
Psychological Medicine

cambridge.org/psm

Original Article

Cite this article: Han LKM, Aghajani M,
Penninx BWJH, Copeland WE, Aberg KA, van
den Oord EJCG (2024). Lagged effects of
childhood depressive symptoms on adult
epigenetic aging. Psychological Medicine 54,
3398–3406. https://doi.org/10.1017/
S0033291724001570

Received: 17 November 2022
Revised: 3 June 2024
Accepted: 14 June 2024
First published online: 7 October 2024

Keywords:
depressive symptoms; DNA methylation;
epigenetic aging

Corresponding author:
Laura K. M. Han;
Email: l.han@amsterdamumc.nl

© The Author(s), 2024. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

Lagged effects of childhood depressive
symptoms on adult epigenetic aging

Laura K. M. Han1,2,3 , Moji Aghajani1,4 , Brenda W. J. H. Penninx1 ,

William E. Copeland5 , Karolina A. Aberg6 and

Edwin J. C. G. van den Oord6

1Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam,
The Netherlands; 2Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; 3Orygen,
Parkville, VIC, Australia; 4Institute of Child & Education Studies, Section Forensic Family & Youth Care, Leiden
University, The Netherlands; 5Department of Psychiatry, University of Vermont, Burlington, USA and 6The Center
for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University,
Richmond, VA, USA

Abstract

Background. Cross-sectional studies have identified health risks associated with epigenetic
aging. However, it is unclear whether these risks make epigenetic clocks ‘tick faster’ (i.e. accel-
erate biological aging). The current study examines concurrent and lagged within-person
changes of a variety of health risks associated with epigenetic aging.
Methods. Individuals from the Great Smoky Mountains Study were followed from age 9 to 35
years. DNA methylation profiles were assessed from blood, at multiple timepoints (i.e. waves)
for each individual. Health risks were psychiatric, lifestyle, and adversity factors. Concurrent
(N = 539 individuals; 1029 assessments) and lagged (N = 380 individuals; 760 assessments)
analyses were used to determine the link between health risks and epigenetic aging.
Results. Concurrent models showed that BMI (r = 0.15, PFDR < 0.01) was significantly corre-
lated to epigenetic aging at the subject-level but not wave-level. Lagged models demonstrated
that depressive symptoms (b = 1.67 months per symptom, PFDR = 0.02) in adolescence accel-
erated epigenetic aging in adulthood, also when models were fully adjusted for BMI, smoking,
and cannabis and alcohol use.
Conclusions. Within-persons, changes in health risks were unaccompanied by concurrent
changes in epigenetic aging, suggesting that it is unlikely for risks to immediately ‘accelerate’
epigenetic aging. However, time lagged analyses indicated that depressive symptoms in child-
hood/adolescence predicted epigenetic aging in adulthood. Together, findings suggest that
age-related biological embedding of depressive symptoms is not instant but provides prognos-
tic opportunities. Repeated measurements and longer follow-up times are needed to examine
stable and dynamic contributions of childhood experiences to epigenetic aging across the
lifespan.

Introduction

During recent years, there has been a rapid increase in the number of studies examining
‘biological age’. Biological age is different from chronological age because it reflects the
individual’s biological state, rather than the time that has passed since birth. Promising
and accurate indicators of biological age are based on DNA methylation levels. These
‘first-generation epigenetic clocks’ track the aging process with correlations between DNA
methylation predicted age (DNAm age) and chronological age of typically over 0.90
(Horvath & Raj, 2018). More recently, ‘second-generation’ epigenetic clocks have also
been developed (Levine et al., 2018; Lu et al., 2019). Instead of being optimized for chrono-
logical age prediction, these clocks focus on enhancing the prediction for aging- and
mortality-related outcomes. In both cases , the predicted DNAm age can be contrasted to
chronological age to study whether individuals are biologically younger or older than
expected based on chronological age. From here on we refer to this difference as ‘epigenetic
aging’.

