . . , nr,
n, + x , , . . . , n, +xd_2). It can be shown, as we did in 3.3, that

1. The set {« , , . . . , nr, nx + x , , . . . , n, +xd_2} is a minimal system of generators
for S;

2. The semigroup S is simplicial.

We do not introduce the element nt+xd_u because xrf_, can be obtained adding
two other elements in n[=i S(n,).

Theorem 6.4. Under the above hypothesis,
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(H,) = {0, n, + x, M, + xd_2, In, + xd^}.

Proof. Straightforward using the fact that {0, n, + x , , . . . , n, + xd_2, 2«, 4- x^,} is a
complete system modulo (5(S) and 3.7. •

Corollary 6.5. Under the above hypothesis, S is Gorenstein.

Proof. Using 1.6 it is easy to show that S is Cohen-Macaulay. It is also clear that
2M, 4- Xj_, = maxj p| '= | S(n,), because xd_, — max5 fXi=l S(n,). D

Finally, we can construct some other examples of Gorenstein simplicial affine
semigroups with maximal codimension taking subsets of Im(/i) (see Section 3) that are
complete systems modulo ©({«,,..., nr}) and have a maximum.
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