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Abstract The best-constant problem for Nash and Sobolev inequalities on Riemannian manifolds has
been intensively studied in the last few decades, especially in the compact case. We treat this problem
here for a more general family of Gagliardo–Nirenberg inequalities including the Nash inequality and
the limiting case of a particular logarithmic Sobolev inequality. From the latter, we deduce a sharp
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1. Introduction

1.1. The case of the Euclidean space R
n

Let p be a positive real number. If n > p, the Hp
1 (Rn) Sobolev inequality asserts that

there exists a constant A such that for all u ∈ Hp
1 (Rn),

(∫
Rn

|u|np/(n−p) dx

)(n−p)/np

� A

(∫
Rn

|∇u|p dx

)1/p

.

When combining with Hölder’s inequality, we obtain a new family of inequalities, called
Gagliardo–Nirenberg inequalities, asserting that for all u ∈ Hp

1 (Rn),

(∫
Rn

|u|r dx

)1/r

�
(

A

∫
Rn

|∇u|p dx

)θ/2(∫
Rn

|u|s dx

)(1−θ)/s

,

where r, s > 0, θ ∈ [0, 1] and
1
r

=
θ

q
+

1 − θ

s
.

Actually, according to [3], when p is fixed and θ > 0, these inequalities are all equivalent
up to the constant A. Some famous particular cases have numerous applications. One
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118 C. Brouttelande

may mention Nash’s inequality,

(∫
Rn

|u|2 dx

)1+(2/n)

� A

(∫
Rn

|∇u|2 dx

)(∫
Rn

|u| dx

)4/n

,

introduced by Nash in his celebrated paper [13], which is obtained by setting r = 2,
s = 1 and θ = n/(n + 2). If r = 2 + (4/n), s = 2 and θ = n/(n + 2), we then obtain the
inequality ∫

Rn

|u|2+(4/n) dx � A

(∫
Rn

|∇u|2 dx

)(∫
Rn

|u|2 dx

)2/n

,

which has been used by Moser in a subsequent work [12]. Let us note that these inequal-
ities still hold when n � p (which implies θ �= 1), whereas the Sobolev embeddings are
not valid in this case. One can refer to [3], for example, for a more general discussion. In
the following, we restrict p to p = 2 and thus consider, when θ �= 0, the inequality

(∫
Rn

|u|r dx

)2/rθ

� A

(∫
Rn

|∇u|2 dx

)(∫
Rn

|u|s dx

)2(1−θ)/sθ

. (1.1)

Let us fix r and assume that (1.1) holds with an A independent of θ, which is the case
for all n > 0 (see [3]). Making θ go to 0, we obtain that for all u > 0 such that ‖u‖r = 1
the logarithmic Sobolev inequality

∫
Rn

ur lnur dx �
(

2
n

+
2 − r

r

)−1

ln
(

A

∫
Rn

|∇u|2 dx

)
. (1.2)

According to [3], this inequality is again equivalent to the previous ones and we shall
thus consider that it represents the case θ = 0.

Let A0(r, s, θ, n) be the optimum A such that (1.1) is valid. In most cases its explicit
value is unknown. The best constant in Sobolev inequalities was first obtained indepen-
dently by Aubin [1] and by Talenti [14] when n � 3. They showed that

A0

(
2n

n − 2
, s, 1, n

)
= K(n, 2)2 =

4

n(n − 2)ω2/n
n

,

where ωn is the volume of the standard unit sphere of dimension n. Later, the SL2,n case
was solved by Carlen [4]. In addition, with Loss [5] he computed the best constant for
Nash’s inequality. These values are

A0(2, 2, 0, n) =
2

nπe

A0

(
2, 1,

n

n + 2
, n

)
=

(n + 2)(n+2)/n

22/nnλ1(B)|B|2/n
,

where λ1(B) is the first Neumann eigenvalue of the Laplacian for radial functions on the
unit ball B in R

n and |B| is the volume of B in R
n. One may remark that λ1(B) can be

numerically computed. A brief discussion about this last point can be found in [5].
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1.2. The Riemannian case

Let (M, g) be a smooth compact Riemannian n-manifold. When n � 3, the H2
1 Sobolev

inequality on M asserts that there exist constants A and B such that for all u ∈ H2
1 (M),

(∫
M

|u|2n/(n−2) dvg

)(n−2)/n

� A

∫
M

|∇u|2g dvg + B

∫
M

|u|2 dvg.