Studies have shown associations between epigenetic aging v. age-related morbidities, and
mortality (Chen et al., 2016). Correlations of epigenetic aging have also been found with
several health risks such as traumatic stress (Wolf et al., 2018), depression (Han et al., 2018;
Whalley et al., 2017), bipolar disorder (Fries et al. 2017), alcohol use disorder, metabolic syn-
drome components (Luo et al., 2020; Quach et al., 2017), body mass index (BMI), and socio-
economic factors (Schmitz et al., 2022; Simons et al., 2016). The broader literature thus
suggests that psychiatric problems, lifestyle, and adversities are important health
risks associated with epigenetic aging in adults (Gassen, Chrousos, Binder, & Zannas, 2016),
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as well as in children and adolescents (Colich, Rosen, Williams, &
McLaughlin, 2020; Marini et al., 2020). Robust associations
between various dimensions of socioeconomic status and several
epigenetic clocks (e.g. GrimAge, DunedinPoAm, Levine, Yang
clocks) have also been found in older adults (Schmitz et al.,
2022). Similarly, environmental adversity, major depression, and
functional impairments in developing adolescents were associated
to a brain-based biological aging indicator (Drobinin et al.,
2021), indicating the broad impact adversities may have on (mul-
tiple) biological systems. However, as most studies are cross sec-
tional, it remains to be elucidated if health risks make epigenetic
clocks ‘tick faster’ (i.e. accelerate biological aging).

Alternatively, the direction of effects may be reversed, or
associations may be caused by ‘third’ variables that affect both
the health risks and epigenetic aging. For example, individuals
who are more prone to health problems may also be predisposed
to age faster biologically due to genetic or environmental factors.
Studying potential causal contributors to epigenetic aging is
critical and may ultimately inform prevention and treatment
regimens, especially for younger populations when age-related
comorbid conditions have not manifested yet (Moffitt,
Belsky, Danese, Poulton, & Caspi, 2017). Further longitudinal
research is thus needed to disentangle the temporal links,
including stable and dynamic contributions of adverse child-
hood experiences to biological aging indicators across the
lifespan.

Longitudinal studies have the potential to shed light on the
causal relationship between health risks and epigenetic aging,
because they provide the unique opportunity to study within-
person changes instead of between-person changes. Although it
still does not prove causation, our longitudinal study can falsify
causality and allows for stronger inferences by removing between-
subject confounders. Existing studies have mainly focused on epi-
genetic aging trajectories over time (Li et al., 2020; Marioni et al.,
2019) rather than studying the causal role of contributing factors
identified by cross-sectional studies (Ryan, Wrigglesworth, Loong,
Fransquet, & Woods, 2020). Only a small number of longitudinal
studies exist that distinguish predictors of accelerated epigenetic
aging over time from mere correlates that reflect ‘a snapshot of
cellular age at one time point’ (Morrison et al., 2019). For
example, one study found that advanced DNAm age (based on
the Hannum but not Horvath algorithm) at a certain timepoint
predicted higher metabolic syndrome severity two years later
(Morrison et al., 2019).

The current study examines within-person changes of DNAm
age across almost a two-decade period, from childhood to adult-
hood, and explores its relation to a broad but non-exhaustive
selection of cross-sectionally identified health risks associated
with epigenetic aging. A concurrent approach will be tested to
examine whether within-person changes of health risks at a par-
ticular wave are accompanied by a within-person change in epi-
genetic aging at that same wave (i.e. wave-level correlation).
Alternatively, it might also be possible that changes in health
risks are only followed by changes in epigenetic aging later in
life. For example, the initial impact of trauma may magnify over
time due to subsequent increases in health-risk behaviors such
as smoking, substance use, and high-risk activities (Bellis et al.,
2019; Hughes et al., 2017) that then over time accelerate epigen-
etic aging. A lagged approach will therefore also be tested to
examine whether exposure to unfavorable factors in childhood
and adolescence predict a within-person change in epigenetic
aging in adulthood.

Methods

The great smoky mountains study

The Great Smoky Mountain Study (GSMS) is a longitudinal study
of 1420 participants from the southeast United States (Costello
et al., 1996). GSMS started in 1993 when participants were
children aged 9–13. Clinical data and blood spots were collected
annually until age 16, and then again around ages 19, 21, 25, and
30. Although conducted separately, interviews were completed by
both a parent figure and the participant until the age of 16. After
16 years, interviews were conducted with the participant only.

Sample selection for the current study was based upon
availability of biological sample in both childhood (ages 9–16)
and adulthood (ages 19–30) and having a range of exposure to
childhood adversity levels. In total, n = 539 individuals were
included in the concurrent analysis (n = 1039 assessments) and
n = 380 individuals (n = 760 assessments) were included in the
lagged analysis. The study was approved by Institutional Review
Boards at Duke University and Virginia Commonwealth
University and both parents and participants signed informed
consent or assent forms.

Measures

Body mass index
Data on height and weight were measured during interviews. BMI
was assessed as kg/m2, where kg was a person’s weight in kilo-
grams and m2 their height in meters squared.

