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Abstract
The control of industrial robot manipulators presents a difficult problem for control engineers due to the complex-
ity of their nonlinear dynamics models. Nonlinear controls based on feedback linearization are developed to meet
control requirements. Model-based nonlinear control is highly sensitive to parameter errors and leads to problems
of robustness for tracking trajectories at high speeds, and there is the additional problem of a heavy computational
burden to consider in the design of nonlinear controllers. In this paper, a mechatronic design approach is proposed,
which aims to facilitate controller design by redesigning the mechanical structure. The problem is approached in
two steps: first, the dynamic decoupling conditions of manipulators are described and discussed, involving redis-
tribution of the moving mass, which leads to the decoupling of motion equations. A classical linear control law is
then used to track the desired efficient bang-bang profile trajectory. Then, in the presence of parameter uncertainty
and external disturbances, the nonlinear controls with simple structures are adopted to stabilize the decoupled sys-
tem asymptotically. An analysis of the results from a simulation of this approach demonstrates its effectiveness in
controller design. The proposed improvement in control performance is illustrated via two spatial manipulators.

1. Introduction
In recent years, industrial robots have been widely used for high-precision applications [1]. Different
types of industrial robots are developed to carry out various tasks such as painting, welding, manufac-
turing, assembling, and so on. The requirements for industrial robot performance are accuracy, speed,
and versatility of manipulation. To meet this demand, robot control is a key element for robot manu-
facturers, and a great deal of development work is carried out to increase the performance of robots,
reduce their cost, and introduce new functionalities. In terms of controller design, robustness, tracking
accuracy, energy consumption, and computational burden must be considered [2–9]. However, robot
manipulator dynamics are known to be highly nonlinear and coupled, which results in poorer control
performance at high speeds [10, 11]. The complex dynamics are the result of varying inertia and inter-
actions between the different joints, and the nonlinear coupled dynamics of the robot manipulator also
increases the energy consumption and computational burden of the controller [10]. Various nonlinear
control strategies have been developed to resolve this problem, such as feedback linearization [12].

Feedback linearization is a tool widely used for controlling nonlinear systems and operates by can-
celing the nonlinearities in robot dynamics [13, 14]. With this method, the closed-loop system becomes
nominally linear and classical linear system control techniques can then be applied in the controller
design, with relative efficiency. However, feedback linearization requires an accurate model and high
sampling rate for successful implementation [15]. In addition, the computational burden caused by
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nonlinear and coupled terms cannot be avoided with complex robot structures in feedback control
[16, 17].

For example, computed torque (CT) control is a well-known control law that consists of a propotional
derivative (PD) term and the feedback dynamic compensation term calculated from the actual velocity
and desired acceleration signals [18]. CT control offers a wide range of advantages, such as high tracking
accuracy, low energy consumption, and more compliant control. However, its major drawback is the
precise analytical dynamic models required for torque generation, which cannot always be obtained
due to modeling errors and unknown disturbances [19]. Inaccurate models will lead to low tracking
performance in practice, and a complex robot structure also requires an enormous calculations in the
CT controller.

The nonlinear model can be said to increase the difficulty in designing suitable controllers for robot
manipulators. Some researchers suggest canceling the nonlinearities by removing the complex inertia
terms in dynamic models, as these are negligible at low speeds [20, 21]. However, at high motion speeds,
the errors in the model resulting from this approach become significant and would probably reduce
stability, leading to loss of effectiveness in tracking performance.

As described above, it is challenging to find a simple and effective strategy for controlling robot
manipulators due to the presence of model nonlinearities and errors. To resolve this problem, a mecha-
tronic design methodology known as Design For Control (DFC) was proposed by ref. [22]. The method
points out that the performance of the mechatronic system relies not only on the design of the controller
but also on the design of its mechanical structure. Controller design is usually considered subsequent to
mechanical design, but an appropriate mechanical structure design will lead to a simple dynamic model
which makes design of the controller easier. In this paper, an effective design approach is proposed to
improve the control performance of two spatial manipulators, based on development of the mechanical
structure design. With dynamic decoupling, a simplified system is obtained and effective straightfor-
ward control techniques, rather than complex nonlinear control techniques, are applied. There are three
ways to create dynamically decoupled manipulators through mechanical transformation: (i) via mass
redistribution; (ii) via actuator relocation; and (iii) via the addition of auxiliary links.

To eliminate the coupling and nonlinear torques via mass redistribution, the inertia matrix must be
diagonalized and made invariant for all arm configurations [23–26]. The linearization and dynamic
decoupling of 2-DOF manipulators via mass redistribution has been considered previously [26]. In this
study, all arm constructions yielding decoupled inertia matrices were identified. The proposed approach
was applied to serial manipulators in which the axes of joints were not parallel; with parallel axes this
approach allows linearization of the dynamic equations but not their dynamic decoupling [27] and cannot
therefore be used with planar serial manipulators. As a result, the inertia matrix cannot be decoupled
unless the joint axes are orthogonal to each other in serial manipulator arms with an open kinematic
chain structure.