As in the case of the Euclidean space R
n, we can define all the Gagliardo–Nirenberg

inequalities on M by Hölder’s inequality. Actually, we obtain that for all u ∈ H2
1 (M),

(∫
M

|u|r dvg

)2/rθ

�
(

A

∫
M

|∇u|2g dvg + B

∫
M

|u|2 dvg

)(∫
M

|u|s dvg

)2(1−θ)/sθ

, (1.3)

where r, s > 0, θ ∈ (0, 1) and

1
r

=
θ(n − 2)

2n
+

1 − θ

s
.

Again, these inequalities are all equivalent and can be defined for all n � 1. For the last
assertion, one should refer to Theorem 1.1 in [8] (which treats the case of a modified
Nash inequality) for an easy-to-adapt proof using a partition-of-unity argument.

Now, we define

A(r, s, θ, n) = {A ∈ R s.t. ∃B ∈ R for which (1.3) is valid}.

One may ask if this set is closed and what is its infimum, called the first best constant.
This problem has been intensively studied for the Sobolev inequalities (a complete dis-
cussion may be found in [10]). Recently, Humbert [11] solved the Nash case. In both
cases, it was shown that the set is closed and that the infimum is the best constant of
the corresponding Euclidean inequalities. In these proofs, the explicit value of the best
constant was known but not used. Therefore, one we may ask if the answer is identical
for all the Gagliardo–Nirenberg inequalities. The first aim of this paper is to study to
what extent the previous proofs may be generalized to other cases. At the same time, we
point out the fact that the explicit value of A0(r, s, θ, n) is useless for solving the first
best-constant problem for the family of inequalities that we study.

One may easily check that inf A(r, s, θ, n) = A0(r, s, θ, n). To this end, we may again
simply follow the proof of Theorem 1.1 in [8]. Our main result in this work is to give
conditions on r, s, θ such that (1.3) holds with A = A0(r, s, θ, n), including the Nash case
studied by Humbert [11]. The proof we present does not allow us to treat the full range
of parameters. It generalizes [11], itself inspired by the paper by Druet [7]. While the
main ideas of the proof below are already present in these works, the range of parameters
r, s, θ under investigation presents us with a number of new technical difficulties. For
the sake of completeness, we thus decided to present a self-contained proof. Our main
result is the following.
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120 C. Brouttelande

Theorem 1.1. Let (M, g) be a smooth compact Riemannian n-manifold. Let r, s, θ

be constants satisfying r � 2, s � 1, θ ∈ (0, 1) and

1
r

=
θ(n − 2)

2n
+

1 − θ

s
.

If s � 2 � r < 2 + s(2/n), then there exists a constant B such that for all u ∈ C∞(M),

(∫
M

|u|r dvg

)2/rθ

�
(

A0(r, s, θ, n)
∫

M

|∇u|2g dvg +B

∫
M

|u|2 dvg

)(∫
M

|u|s dvg

)2(1−θ)/sθ

.

Let us now study some interesting particular cases. The Nash inequality is obviously
included in our family but we can remark that Moser’s inequality only appears as a
limiting case. Indeed, we then have r = 2 + s(2/n). Up to now, we have not been able
to prove that B does not explode as A goes to A0(r, s, θ, n). Another limiting case can
be treated with this theorem: the logarithmic Sobolev inequality. This one is obtained as
in § 1.1, by fixing r = 2 and making θ go to 0. The following result will be proved in § 3.

Corollary 1.2. Let (M, g) be a smooth compact Riemannian n-manifold. There exists
a constant B such that for all u ∈ C∞(M) verifying u > 0 and ‖u‖2 = 1,

∫
M

u2 lnu2 dvg � 1
2n ln

(
2

nπe

∫
M

|∇u|2g dvg + B

)
. (1.4)

The best-constant problem for the Sobolev inequality has as many applications as the
Yamabe problem. A classical use of the logarithmic Sobolev inequalities is the computa-
tion of heat-kernel upper bounds (see, for example, [2,6]). Actually, following a result of
Bakry [2], the optimal Euclidean inequality can be used to compute the optimal upper
bound

‖Pt‖1,∞ � 1
(4πt)n/2 ,

where (Pt)t>0 is the heat semigroup on the Euclidean space R
n. One may ask if a similar

argument works on manifolds. At first, in § 3.2, we shall cite the theorem obtained by
Bakry [2]. From it and Corollary 1.2, we will then deduce the following.