Psychiatric problems and trauma
Depressive and anxiety symptoms were assessed as follows: before
age 16, both the child and parent completed a structured clinical
interview using the Child and Adolescent Psychiatric Assessment
(CAPA) (Angold and Jane Costello, 2000). After age 16 the Young
Adult Psychiatric Assessment (YAPA) (Angold et al., 1999), the
upward extension of the CAPA, was used. Depressive and anxiety
symptoms were reported with a 3-month recency. Childhood
trauma exposure was assessed by taking the sum of events con-
cerning exposure to violence, sexual trauma, and other injury or
trauma (online Supplementary Table S1). Impairments were
assessed as a cumulative score of the total number of functional
impairments 3 months prior to the interview, measured by sum-
marizing dichotomous indicators across 17 areas of disrupted
functioning, such as relationship with parents, teachers, peers,
ability to complete chores at home, and disrupted schoolwork
(Canino, Costello, & Angold, 1999).

Poverty
Being impoverished in childhood was parent-related and positive
if the family met the poverty guidelines updated periodically in
the Federal Register by the U.S. Department of Health and
Human Services under the authority of 42 U.S.C. 9902(2).
Being impoverished in adulthood was related to personal income.
The poverty variable includes information from the Census
Bureau’s official poverty thresholds on income and inflation
and is adjusted to standardize family size differences.

Substance use
Smoking tobacco, drinking alcohol, and using cannabis was also
assessed. Either of the substance use categories were positive if
reported through self- (adult) or parent (childhood) reports.
Smoking was coded as one if the participant regularly smoked
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(i.e. at least one cigarette per day) in the past three months.
Alcohol and cannabis were coded as one when daily/weekly use
occurred or a use disorder for the substance was reported in the
past 3 months.

Covariates
All health risks were available at all timepoints. Information on age
(in years), biological sex assigned at birth and confirmed with omic
data (male/female), Tanner pubertal stage (ordinal variable mea-
sured at each timepoint), and race/ethnicity was collected.
Children completed a self-report measure of Tanner staging
(Dorn, Susman, Nottelmann, Inoff-Germain, & Chrousos, 1990).
Adult observations were coded as Tanner stage 5. More detailed
information on the measures can be found in the Supplement.

Mean and rolling sums
Traditional imputation techniques do not make optimal use of lon-
gitudinal information or accommodate repeated measurements of
time-dependent variables collected at irregular time intervals. To
handle missing wave observations, we computed either a rolling
sum or a mean across the waves the subject responded.
Effectively, the use of a rolling sum is equivalent to assuming a
score of zero for the missing waves and the use of the mean
assumes the mean across all waves a subject responded or had a
missing value. Thus, for health risks we used a rolling sum but
for variables that cannot be zero (e.g. BMI) we used the mean.

DNA methylation

Bloodspots were assayed for DNA methylation. Nearly all 28 mil-
lion CpG sites in the methylome were assayed with an optimized
protocol (Aberg et al., 2020; Han et al., 2018) for methyl-CG
binding domain sequencing (MBD-seq). Elsewhere we summar-
ized key features of the optimized MBD-seq approach using
empirical data (Aberg, Chan, & van den Oord, 2020). We quality
controlled reads, samples, and methylation sites. Data was pro-
cessed and analyzed using the RaMWAS Bioconductor package
(Shabalin, Clark, Hattab, Aberg, & van den Oord, 2017). The dis-
tribution of CD3+ (T-lymphocytes), CD14+ (monocytes), CD15+

(granulocytes), and CD19+ (B-lymphocytes) blood cells were esti-
mated from the methylation data (Houseman et al., 2012) using
reference methylomes specifically generated for this purpose
(Hattab et al., 2017). For more details on the methylation assay,
see Supplement. It is important to note that commonly used
methods for assaying DNA methylation (and calculating DNA
methylation age) often depend on Illumina arrays. These plat-
forms generate variables indicating the percentage methylated
(data ranges from 0 to 1). However, the current study used
Methyl-CpG binding domain sequencing, generating methylation
data that is semi quantitative (scores may range from 0 to 20). The
currently used affinity-based capture methods have more compre-
hensive coverage of the methylome (interrogation of 94% of CpG
sites), albeit at the cost of lacking single base resolution of bisulfite
sequencing.