As regards the decoupling of dynamic equations via actuator relocation, a review [24] has shown
that the remote actuation design concept is not optimal from the point of view of precise reproduc-
tion of the end-effector tasks, because it accumulates all errors due to intermediate transmissions. It is
evidently much better to connect actuators directly to the links than to use transmission mechanisms.
The clearance, flexibility, manufacturing, and assembly errors of the added transmission mechanisms
have a negative impact on the robot’s precision. However, to achieve the gravity balancing, the actuator
relocation technique is required for the spatial serial manipulators with high degrees of freedom.

The linearization of dynamic equations and their decoupling by adding auxiliary links to redesign the
manipulator has also been developed [28–30]: dynamic decoupling of the manipulator by connecting a
two-link group to the initial structure, forming a Scott–Russell mechanism, was proposed by ref. [31].
Noted that dynamic decoupling via redesign of the manipulator by adding auxiliary links is a promis-
ing new approach in robotics. The main contribution of this paper is to propose a mechatronic design
combining dynamic decoupling and controllers with simple structures, which results in improvement of
controller performance.

As discussed above, taking into account the structural features of the 2R spatial serial manipula-
tor, that is, orthogonality of the joint axes, it can be confidently asserted that dynamic decoupling via
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mass redistribution is the most expedient approach. Then, with the application of mass redistribution,
the controller design is highly facilitated for the decoupled dynamic system. For the 3R spatial serial
manipulator, the dynamic decoupling is achieved by combining techniques of mass redistribution and
actuator relocation. This paper is organized as follows: Section 2 contains a review of the dynamic
decoupling conditions of the spatial serial manipulators and the generation of motion by “bang-bang”
profile, enabling reduction of the maximal input torque values. In Section 3, different conventional lin-
ear controllers are used to stabilize the decoupled system and track the desired trajectory. Numerical
simulations are also carried out. In Section 4, nonlinear controls with simple structures are adopted to
stabilize the decoupled dynamic system asymptotically in the presence of parameter uncertainty and
external disturbances. Section 5 presents conclusions and perspectives.

2. Decoupled dynamics of the spatial serial manipulators and their motion generation via
bang-bang profile

Before addressing the problem of control performance improvement, the dynamic decoupling is consid-
ered being implemented in the spatial serial manipulators with revolute joints. According to Lagrangian
dynamics, the equations of motion can be written as follows:

τi = d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi

, i = 1, · · · , n (1)

where n is the number of degrees of freedom, τi are the torques, θi are the generalized coordinates,
L = Ke − Pt is the Lagrangian, Ke is the kinetic energy, and Pt is the potential energy. Ke can be
expressed as:

Ke = 1

2

(
n∑

i=1

v�
ci

mivci + ω�
i Iiωi

)
(2)

where Ii is the inertia tensor of the body i with respect to a frame that the origin is its center of mass Ci,
vci is the absolute velocity of Ci, and ωi is the rotational speed of the body i. Pt can be expressed as:

Pt = −
n∑

i=1

mig�(L0,i + OiCi) (3)

where g is the gravitational acceleration, L0,i is the position vector from origin O0 of frame R0 to origin
Oi of frame Ri, and OiCi is the vector of the center of mass coordinates of link i.

In order to obtain linear systems in the controller design, different decoupling conditions need to be
satisfied. They are presented in the next subsection.

2.1. Decoupled dynamics of the 2R spatial serial manipulator
The dynamic decoupling conditions of the 2R spatial serial manipulator (Fig. 1) are reviewed below.

The manipulator consists of two orthogonal links, 1 and 2, with revolute joint angles θ1 and θ2. We
will distinguish the vectors of the joint angular velocities θ̇ r

1 and θ̇ r
2 with θ̇ r

1 = dθ r
1/dt, θ̇ r

2 = dθ r
2/dt, and

the vectors of the absolute angular velocities θ̇1 and θ̇2 with θ̇1 = θ̇ r
1 and θ̇2 = θ̇ r

1 + θ̇ r
2 .

In the study [23], it was reported that the 2R spatial serial manipulator in Fig. 1 can be dynamically
decoupled completely if the following conditions are satisfied:

• the potential energy of the manipulator is constant (or canceled), that is, the gravity balancing is
achieved;

• Ix2 = Iy2 = I∗, where Ix2 and Iy2 are the axial moments of inertia of link 2 relative to the
corresponding coordinate axes of the system associated with link 2.
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Figure 1. 2R spatial serial manipulator.

To ensure the gravity balancing of the manipulator, the center of mass of link 1 should be on the verti-
cal rotation axis of the manipulator (Fig. 1) and the center of mass of link 2 should be at the intersection
of the vertical and horizontal rotation axes of the manipulator. As a consequence of such a redistribution
of moving masses, the motion equations become linear and decoupled:

τ1 = (I1 + I∗)θ̈ r
1 (4)

τ2 = Iz2 θ̈
r
2 (5)

The nonlinear dynamic system is thus transformed into a double integrator model and the state space
equation of each link can be defined as:

ẋ = Ax + Bu (6)

y = Cx (7)

with

A =
[

0 1
0 0

]
, B =

[
0

1/I

]
, C = [

1 0
]

(8)

where I is calculated with inertia moment of each link in (4) and (5). I = (I1 + I∗) for the first link and
I = Iz2 for the second link.