Corollary 1.3. Let (M, g) be a smooth compact Riemannian n-manifold and let
(Pt)t>0 be the heat semigroup on M . One then has

‖Pt‖1,∞ � 1
(4πt)n/2 e(nπeB0/3)t,

where 0 < t � (πeB0)−1 and B0 is the best constant B in (1.4).
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2. Proof of Theorem 1.1

As already indicated, the proof follows the pattern of the proof of the main result of [11],
itself inspired by [7]. As r, s, θ and n are fixed in this section, we shall denote by A0 the
constant A0(r, s, θ, n). The case n = 1 is handled with a partition-of-unity argument as
we prove that A0 is the infimum of A(r, s, θ, n). One can thus assume that n � 2. Without
loss of generality, we can also assume that Volg(M) = 1. Moreover, let us observe that
θ ∈ (0, 1) implies s < r. We proceed here by contradiction. The proof is composed of three
steps. The first one is a preliminary step in which we introduce alternative notation that
will be used throughout this section. This part being nearly identical to the one in [11],
we keep the notation from that paper to make comprehension easier. Step 2 is a set of nine
lemmas. The first three are classical ones and deal with concentration-point phenomena
in partial differential equations, whereas the other six give more specific results. We then
conclude in the third step.

Step 1. Preliminary.

Proceeding by contradiction, we assume that for all B > 0 there exists u ∈ C∞(M)
such that(∫

M

|u|r dvg

)2/rθ

>

(
A0

∫
M

|∇u|2g dvg + B

∫
M

|u|2 dvg

)(∫
M

|u|s dvg

)2(1−θ)/sθ

.

This is equivalent to
µα = inf

u∈H
Iα < A−1

0

for all α > 0, where

Iα =
(∫

M

|∇u|2g dvg + α

∫
M

|u|2 dvg

)(∫
M

|u|s dvg

)2(1−θ)/sθ

and

H =
{

u ∈ C∞(M)
/ ∫

M

|u|r dvg = 1
}

.

We assume throughout the proof that s > 1, the case s = 1 being handled by replacing
s with 1 + εα in Iα, where (εα)α is such that lim εα = 0 (see [11] for the particular case
r = 2 and s = 1). Using the same arguments as in [8], we can prove that there exists
uα ∈ H2

1 (M), uα > 0, such that Iα(uα) = µα. Moreover, in the sense of distributions,

2Aα∆guα + 2αAαuα +
2(1 − θ)

θ
Bαus−1

α = kαur−1
α , (2.1)

where

Aα =
(∫

M

us
α dvg

)2(1−θ)/sθ

,

Bα =
(∫

M

|∇uα|2g dvg + α

∫
M

u2
α dvg

)(∫
M

us
α dvg

)(2(1−θ)/sθ)−1

,

kα =
(

2
θ

)
µα.
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The Sobolev embedding theorems and the standard elliptic theory (see [9]) imply uα ∈
C2(M). From now on, all limits below are taken as α → ∞. Considering subsequences if
needed, we can assume that all sequences have limits (finite or infinite).

One has µα < A−1
0 , hence

lim
(∫

M

u2
α dvg

)(∫
M

us
α dvg

)2(1−θ)/sθ

= 0

and

lim sup
(∫

M

|∇uα|2g dvg

)(∫
M

us
α dvg

)2(1−θ)/sθ

� A−1
0 .

From (1.3) with A = A0 + ε, B = Bε and u = uα with ε small, we obtain

(A0 + ε)−1 �
(∫

M

|∇uα|2g dvg +
Bε

A0 + ε

∫
M

|uα|2 dvg

)(∫
M

|uα|s dvg

)2(1−θ)/sθ

.

Hence

lim inf
(∫

M

|∇uα|2g dvg

)(∫
M

us
α dvg

)2(1−θ)/sθ

� A−1
0 .