DNA methylation age
Following standard methods (Copeland, Shanahan, McGinnis,
Aberg, & van den Oord, 2022; Han et al., 2018), we used elastic
nets, with parameter alpha set to zero (i.e. ridge regression)
(Friedman, Hastie, & Tibshirani, 2010), to predict chronological
age (in years) from all methylome profiles. To obtain an unbiased
estimate of the predictive power, k-fold cross-validation was used,

with k = 10. Of the k subsets, k − 1 were used as a ‘training set’ to
fit the elastic net and obtain regression coefficients. The regression
coefficients were then used to estimate chronological age for par-
ticipants in the ‘test set’. By repeating this cycle of training and
testing for each subset, age estimates are obtained for all partici-
pants. To avoid analyzing all methylation sites, of which the
majority will not be associated with outcome and only add
‘noise’ to the model, we increased the number of sites included
in the elastic net in steps until the predictive power did not
increase anymore. The entire cycle of site selection through
methylome-wide association studies followed by training the elas-
tic net is repeated for each of the k folds. Because both the selec-
tion of sites and estimation of the prediction model is not affected
by the participants in the test set, this yields an unbiased estimate
of the predictive power. To evaluate predictive power we calcu-
lated: (a) the mean absolute error (MAE), (b) Pearson correlation
coefficient between predicted DNAm age and chronological age,
and (c) variance explained by the model (R2 ‘traditional formula’
function implemented in the caret package accounting for system-
atic over- and underestimations) (Kuhn, 2012).

Statistical approach

Concurrent analyses of epigenetic aging
Since we have data of a group of individuals (i.e. subjects) mea-
sured at multiple time points (i.e. waves), several steps were
taken to better understand the sources of covariance between epi-
genetic aging and the health risks. Intuitively speaking, we first
calculated the total covariance between each health risk and epi-
genetic aging across all subjects and waves. For example, the
total covariance between BMI and epigenetic aging represents
how these two variables change together across all subjects and
waves. Estimates were standardized by the total variance to obtain
correlations. Subject-level contribution refers to the part of the
relationship between each health risk and epigenetic aging that
is due to differences between individuals. In other words, if indi-
viduals consistently have been exposed more to health risks
than others, and this relates to differences in their epigenetic
aging, this is considered the subject-level contribution. For
example, if individuals who naturally have higher BMIs also
tend to have higher epigenetic aging, this suggests a subject-level
contribution. Wave-level contribution, on the other hand, refers to
how each health risk and epigenetic aging changes together as
individuals age over time. If, as individuals grow older, their epi-
genetic aging tends to increase or decrease in parallel to changes
in health risks, that’s the wave-level contribution. For example, if
individuals generally experience an increase in BMI as they age,
and this increase is associated with changes in their epigenetic
aging, that suggests a wave-level contribution. The wave-level con-
tribution complements the subject-level contribution to the total
covariance between health risks and epigenetic aging. By decom-
posing the covariance between epigenetic aging and health risks
into subject- and wave-level contributions, we gain insights into
the underlying reasons for their relationship. If the subject-level
contribution is significant, it suggests that inherent differences
between individuals (e.g. genetics) play a substantial role in how
epigenetic aging and health risks such as BMI are related. If the
wave-level contribution is significant, it implies that changes in
epigenetic aging and BMI are closely connected over time. A sig-
nificant wave-level contribution is necessary but not sufficient to
infer that health risks have a causal effect on epigenetic aging.
Technically speaking, we used the nlme R package to fit bivariate
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mixed models (see Chapter 14 in (Rasbash, Browne, & Steele,
2003)). For modelling details, we refer to the Supplement.

Lagged changes in epigenetic aging
To assess whether exposure to a specific health risk in childhood/
adolescence predicted a change in DNAm age between childhood
and adulthood, we selected the latest available pre-adult (T2) and
the adult (T3) DNA methylation assessment, excluding single or
earlier pre-adult assessments (T1) for individuals with DNA
methylation data from more than two timepoints available. The
rationale for selecting the latest pre-adult time point is to capture
the largest cumulative history of exposure to health risks before
adulthood. We then fitted linear regression models with the change
in DNAm age (DNAm age at T3 minus DNAm age at T2) as out-
come and each health risk as predictor, resulting in ten separate
models. To account for age effects, the adult age (i.e. chronological
age at T3) and the change in chronological age (i.e. age at T3 minus
age at T2) were included as covariates in the models, the resulting
metric thus indicates epigenetic aging.

To examine whether epigenetic aging in childhood/adoles-
cence predicted changes in health risks, we also fitted regression
models with epigenetic aging at childhood/adolescence as pre-
dictor and change in health risk (e.g. BMI in adulthood minus
BMI at the latest available childhood/adolescent observation) as
an outcome, while correcting for health risk values at child-
hood/adolescence.