2.2. Decoupled dynamics of the 3R spatial serial manipulator
As mentioned above, the dynamic decoupling technique can be successfully implemented in the 2R
spatial serial manipulators with mass redistribution. However, for the robots with more than 3 DOFs,
actuator relocation technique is required in the dynamic decoupling. The supporting structure of the
KUKA industrial robot KR 16R1610, which represents an 3R spatial serial manipulator (Fig. 2), is
considered as an illustrative example. Its parameters are given in the Table I, which are approximate and
round values.
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Table I. Length and mass parameters of the industrial robot KR [32].

Length of Link 1 l1 0.52 m
Length of Link 2 l2 0.93 m
Length of Link 3 l3 0.81 m
Mass of Link 1 m1 122 kg
Mass of Link 2 m2 83 kg
Mass of Link 3 m3 40 kg
Mass center of Link 1 lc1 0.26 m
Mass center of Link 2 lc2 0.465 m
Mass center of Link 3 lc3 0.405 m
Axial moment of inertia of Link 1 Ix1 3.52 kgm2

Axial moment of inertia of Link 1 Iy1 3.52 kgm2

Axial moment of inertia of Link 1 Iz1 1.56 kgm2

Axial moment of inertia of Link 2 Ix2 0.82 kgm2

Axial moment of inertia of Link 2 Iy2 6.43 kgm2

Axial moment of inertia of Link 2 Iz2 6.43 kgm2

Axial moment of inertia of Link 3 Ix3 0.13 kgm2

Axial moment of inertia of Link 3 Iy3 2.25 kgm2

Axial moment of inertia of Link 3 Iz3 2.25 kgm2

Figure 2. 3R spatial serial manipulator.

The KR 16R1610 consists of three orthogonal links, 1, 2, and 3, with revolute joint angles θ1, θ2,
and θ3. We will distinguish the vectors of the joint angular velocities θ̇ r

1 , θ̇ r
2 and θ̇ r

3 with θ̇ r
1 = dθ r

1/dt,
θ̇ r

2 = dθ r
2/dt, θ̇ r

3 = dθ r
3/dt, and the vectors of the absolute angular velocities θ̇1, θ̇2, and θ̇3 with θ̇1 = θ̇ r

1

and θ̇2 = θ̇ r
1 + θ̇ r

2 and θ̇3 = θ̇ r
1 + θ̇ r

2 + θ̇ r
3 . Compared to the 2R spatial serial manipulators, the conditions

are similar in the 3R manipulators but little more complex. With regard to potential energy, we have

Pt = Pt1 + Pt2 + Pt3 (9)

with Pt1 = 0, Pt2 = lO2C1 + lc2 sin(θ r
2), and Pt3 = lO2C1 + l2sin(θ r

2) + lc3 sin(θ r
2 + θ r

3), where lO2C1 is the dis-
tance of the center of mass of link 1 from the joint axis O2, l2 is the length of link 2, lc2 is the distance
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Figure 3. Initial structure.

of the center of mass of link 1 from the joint axis O2, and lc3 is the distance of the center of mass of
link 1 from the joint axis O3. Now, let us consider that the gravity balancing should be achieved in the
manipulator, that is, Pt = const. It can be reached if lc3 = 0 and lc2 = m3l2/m2, considering the location
of the center of mass outside O2O3.

The kinetic energy of the initial structure (Fig. 3) can be written as:

K = 1

2

(
Ic1 θ̇

2
1 + m2Vc2

2 + Ix2 θ̇
2
x2

+ Iy2 θ̇
2
y2

+ Iz2 θ̇
2
z2

+ m3V2
c3

+ Ix3 θ̇
2
x3

+ Iy3 θ̇
2
y3

+ Iz3 θ̇
2
z3

)
. (10)

where the vectors of the absolute velocities are expressed as Vc2 = r2 × (θ̇ r
1 + θ̇ r

2) and Vc2 = l2 × (θ̇ r
1 +

θ̇ r
2); the angles relative to the corresponding coordinate axes of the system are defined as: θ̇x2 = θ̇ r

1sin(θ r
2 );

θ̇y2 = θ̇ r
1cos(θ r

2 ); θ̇z2 = θ̇ r
2 ; θ̇x3 = θ̇ r

1sin(θ r
1 + θ r

2 ); θ̇y3 = θ̇ r
1cos(θ r

1 + θ r
2 ); and θ̇z3 = θ̇ r

2 + θ̇ r
3 .

Let us consider the dynamic decoupling of the manipulator by combining two different approaches:
the mass redistribution and the actuator relocation [24]. For this purpose, let us modify the design of the
manipulator by placing the third actuator on the axis O2 and coupling it with link 3 by a transmission.
This transmission can be a parallelogram, a belt transmission, a gear transmission, or other type of
motion generation.