As a consequence,

lim Aα

∫
M

|∇uα|2g dvg = A−1
0 , (2.2)

lim Bα

∫
M

us
α dvg = lim BαAsθ/2(1−θ)

α = A−1
0 , (2.3)

lim kα = (2/θ)A−1
0 , (2.4)

lim αAα

∫
M

u2
α dvg = 0. (2.5)

Let xα ∈ M be such that uα(xα) = ‖uα‖∞. Set aα = (Aα‖uα‖2−r
∞ )1/2. Since

1 =
∫

M

ur
α dvg �

∫
M

u2
α dvg‖uα‖r−2

∞ ,

we obtain from (2.5) that aα → 0.

Step 2. Some lemmas.

The first three results are classical. One begins with the following.

Lemma 2.1. For all δ > 0,

lim

∫
Bxα (δaα) us

α dvg∫
M

us
α dvg

> 0.
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Proof. Let δ > 0. For all x ∈ B(0, δ), set

gα(x) = (exp∗
xα

g)(aαx),

ϕα(x) = ‖uα‖−1
∞ uα(expxα

(aαx)).

It is an easy matter to check that

∆gαϕα(x) = ‖uα‖−1
∞ a2

α∆guα(expxα
(aαx))

= ‖uα‖1−r
∞

(
1
2kαuα(expxα

(aαx))r−1

− 1 − θ

θ
Bαuα(expxα

(aαx))s−1 − αAαuα(expxα
(aαx))

)
.

Hence
∆gα

ϕα + αAαϕα‖uα‖2−r
∞ +

1 − θ

θ
‖uα‖s−r

∞ Bαϕs−1
α = 1

2kαϕr−1
α .

Noting that ∆guα(xα) � 0, we obtain from (2.1) that

αAα +
1 − θ

θ
Bα‖uα‖s−2

∞ � 1
2kα‖uα‖r−2

∞ , (2.6)

which implies that |∆gαϕα| � C. By standard elliptic arguments (see, for example, [9]),
we then show that the sequence (ϕα) is equicontinuous. Hence, by the Ascoli theorem,
there exists ϕ ∈ C0(B(0, δ)) such that ϕα → ϕ in C0(B(0, δ)). Moreover,

ϕ(0) = limϕα(0) = 1.

Therefore,∫
B(0,δ)

ϕs
α dvgα

= ‖uα‖−s
∞ a−n

α

∫
Bxα (aαδ)

us
α dvg

= ‖uα‖−s−(2−r)(n/2)
∞ A−(n/2)+(sθ/2(1−θ))

α

∫
Bxα (aαδ) us

α dvg∫
M

us
α dvg

.

Using the relations

2
n

= 1 − 2
rθ

+
2(1 − θ)

sθ
, (2.7)

(r − s) 1
2n

2(1 − θ)
sθ

− (2 − r) 1
2n = r, (2.8)

we obtain
∫

B(0,δ)
ϕs

α dvgα = (‖uα‖r−s
∞ Asθ/2(1−θ)

α )1−(n(1−θ)/sθ)

∫
Bxα (aαδ) us

α dvg∫
M

us
α dvg

.

One may easily verify that

r < 2 + s
2
n

⇔ 2
rθ

> 1 ⇔ 1 − n(1 − θ)
sθ

< 0.
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Since (2.3) and (2.6) imply that A
−sθ/2(1−θ)
α � C‖uα‖r−s

∞ , we have
∫

B(0,δ)
ϕs

α dvgα � C

∫
Bxα (aαδ) us

α dvg∫
M

us
α dvg

.

Noting that lim
∫

B(0,δ) ϕs
α dvgα > 0,

∫
Bxα (aαδ) us

α dvg∫
M

us
α dvg

� C > 0.

This ends the proof of Lemma 2.1. �

One shows similarly that

‖uα‖r−s
∞ Asθ/2(1−θ)

α → C > 0. (2.9)

Let us note that (2.9) leads to aα‖uα‖r/n
∞ → C > 0. As a consequence, ‖uα‖∞ → +∞

and Aα → 0. Moreover, since s � 2, we also have∫
M

u2
α dvg �

∫
M

us
α dvg‖uα‖2−s

∞ = Asθ/2(1−θ)
α ‖uα‖2−s

∞ .

Consequently, by (2.9) and the inequality ‖uα‖2−r
∞ � C

∫
M

u2
α dvg, we obtain

‖uα‖r−2
∞

∫
M

u2
α dvg → C > 0. (2.10)

Remark. Relations (2.7) and (2.8) are intensively used throughout the proof and we
will thus no longer be precise when they are needed.