In all analyses, raw DNAm age was residualized for chrono-
logical age, while also accounting for the shared variance between
age and other covariates in the model (Krieger et al., 2023).
Continuous variables with values >3 × S.D. away from the mean
were winsorized back to this threshold. All analyses (concurrent
and lagged) included sex, race/ethnicity, estimated cell-type pro-
portions, and lab technical covariates. For lagged analyses, we
took the delta change in covariates between the adult and pre-
adult time points to account for time-varying confounders, in
addition to adding the covariates from the adult time point.
Two-sided tests were performed and findings were false discovery
rate (FDR) corrected using the Benjamini-Hochberg procedure
(Benjamini & Hochberg, 1995) and considered statistically signifi-
cant at p < 0.05. Model specifications and R code for analysis can
be found on GitHub.

Results

Participant characteristics

Demographics and assessed phenotypes of the current study sam-
ple can be found in Table 1, while a breakdown per wave can be
found in online Supplementary Table S2. Briefly, participants
had one to three DNAm age assessments available, resulting in
n = 1029 measurements from n = 539 participants (mean number
of measurements per individual was 1.9) that were used for the
concurrent analysis. Of these, n = 380 were included in the lagged
analysis. Online Supplementary Figure S1 shows the chrono-
logical age distributions of individuals with one (n = 539,
mean = 17.54 years, S.D. = 5.20, range = 9.47–31.66), two (n = 296,
mean = 18.78 years, S.D. = 5.71, range = 9.07–33.31, mean
follow-up time 9.84, S.D. = 4.00), or three measurements (n = 97,
mean = 17.15 years, S.D. = 6.92, range = 9.01–34.55, mean
follow-up time 1.98 years [S.D. = 1.69] between the first and
second measurement, 12.22 years [S.D. = 4.77] between the second
and the third, and 14.20 years [S.D. = 4.45], between the first and

the third measurement). Online Supplementary Figure S2 displays
pairwise correlations of the health risks across repeated measure-
ments. In short, BMI showed the highest correlations over time
(r between 0.61–0.78), followed by childhood trauma ((r between
0.20–0.68), and smoking ((r between 0.22–0.42). Relatively low
correlations ((r < 0.28) were observed for the other health risks
over time, suggesting that these health risks may reflect more
acute rather than chronic exposures.

Estimating DNA methylation age

Online Supplementary Figure S3 illustrates the explained variance
of chronological age by the elastic net as a function of the number
of methylation sites included as predictors. Chronological age
could be predicted with a correlation of r = 0.93, R2 = 0.85,
MAE of 1.85 years (MAEweighted = ((MAE (1.85 years))/(age
range of sample (27 years))); MAEweighted = 0.07 years)(Cole,
Franke, & Cherbuin, 2019), indicating high accuracy, particularly
considering the restricted age range (online Supplementary
Figure S4).

Concurrent changes in epigenetic aging

Table 2 shows the proportion of subject-level (column 1) and
wave-level variance (column 2). The proportion of subject-level
variance (i.e. intra-class correlation) of epigenetic aging and
each health risk indicates stability over time. The overall covari-
ance between epigenetic aging and health risks (column 3) was
decomposed into subject- (column 4) and wave-level contribu-
tions (columns 5) and is also presented in Table 2. We found sig-
nificant subject-level contributions for BMI (r = 0.15, PFDR <
0.01), meaning that higher BMI was positively correlated to
higher concurrent epigenetic aging. No significant wave-level con-
tributions were found.

Lagged changes in epigenetic aging

For the lagged analysis, we used the latest observation before
adulthood (9–16 years old) and the adulthood observation
(18–35 years old), resulting in n = 380 individuals with two obser-
vations. The mean follow-up time for this analysis was 10.74 years
(S.D. = 4.04). Results for the lagged effects of the health risks on
epigenetic aging can be found in Table 3. Higher depressive
symptoms (b = 1.67 months, p = 0.003) and functional impair-
ments (b = 3.18 months, p = 0.012) were associated with higher
rates of epigenetic aging (online Supplementary Figure S5).
However, after multiple testing correction only depressive symp-
toms (PFDR = 0.024) remained significant. To further explore the
robustness of this significant finding, we post-hoc corrected this
model for additional covariates pertaining to the within-person
change in BMI, smoking, and cannabis and alcohol use. The
fully corrected model showed a persistent significant lagged effect
for depressive symptoms (b = 1.72 months, p = 0.005), Fig. 1.
Persons with a depressive symptom score in the bottom 1st per-
centile were about 6 months younger than expected at their age,
while those in the top 99th percentile showed 10 months of epi-
genetic aging on average. Online Supplementary Table S3 pro-
vides an overview of the epigenetic aging percentile distribution
per health risk. There were no significant findings from the ana-
lyses examining whether epigenetic aging in childhood/adoles-
cence predicted changes in health risks in adulthood (online
Supplementary Table S4).
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Discussion