Let us now consider the same manipulator with relocated actuator (Fig. 4). In this case, the kinetic
energy can be expressed as follows:

Ke = 1

2
(Ic1 ϕ̇

2
z1

+ m2V2
c2

+ Ix2 ϕ̇
2
x2

+ Iy2 ϕ̇
2
y2

+ Iz2 ϕ̇
2
z2

+ m3V2
c3

+ Ix3 ϕ̇
2
x3

+ Iy3 ϕ̇
2
y3

+ Iz3 ϕ̇
2
z3

). (11)

where ϕi (where i = 1, 2, and 3) is the generalized angles defined as: ϕ1 = θ̇ r
1 ; ϕ2 = θ̇ r

1 + θ̇ r
2 ;

ϕ3 = θ̇ r
1 + θ̇ r

2 + θ̇ r
3 . Then, the components of the angles relative to the corresponding coordinate axes of

the system are defined as follows: ϕ̇x1 = ϕ̇y1 = 0, ϕ̇z1 = θ̇ r
1 ; ϕ̇x2 = θ̇ r

1sin(θ r
2 ), ϕ̇y2 = θ̇ r

1cos(θ r
2 ) and ϕ̇z2 = θ̇ r

2 ;
ϕ̇x3 = θ̇ r

1sin(θ r
2 + θ r

3 ), ϕ̇y3 = θ̇ r
1cos(θ r

2 + θ r
3 ) and ϕ̇z3 = θ̇ r

2 + θ̇ r
3 ; ϕ̇z1 , ϕ̇z2 and ϕ̇z3 are the actuator velocities.

Then, the following condition of the mass redistribution of the links is ensured:

Ix2 = Iy2 + m3l
2
2 + m2r

2
2 = I∗

2 (12)

Ix3 = Iy3 = I∗
3 (13)

Thus, the Lagrangian can be represented as follows:

L = 1

2
[Iz1 (ϕ̇z1 )2 + I∗

2 (ϕ̇z1 )2 + (Iz2 + m3l2
2 + m2r

2
2)(ϕ̇z2 )2 + I∗

3 (ϕ̇1)2 + Iz3 (ϕ̇z3 )2] (14)
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Figure 4. With relocated actuators.

As a consequence of such a redistribution of moving masses, the motion equations become linear
and decoupled:

τ1 = (Iz1 + I∗
2 + I∗

3 )ϕ̈z1 (15)

τ2 = (Iz2 + m3l
2
2 + m2r2

2)ϕ̈z2 (16)

τ3 = Iz3 ϕ̈z3 (17)

The nonlinear dynamic system is thus transformed into a double integrator model as obtained in the
2R spatial serial manipulator (6)–(8).

2.3. Motion generation via bang-bang profile
As discussed in ref. [23], to generate joint angular motion in the dynamically decoupled spatial serial
manipulators, it is preferable to apply the “bang-bang profile” (Fig. 5), which enables reduction of the
maximal input torque values.

Bang-bang motion profile is defined as:

θd(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θd(t0) + 2

(
t

tf

)2

θd(tf ), t0 < t < tf /2

θd(t0) +
[
−1 + 4

(
t

tf

)
− 2

(
t

tf

)2
]

θd(tf ), tf /2 < t < tf

(18)

3. Design of linear controller
3.1. Performance indices
For the controller design, performance indices are introduced to quantify and evaluate system per-
formance. Two performance indices were considered in our case: the integral of the square of the
error (ISE) and the maximum input torque. The ISE of the ith link in the decoupled manipulator is
defined as:

ISEi =
∫ tf

t0

e2
i dt, i = 1, · · · , n (19)

where ei = θi − θid is the tracking error of the first link. The ISE discriminates between excessively
over-damped and excessively under-damped systems. Tracking accuracy can be evaluated using this
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Figure 5. “Bang-bang” profile used for generation of motion in the dynamically decoupled 2R spatial
serial manipulator.

criterion. Another criterion introduced was the maximum input torque (MT), which represents input
energy. The actuator capacity requirement also depends on the maximum input torque. Besides, the
energy efficiency is affected by Joule effect, which describes the process where the energy of an electric
current is converted into heat as it flows through a resistance. In electric motors, neglecting the friction,
most part of the energy consumption is due to the loss by Joule effect. To evaluate the loss, a criterion
is introduced as follows for the ith link in the decoupled manipulator:

Wi =
∫ tf

t0

τ 2
i dt, i = 1, · · · , n (20)

where τi is the actuator torque for the ith link. For a DC motor, considering that the torque supplied
by motor is proportional to the armature current, the criterion (20) is proportional to the energy con-
sumption produced by Joule effect. It characterizes the energy that must be produced by the battery to
allow the desired motion. Besides, the heat generated by Joule effect degrades the reliability of electri-
cal systems components. For example, the results in ref. [33] has revealed that the useful lifetimes of
solder joints have been significantly decreased due to the Joule heating effect at high current densities.
Therefore, the effect is undesirable and must be considered in controller design. Various straightforward
control techniques are applied to track the bang-bang profile, and the influence on these performance
indices will be investigated.

3.2. The performance of lead compensation
The primary function of the lead compensator is to reshape the frequency-response curve to provide a
phase lead angle sufficient to offset the excessive lag phase associated with the components of the fixed
system. The frequency-domain expression of the decoupled system is presented as follows:

G(s) = I

s2
(21)
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Table II. Results of different phase lead angles in the decoupled 2R spatial serial
manipulator.