In this study we used a unique longitudinal study design to gain
further understanding of the concurrent and lagged effects of a
wide range of health risks previously associated with more
advanced epigenetic aging. The concurrent approach showed
that BMI was correlated to epigenetic aging at the subject-level,
consistent with previous literature (Gassen et al., 2016; Horvath
& Raj, 2018). However, no evidence for wave-level contributions
to the concurrent link between health risks and epigenetic aging
was found, indicating that it is unlikely for health risks to instantly
become biologically embedded. On the other hand, the lagged
approach revealed that exposure to depressive symptoms pre-
dicted positive changes in epigenetic aging between childhood/
adolescence and adulthood, while epigenetic aging in child-
hood/adolescence did not predict future health risks. Combined
with the absence of wave-level contributions to the correlations
in the concurrent models, we suggest that the effects of the stud-
ied health risks possibly require time to develop to be expressed

later in life. Furthermore, this implies that improving mental
health in children and adolescents may prevent accelerated or
ameliorate accelerated biological aging in the future.

The relatively low correlations between health risk variables
over time (online Supplementary Figure S2) suggest that most
studied risk factors were dynamic. An alternative explanation
for the lack of concurrent wave-level contributions is that wave-
level correlations are confounded by measurement error, attenu-
ating wave-level contributions to the covariance between health
risks and epigenetic aging. It will be interesting to see whether a
longer follow up time and older average age of our sample may
result in significant concurrent effects. However, despite the
dynamic variability of health risks, the detection of lagged effects
indicates that initial exposure to depressive symptoms has a last-
ing impact on epigenetic aging. We argue that this trend may also
be observed in the data for other considered health risks (i.e. anx-
iety symptoms, childhood trauma, functional impairments, and
poverty) when considering a one-sided hypothesis in the direction
of accelerated epigenetic aging (uncorrected for multiple testing),

Table 1. Characteristics of samples included in concurrent and lagged analyses

Concurrent analysis Lagged analysis

Characteristic N* mean ± S.D. (range)/n (%) N* Timing mean ± S.D. (range)/n (%)

Demographics 539/1029 380/760

Chronological age (years) 18.14 ± 6.05 (9.02–34.55) Δ 10.74 ± 4.04 (2.70–20.46)

Predicted DNAm age (years) 18.16 ± 4.92 (8.00–33.19) Δ 7.71 ± 3.26 (−0.99-17.36)

Sex (female) 521 (51%) - 184 (48%)

Race/ethnicity 539/1029 380/760 -

White 661 (64.2%) 244 (64.2%)

Black 49 (4.8%) 18 (4.7%)

American Indian 319 (31%) 118 (31.1%)

Estimated cell counts 539/1029 380/760

CD03 0.27 ± 0.06 (0.10–0.51) Δ 0.01 ± 0.06 (−0.22-0.24)

CD14 0.11 ± 0.02 (0.04–0.17) Δ −0.01 ± 0.02 (−0.09–0.06)

CD15 0.53 ± 0.07 (0.31–0.75) Δ 0.02 ± 0.08 (−0.22–0.26)

CD19 0.08 ± 0.04 (0.00–0.21) Δ −0.03 ± 0.04 (−0.19–0.09)

Body Mass Index (kg/m2) 537/968 25.31 ± 6.95 (12.73–47.25) 380/760 T2 24.23 ± 5.14 (17.55–35.65)

Psychiatric problems & Trauma 539/1029 380/760

Depressive symptoms 0.85 ± 1.11 (0.00–5.00) T2 2.86 ± 2.51 (0.00–9.00)

Anxiety symptoms 0.95 ± 1.69 (0.00–7.00) T2 3.99 ± 4.11 (0.00–14.00)

Childhood trauma 1.03 ± 1.07 (0.00–4.00) T2 0.75 ± 0.60 (0.00–2.00)

Impairments 1.00 ± 2.22 (0.00–10.00) T2 0.97 ± 1.06 (0.00–3.55)

Social environment 380/760

Poverty (yes) 518/959 279 (29%) T2 0.33 ± 0.28 (0.00–0.89)

Substance use 539/1029 380/760

Smoking (yes) 361 (35%) T2 0.33 ± 0.81 (0.00–4.00)

Cannabis (yes) 180 (17%) T2 0.05 ± 0.25 (0.00–2.00)

Alcohol (yes) 188 (18%) T2 0.04 ± 0.20 (0.00–2.00)

*N indicates the number of individuals/measurements. Abbreviations: DNAm, DNA methylation. Statistic presented: mean across measurements ± S.D. (minimum-maximum); n (%). For the
concurrent analysis, we used all available data points from each individual. T1 and single measurements were excluded from the lagged analysis. T2 timing indicates the latest available
observation (<17 years old) before adulthood. Δ indicates the difference between T3 and T2.
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indicating the need to follow-up on these health risks in future
studies with more statistical power. Such studies may also eluci-
date whether the significant lagged effects are causal and whether
the other nonsignificant health risks may need more time to mag-
nify and accelerate epigenetic aging. Together, these findings
underscore the necessity of considering both the temporal
dynamics of health risks and the importance of baseline measure-
ments when studying the relationship between health risks and
epigenetic aging.

Certain behavioral, psychiatric, and medical conditions fre-
quently co-occur with stress exposures, and covary with changes
in DNA methylation (and biological processes) central to bio-
logical aging (Han et al., 2019b). Consequently, these conditions
may introduce confounding effects. As previously mentioned,
subsequent increases in health-risk behaviors such as unhealthy
lifestyle and substance use are commonly theorized to exacerbate
the initial impact of stress exposures such as depression. The cur-
rent study revealed robust predictive power of childhood depres-
sive symptoms in pre-adulthood on accelerated epigenetic aging
in adulthood that held its significance after additional adjustment
for variables such as BMI, smoking, and the use of cannabis and
alcohol. Nevertheless, it remains plausible that alternative under-
lying pathways currently not considered also exert influence.
Perhaps those related to the physical environment as previously
observed with, for example, water and air pollution (Alfano
et al., 2018; Belsky & Baccarelli, 2023; Yannatos, Stites, Brown,
& McMillan, 2023) or other shared genetic and environmental
confounds at the family-level (Ingram et al., 2024). Overall, the
present study raises the possibility that changes in depressive
symptoms represent an early opportunity to examine change in
future epigenetic aging and that epigenetic aging may potentially
be a dynamic marker that is able to respond to environmental fac-
tors, if only as a proxy.

In contrast, our study did not provide evidence supporting that
epigenetic aging assessed during childhood or adolescence holds
predictive value for subsequent changes in adult health risks.
Plausible explanations for this finding include the possibility that
our sample may have been too young to accrue significant epigen-
etic aging, or that the dynamic epigenetic changes related to devel-
opment and puberty may have obscured differences in epigenetic
aging (Almstrup et al., 2016; deSteiguer et al., 2023; Han et al.,
2019a). Another possibility could be that epigenetic aging mea-
sured during earlier life stages is more strongly confounded by
pre- and perinatal exposures, potentially highlighting the import-
ance of further exploring genetic and pre-environmental factors
(Bozack et al., 2023; Simpkin et al., 2016). Such investigations
help determine whether epigenetic aging is a consequence or con-
tributing factor to specific (pediatric) phenotypes (Wang & Zhou,
2021). More longitudinal studies in pre-adult cohorts are therefore
needed to examine the prognostic potential of epigenetic aging
assessed in childhood and adolescence.

Childhood trauma and early life adversities have consistently
been associated with biological aging in previous studies. These
associations have been observed using different epigenetic clocks,
including ‘first’ (e.g. Hannum, Horvath) (Wolf et al., 2018), but
also ‘second generation’ epigenetic clocks like GrimAge (Hamlat,
Prather, Horvath, Belsky, & Epel, 2021). Moreover, we reported
similar findings using the current method in the same cohort
(Copeland et al., 2022) and across different cohorts (Han et al.,
2018). However, the present study found that childhood trauma
only predicted accelerated epigenetic aging in adulthood with mar-
ginal significance ( p = 0.055) before multiple comparisonTa
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correction, suggesting that further research is necessary to confirm
its robustness. Future studies may focus on examining the specific
conditions under which childhood trauma and early life adversities
affect epigenetic aging, such as the timing of exposure in birth
cohorts that include more nuanced exploration of sensitive devel-
opmental windows (Marini et al., 2020), as well as the different
types of adversities that may have varying predictive effects
(Rampersaud et al., 2022). In addition, as second-generation epi-
genetic clocks enhance predictive capabilities compared to their
first-generation counterparts (Levine, 2020), utilizing them in ana-
lyses may yield stronger associations than currently observed.
Additional research in these areas will provide a more comprehen-
sive understanding of the complex relationship between childhood
trauma, early life adversities, and epigenetic clocks.