Tracking performance ISE (rad2s) Joule effect (N2m2s) MT (Nm)
6◦ Phase lead angle 2.10 × 10−3 7.3192 7.1808
10◦ Phase lead angle 2.30 × 10−3 6.9122 6.8946
20◦ Phase lead angle 3.20 × 10−3 6.6145 6.3160
30◦ Phase lead angle 4.50 × 10−3 6.5118 5.7791
40◦ Phase lead angle 6.80 × 10−3 6.4578 5.2676
50◦ Phase lead angle 1.08 × 10−2 6.4232 4.7606
60◦ Phase lead angle 1.90 × 10−2 6.3980 4.2307
70◦ Phase lead angle 3.99 × 10−2 6.3778 3.6289
80◦ Phase lead angle 1.18 × 10−1 6.3589 2.8687

where the letter s, a complex variable, defines the Laplace transform operator; as mentioned above, I
can be obtained by the dynamic decoupling. For example, to each linear system (15)–(17) in the decou-
pled 3R manipulator, I = (Iz1 + I∗

2 + I∗
3 ) for the first link, I = Iz2 + m3l2

2 + m2r2
2 for the second link, and

I = Iz3 for the third link. As all the dynamic systems are transformed into the similar structure (6)–(8)
of double integrators, we will study the control performance about the first link with the biggest inertial
moment, which has the lowest dynamic respond speed. I = 0.4 kgm2 for the first link in the decoupled 2R
manipulator, and I = 57.60 kgm2 for the first link in the decoupled 3R manipulator. Since our new linear
system, obtained by dynamic decoupling, was a double integrator model, a lead compensator could be
used to stabilize the system by increasing the phase margin. A lead compensator in the following form
will be used:

Gc(s) = Kc

Ts + 1

αTs + 1
(22)

where Kc, T , and α are the coefficients determined with the maximum phase lead angle and the cutoff
frequency. Note however that the system’s dynamic characteristics need to be modified by increasing
the cutoff frequency, which increases the dynamic response speed to track the bang-bang profile. The
gain crossover frequency of the decoupled system is therefore increased to 89.44 rad/s for the first link.
This implies an increase in the speed of response. Then, we assumed that the necessary maximum phase
lead angle φm is 70◦, and therefore the coefficients in the lead compensator, could be determined. The
Bode plot of the compensated system is presented in the Fig. 6.

As observed in the Bode plot, the maximum phase lead margin was increased to 70◦ at the modified
gain crossover frequency 89.44 rad/s, which improved the asymptotic stability. To see the tracking per-
formance and the input torque, the simulation was carried out in Matlab. The value of the time step was
set at 1 × 10−5 s. The simulation results are presented in the Figs. 7–10.

It is obvious that the systems (2R and 3R) with the modified gain crossover frequency and 70◦ phase
lead angle is capable of tracking the desired bang-bang profile trajectory. For example, in the decoupled
3R manipulator, the ISE is 8.29 × 10−2 rad2s and the maximum torque is 4.78 × 102 Nm. The energy
consumption produced by Joule effect is 1.3252 × 105 rad2s N2m2s. In addition, the Tables II and III with
a variety of phase lead angles were created to investigate the influence of different phase lead angles on
three criteria in both 2R and 3R decoupled manipulators.

The table shows that the ISE is diminished, and the maximum torque increased when the phase lead
angle is increased. In application, a large phase lead angle is required to lower the actuator capacity and
energy consumption. However, for a system requiring high tracking accuracy, a small phase lead angle
is needed. Obviously, there is a trade-off between the tracking accuracy and input energy efficiency,
which also means that the required performance can be achieved by adjusting the phase lead angle,
which facilitates the design of the robot manipulator controller. To achieve a more satisfactory control
performance, full-state feedback method is considered in the following parts.
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Figure 6. Frequency domain response with 70◦ phase lead compensator.

Figure 7. Trajectory tracking of lead compensator in the decoupled 2R spatial serial manipulator.

3.3. The performance of linear quadratic regulator
Since the double integrator model system is unstable, the control technique should increase the stability
of the system. Therefore, the speed of response and tracking error requirement should be improved to
track the bang-bang profile. Linear quadratic regulator (LQR) is a powerful control technique, which sta-
bilizes and operates a linear dynamic system by minimizing a given cost function. In order to implement
a LQR controller, a linear time-invariant (LTI) dynamic system must be available, which has already
been obtained by the dynamic decoupling, and the system must be completely controllable. We assumed
that all state variables were measurable and also available for feedback in our system. The controllability
matrix is given by:

C = [
B AB A2B . . . An−1B

]= [
0 1/I

1/I 0

]
(23)
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Figure 8. Torque generation of lead compensator in the decoupled 2R spatial serial manipulator.

Figure 9. Trajectory tracking of lead compensator in the decoupled 3R spatial serial manipulator.

Since the control matrix C of the state space equation obtained has full row rank 2, this decoupled
dynamic system is controllable. LQR algorithme aims to minimize the quadratic cost function as
follows: ∫ ∞

0

(x�Qx + u�Ru)dx (24)

where Q and R are the weights related to the system state error (angle and angular velocity) and the
control input (motor torque), respectively. The appropriate selection of Q and R determines the control
performance. The optimal control law to minimize the quadratic cost function is given by:

u = −Kx (25)
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Table III. Results of different phase lead angles in the decoupled 3R spatial serial
manipulator.