Strengths and limitations

First, we observed relatively small overall correlations between the
studied health risks and epigenetic aging (range −0.01 to 0.15).
With limited variance to decompose, subject- and wave-level con-
tributions to the correlation were also modest. Future longitudinal
studies including persons with, for example, more chronic and

severe depression and anxiety may provide larger effect sizes for
the concurrent analyses. However, the statistical rigor of our
study and the fully adjusted model bolsters confidence in the
robust lagged accelerating effects of depressive symptoms on epi-
genetic aging. Second, the sequencing-based DNA methylation
data considered in the current study is inherently different from
those obtained from Illumina platforms, preventing us from
applying established epigenetic clocks. Being limited to
MBD-seq data, this study lacks external out-of-sample validation
of the trained algorithm. However, the current DNAm predictions
were unbiased and no data leakage between training and testing
samples occurred. While outside the scope of the current study,
we acknowledge that more work is needed to determine the gen-
eralizability of findings using other validated epigenetic clocks
(e.g. GrimAge) based on other DNA methylation platforms and
to establish external validity of the current algorithm in other
samples. Finally, the current study did not include ages beyond
middle adulthood (i.e. >35 years), thereby limiting the generaliz-
ability of findings to a broader lifespan perspective. Nevertheless,
the current study offers valuable insights into the longitudinal
relationship between health risks and epigenetic aging.

The current study can be expanded, and its results may be fol-
lowed up in several ways. For example, it is possible that the time
lag currently studied did not match the time needed for certain
health risks to become epigenetically embedded. Ideally, to distin-
guish correlates from causes of epigenetic aging (Nelson,
Promislow, & Masel, 2020), individuals need to be tracked over
longer periods of time with more frequent sampling of DNA
methylation and health measurements to estimate their covari-
ance with more precision (Moffitt et al., 2017). Further studies
in datasets with DNA methylation measurements at more time
points may potentially reveal significant lagged effects of health
risks that yielded non-significant findings in this study. Finally,
a natural progression of this work is to investigate which (causal)
factors or biological mechanisms might be driving the lagged
effects (e.g. inflammatory responses in depression).

Conclusion

Previous cross-sectional studies have established correlations
between epigenetic aging and a diverse set of variables (Ryan
et al., 2020), albeit with various algorithms (e.g. Hannum and

Table 3. Lagged effects of health risks on epigenetic aging

b (in months) 95% CI S.E. t value P PFDR

BMI −0.46 −0.99–0.07 0.27 −1.72 0.086 0.147

Depressive symptoms 1.67 0.59–2.76 0.55 3.03 0.003 0.024

Anxiety symptoms 0.56 −0.10–1.21 0.34 1.66 0.098 0.147

Childhood Trauma 4.43 −0.09–8.95 2.30 1.93 0.055 0.147

Impairments 3.18 0.71–5.65 1.26 2.53 0.012 0.053

Poverty 9.18 −0.97–19.33 5.16 1.78 0.076 0.147

Smoking 0.71 −2.60–4.02 1.68 0.42 0.673 0.757

Cannabis 7.90 −2.92–18.71 5.50 1.44 0.152 0.195

Alcohol −1.83 −15.04–11.39 6.72 −0.27 0.786 0.786

b, unstandardized beta; 95% CI, 95% confidence intervals for regression coefficient b; SE, standard error of regression coefficient b; BMI, Body Mass Index. All models were corrected for Δ
chronological age, adult age, sex, race/ethnicity, Δ estimated cell counts, adult estimated cell counts and lab technical covariates. Significant p-values <0.05 are indicated in bold. PFDR
indicate false discovery rate adjusted p-values.

Figure 1. Fully adjusted lagged effects of depressive symptoms on epigenetic aging.
The x-axis shows percentile distributions of the depressive symptoms, and the y-axis
shows the change in epigenetic aging over time between two assessments in months.
For example, persons with a depressive symptom score in the 99th percentile showed
10 months of epigenetic aging on average. Models were residualized for Δ chrono-
logical age, adult age, sex, race/ethnicity, Δ body mass index, adult body mass
index, Δ smoking, adult smoking, Δ cannabis, adult cannabis, Δ alcohol, adult alco-
hol, Δ estimated cell-type proportions, adult estimated cell-type proportions, and lab
technical covariates.
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Horvath). The current study provides a longitudinal within-
person investigation of both concurrent and lagged changes of
several health risks associated with epigenetic aging identified
from the literature. Changes in health risks at a particular wave
were unaccompanied by concurrent changes in epigenetic aging.
As a result, the current study provides limited evidence for imme-
diate ‘accelerated’ epigenetic aging. However, the time lagged
approach reveals prognostic value of depressive symptoms on
future epigenetic aging. This suggests that interventions targeting
depressive symptoms in children and adolescents may potentially
prevent accelerated biological aging later in life.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291724001570.
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