Tracking performance ISE (rad2s) Joule effect (N2m2s) MT (Nm)
6◦ Phase lead angle 4.48 × 10−3 1.5298 × 105 1.03 × 103

10◦ Phase lead angle 4.84 × 10−3 1.4422 × 105 9.84 × 102

20◦ Phase lead angle 6.57 × 10−3 1.3766 × 105 8.91 × 102

30◦ Phase lead angle 9.39 × 10−3 1.3542 × 105 8.06 × 102

40◦ Phase lead angle 1.41 × 10−2 1.3424 × 105 7.25 × 102

50◦ Phase lead angle 2.24 × 10−2 1.3349 × 105 6.46 × 102

60◦ Phase lead angle 3.94 × 10−2 1.3295 × 105 5.65 × 102

70◦ Phase lead angle 8.29 × 10−2 1.3252 × 105 4.78 × 102

80◦ Phase lead angle 2.46 × 10−1 1.3210 × 105 3.85 × 102

Figure 10. Torque generation of lead compensator in the decoupled 3R spatial serial manipulator.

where

K = R−1B�P (26)

and P is found by solving the continuous time algebraic Riccati equation:

A�P + PA − PBR−1B�P + Q = 0 (27)

The design steps may be stated as follows:

1. Solve equation, the reduced matrix Riccati equation, for the matrix P

2. Substitute this matrix P into equation. The resulting matrix K is the optimal one.

The simulation was carried out in Matlab software with I = 0.4 kgm2 (the first link with lower fre-
quency) and the time step set at 1 × 10−5 s. By using the steps mentioned above, the optimal control gains
K1 and K2 were calculated as K1 = 3464.10 and K2 = 634.64. The values of Q and R were initialized as
follows for the control of the first link:

Q =
[

600, 000 0
0 20, 000

]
, R =

[
0.05 0

0 0.05

]
(28)
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Figure 11. Trajectory tracking of LQR in the decoupled 2R manipulator.

Figure 12. Torque generation of LQR in the decoupled 2R manipulator.

The initial and final values of the rotating angles were as follows: θi = 0◦ and θf = 90◦. The tracking
performance and the input torque of the decoupled 2R manipulator were obtained in the Figs. 11 and 12.

The simulation has also been carried out in the decoupled 3R manipulator (I = 57.60 kgm2) with
K1 = 109, 540 and K2 = 40, 160. The Figs. 13 and 14 present the simulation results.

From the simulation results, it was observed that in the decoupled dynamic system, LQR results in
excellent control performance by the bang-bang profile. For example, in the 3R decoupled manipulator,
the ISE is 0.2144 rad2s and the maximum torque is 3.64 × 105 Nm. The energy consumption produced
by Joule effect is 1.3109 × 105 N2m2s. From the data obtained above, it can be seen that LQR controller
performs better than lead compensator in terms of energy consumption. However, these linear controllers
did not take the parameter uncertainty and external unknown disturbances into account in the control
process, which may destabilize the decoupled dynamic system.
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Figure 13. Trajectory tracking of LQR in the decoupled 3R manipulator.

Figure 14. Torque generation of LQR in the decoupled 3R manipulator.

4. Parameter uncertainty and external disturbance
Generally, not every dynamic system is exactly the same as what we considered in the design pro-
cess. Parameter uncertainty and unknown external disturbances take place in many practical problems,
which results in the degradation of stability, accuracy, energy consumption, etc. These factors must be
taken into account in the design of controller. For the decoupled manipulators designed in Section 2, a
variation of inertial values may exist in the dynamic model. Linear control techniques used previously
cannot attain perfect control performance. Further, the unknown external disturbances are another thing
taken into account when designing controllers for the spatial serial manipulators, which will degrade
the stability or tracking accuracy of the control system. Generally, Friction has been considered as the
major cause of low efficiency, poor reliability, and durability of mechanical system, which is a complex
and nonlinear phenomenon and occurs at the interface of components (prismatic and revolute joints)

https://doi.org/10.1017/S0263574722001485 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001485


Robotica 623

Figure 15. Joint friction curve.

in relative motion. According to Haessig Jr and Friedland [34], “Friction is the nemesis of precision
control.” A lot of friction models have been proposed in the literature. They are mainly classified into
two groups: dynamic friction models and static friction models. The dynamic models, like Dahl model
or LuGre model [35], can capture more friction characteristics, but it is not easy to applicate due to the
model complexity. To model the friction disturbance, a static friction model considering Stribeck effects
and viscous effects [36] was adopted in our case because of its simple implementation and acceptable
accuracy. Considering the nonlinear friction, the plant is represented as follows:

Iθ̈ = u + τf (θ̇ ) (29)

where the joint friction τf (θ̇) can be defined as follows:

τf (θ̇) = (Fc + Fse

−

∣∣∣∣∣∣∣∣
θ̇

θ̇s

∣∣∣∣∣∣∣∣

β

)sign(θ̇) + Fvθ̇ (30)

where Fc is the Coulomb friction, Fs is the standstill friction parameter, θ̇s is the Stribeck velocity, and
β is the exponent of the Stribeck nonlinearity. Fv represents the viscous friction. The curve of the joint
friction τf (θ̇) is presented in the Fig. 15 with the parameters used in ref. [36]: Fc = 3.40 × 10−2 Nm;
Fs = 4.60 × 10−2 Nm; Fv = 3.68 × 10−4 Nm/(rad/s); θ̇s = 10.68 rad/s; β = 1.93.

In the following sections, different control techniques are presented and used to stabilize the
decoupled dynamic system in the presence of parameter uncertainty and external disturbances.

4.1. The performance of model-reference adaptive control
The parameter uncertainty or variation occurs in many practical problems. For instance, robot manip-
ulators carry out their tasks such as “pick and place” with inaccurate inertial parameters. It may cause
inaccuracy or instability for control systems. In our case, thanks to the dynamic decoupling, the 2R and
3R spatial manipulator models have been simplified as a double integrator. However, it is very strict
to assume that the inertial parameters of the dynamically decoupled manipulator are the exactly same
as we know in the design process. To resolve the problem, model-reference adaptive control (MARC)
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Figure 16. Trajectory tracking of MRAC in the decoupled 2R manipulator.

has been proposed in ref. [37], which can be adopted for the decoupled dynamic system. An adapta-
tion mechanism in MARC aims to adjust the parameters in the control law so that the perfect tracking
performance can be achieved [37]. The MRAC law is presented as follows:

u = Î(θ̈d − 2λ
˙̂
θ − λ2θ̂ ) (31)

where tracking error θ̂ = θ − θd; λ is the positive constant chosen to reflect the performance specifica-
tion. Î is defined as the estimate of inertial. The following update law is used to adjust the parameter:

˙̂I = −γ vs (32)

where γ is a position constant called the adaptation gain; v = θ̈d − 2λ
˙̂
θ − λ2θ̂ . The combined tracking

error s is defined as:

s = ˙̂
θ + λθ̂ (33)

The equations above present an adaptation mechanism based on system signals. The proof of the
global asymptotic stability is demonstrated in ref. [37] with the Lyapunov theory. The interested reader
may refer to ref. [37] for further details. The simulation is carried out in Matlab with the following
parameter. For the decoupled 2R manipulator: γ1 = 2; λ1 = 50; and Î1(0) = 0.4 kgm2. The real inertial
value is 0.5 kgm2. For the decoupled 3R manipulator: γ2 = 200; λ2 = 50; and Î2(0) = 57.60 kgm2. The
real inertial value is 72 kgm2. The time step is set as 1 × 10−5 s.

As shown in the Figs. 16 and 17, there is no significant difference between the desired trajectory and
the trajectory generated by the MRAC. At the beginning of the control process in the Figs. 18 and 19,
an increasing torque is generated due to the wrong inertial information but then the torque generation
becomes almost the same as the bang-bang profile by adjusting the inertial value during the process.
The control performance indices were calculated from the simulations:

As can be seen from the Table IV, MRAC consumes less energy than LQR controller in the decoupled
dynamic system but the maximum torque is increased a little. Besides, the tracking accuracy of MRAC is
much better than LQR controller. It should be noted that MARC could maintain a high tracking accuracy
in the presence of parameter uncertainty, which is attractive for the design of controller.
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Figure 17. Trajectory tracking of MRAC in the decoupled 3R manipulator.

Figure 18. Torque generation of MRAC in the decoupled 2R manipulator.

4.2. The performance of modified twisting controller
A lot of nonlinear controllers have been proposed in the literature to overcome the external disturbances
[37]. In the friction model (30), it should be noticed that there always exist the discontinuous terms
sign(θ̇). Attributed to these discontinuous terms of friction, the continuous control algorithms are unable
to stabilize the dynamic system. Thus, the discontinuous controllers are brought into sight to resolve the
stability problem. Among them, the twisting algorithms are well recognized for the robustness properties
and finite time stability. The controllers, which have switching terms, are capable of forcing the dynamic
system to the zero dynamics of error in spite of the external disturbances. However, in the twisting
controller, the chattering occurs in the dynamics system due to the important switching gain and results in
low reliability of mechanical systems. Yury Orlov has proposed a modification of the twisting controller
to resolve the problem, which aims to avoid the undesired chattering phenomenon appearing in the
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Table IV. Results of two controllers in the presence of parameter uncertainty.

Tracking performance ISE (rad2s) Joule effect (N2m2s) MT (Nm)
MRAC (2R) 3.8040 × 10−4 9.8745 3.2649
LQR (2R) 0.0356 9.8852 3.1613
MRAC (3R) 5.4962 × 10−4 2.0478 × 105 469.1474
LQR (3R) 0.3349 2.0487 × 105 455.7446

Figure 19. Torque generation of MRAC in the decoupled 3R manipulator.

closed loop when driven by an important switching input. The main advantages of this control are to
ensure a convergence in finite time and to be continuous. The effectiveness of the proposed method was
demonstrated for a double integrator model [38]. The feedback law is stated as follows:

u = −μ |e2|ε sign(e2) − v |e1|
ε

2 − ε sign(e1) (34)

where e1 = x1 − x1d and e2 = x2 − x2d. Parameters v > μ > 0 and ε ∈ [0, 1) are proposed to globally
stabilize the double integrator. Suppose that the external disturbance friction satisfies the growth
condition: ∣∣τf (θ̇ )

∣∣≤ μ0 |e2|ε (35)

where μ0 is the upper bound of the external disturbance. According to ref. [[38], Theorem 1], for
any disturbance w satisfying the growing condition, the continuous closed-loop system is globally
asymptotically stable if μ0 ≤ μ. The proof is given in ref. [38] by applying the Lyapunov function and
invariance principle. The simulation is carried out in Matlab with the following parameters of controller:
μ1 = 1000, v1 = 1500, and ε1 = 0.8 for the 2R decoupled maniplator, and μ2 = 140, 000, v2 = 230, 000,
and ε2 = 0.8 for the 2R decoupled maniplator. In terms of friction, the parameters in the decoupled 2R
manipulator are set to be: Fc = 3.40 × 10−2 Nm; Fs = 4.60 × 10−2 Nm; Fv = 3.68 × 10−4 Nm/(rad/s);
θ̇s = 10.68 rad/s; and β = 1.93. In the decoupled 3R manipulators, the friction is supposed to be 30
times of the friction in the decoupled 2R manipulator. The errors of the moment of inertia in the previ-
ous section are also considered in the decoupled manipulator. In the simulation, the time step is set as
1 × 10−5 s.

As shown in the Figs. 20 and 21, no significant tacking differences were found after the rise time
between the desired trajectory and the trajectory generated by the modified twisting controller. Even
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Figure 20. Trajectory tracking of modified twisting controller in the decoupled 2R manipulator.

Figure 21. Trajectory tracking of modified twisting controller in the decoupled 3R manipulator.

if there exists the discontinuous terms in the friction model (described by sign functions without any
approximation in the simulation), it can be observed from the Figs. 22 and 23 that the torque generated by
the modified twisting controller is close to the ideal bang-bang profile except the discontinuous points.
It has been shown in the Figs. 24 and 25 that the maximum difference after the rise time between the
actuator torque and the ideal torque is 0.0626 and 7.1040 Nm (both below 2% of the ideal torque) for
the decoupled 2R and 3R spatial serial manipulators. The result shows that an appropriate choice of ε in
the modified twisting controller attenuates the chattering effects. Then, the control performance indices
could be calculated from the simulation:

As can be seen from the Table V, the best control performance is attained with the modified twisting
controller, which consumes less energy and maintains high tracking accuracy. The simulation results
demonstrate that the modified twisting controller is effective to stabilize the decoupled dynamic system
in the presence of parameter uncertainty and external disturbances.
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Table V. Results of different controllers in the presence of joint friction.

Tracking performance ISE (rad2s) Joule effect (N2m2s) MT (Nm)
Modified twisting (2R) 4.0777 × 10−4 9.8794 3.2042
LQR (2R) 0.0360 9.8925 3.2296
MRAC (2R) 4.6570 × 10−4 9.8813 3.3620
Modified twisting (3R) 3.7061 × 10−4 2.0474 × 105 452.5666
LQR (3R) 0.3366 2.0488 × 105 456.5749
MRAC (3R) 5.6469 × 10−4 2.0479 × 105 472.0219

Figure 22. Torque generation of modified twisting controller in the decoupled 2R manipulator.

Figure 23. Torque generation of modified twisting controller in the decoupled 3R manipulator.
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Figure 24. Difference between the actuator torque and the ideal torque in the decoupled 2R manipu-
lator.

Figure 25. Difference between the actuator torque and the ideal torque in the decoupled 3R manipu-
lator.

5. Conclusion and perspectives
The control of robot manipulators for high-performance and high-speed tasks has always been a chal-
lenge for control engineers. Nonlinear control has been developed, but it encounters difficulties such
as tracking inaccuracy at high speed and a heavy computational burden. It may be difficult to obtain
satisfactory control performance in a very complex dynamic system. To resolve this problem, a new
mechatronics approach is proposed to meet the demand for control performance. Rather than concen-
trating on the design of the control algorithm, this approach focuses on redesigning the mechanical
structure to obtain a linear and decoupled dynamic system. This offers greater convenience for con-
troller design. The arrangement of centers of mass and inertia redistribution for the links were described
to obtain the decoupled and linear dynamic equations for the manipulator. It was demonstrated that
the input torques in the 2R and 3R dynamically decoupled manipulators we obtained are directly pro-
portional to the input angular accelerations. A test of different controllers with simple structures were
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carried out for the decoupled system. The classical linear control techniques LQR and lead compensation
were adopted to track the desired bang-bang profile trajectory. Then, in the presence of parameter uncer-
tainty and external disturbances, adaptive control MRAC and modified twisting control were adopted to
stabilize the decoupled system asymptotically. The application of linear control techniques is straight-
forward and effective for the decoupled system. In the presence of parameter uncertainty and external
disturbances, the MRAC and the modified twisting controller perform well for the double -integrator
model. The results of the simulations demonstrate that the proposed method reduces the computational
burden and provides an improved control performance in tracking accuracy, energy consumption, and
maximum input torque. In the future, the observer technique will be developed in the control feedback
loop, and its control performance will be evaluated. The experiments will be designed to validate the
proposed approach. Besides, we will also explore the possibility of applying the approach in the parallel
robots. Therefore, we think the proposed solutions are of great interest to the scientific community.
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