One can now improve the previous lemma. Actually, we have the following.

Lemma 2.2. Let (cα)α be a sequence of positive real numbers satisfying (aα/cα) → 0.
Then

lim

∫
Bxα (cα) us

α dvg∫
M

us
α dvg

= 1.

Proof. Let η ∈ C∞(R) be such that

(i) η([0, 1
2 ]) = {1},

(ii) η([1, +∞]) = {0},

(iii) 0 � η � 1.

For k ∈ N, set ηα,k = (η(c−1
α dg(x, xα)))2

k

.
Multiplying (2.1) by ηr

α,kuα and integrating over M , we obtain

2Aα

∫
M

ηr
α,kuα∆guα dvg + 2αAα

∫
M

ηr
α,ku2

α dvg

+
2(1 − θ)

θ
Bα

∫
M

ηr
α,kus

α dvg = kα

∫
M

ηr
α,kur

α dvg.
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The identity
∫

M

ηr
α,kuα∆guα dvg =

∫
M

|∇η
r/2
α,kuα|2g dvg −

∫
M

|∇η
r/2
α,k |2gu2

α dvg

then leads to

2Aα

∫
M

|∇η
r/2
α,kuα|2g dvg − 2Aα

∫
M

|∇η
r/2
α,k |2gu2

α dvg + 2αAα

∫
M

ηr
α,ku2

α dvg

+
2(1 − θ)

θ
Bα

∫
M

ηr
α,kus

α dvg = 1
2kα

∫
M

ηr
α,kur

α dvg.

(2.11)

Moreover, (1.3) with A = A0 + ε, B = Bε and u = ηα,kuα gives

(∫
M

|ηα,kuα|r dvg

)2/rθ

�
(

(A0 + ε)
∫

M

|∇ηα,kuα|2g dvg + Bε

∫
M

|ηα,kuα|2 dvg

)(∫
M

|ηα,kuα|s dvg

)2(1−θ)/sθ

.

(2.12)

Set

λk = lim

∫
M

ηr
α,kus

α dvg∫
M

us
α dvg

,

λ̃k = lim

∫
M

ηs
α,kus

α dvg∫
M

us
α dvg

,

Xk = lim Aα

∫
M

|∇η
r/2
α,kuα|2g dvg,

Yk = lim Aα

∫
M

|∇ηα,kuα|2g dvg,

Zk = lim
∫

M

ηr
α,kur

α dvg.

Let us now search for some relations involving λk, λ̃k, Xk, Yk and Zk.
One has the following.

(i) Relation (2.10) implies that

lim Aα

∫
M

|∇η
r/2
α,k |2gu2

α dvg � lim C
a2

α

c2
α

= 0.

(ii) Relation (2.5) implies that

lim αAα

∫
M

ηr
α,ku2

α dvg = 0.
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(iii) By definition of Aα,

lim
(∫

M

|∇ηα,kuα|2g dvg

)(∫
M

ηr
α,kus

α dvg

)2(1−θ)/sθ

= lim Aα

(∫
M

|∇ηα,kuα|2g dvg

)
λ̃

2(1−θ)/sθ
k

= Ykλ̃
2(1−θ)/sθ
k

and

lim
(∫

M

η2
α,ku2

α dvg

)(∫
M

ηr
α,kus

α dvg

)2(1−θ)/sθ

� lim Aα

∫
M

u2
α dvg = 0.

Therefore, taking the limit in (2.11) and (2.12), we obtain

Xk +
1 − θ

θ
λkA−1

0 =
A0

θ
Zk,

Z
2/rθ
k � (A0 + ε)Ykλ̃

2(1−θ)/sθ
k .

Set X̃k = A0Xk and Ỹk = A0Yk. Noting that ε is arbitrary, we then have

θX̃k + (1 − θ)λk = Zk,

Z
2/rθ
k � Ỹkλ̃

2(1−θ)/sθ
k .

Now, let us remark that

λs
k =

λs
k

λ̃r
k

λ̃r
k.

After some easy computations, it follows that

λk � 1
1 − θ

Ỹ
rθ/2(1−θ)
k (Z1−(1/(1−θ))

k − θX̃kZ
−1/(1−θ)
k )λ̃r/s

k .

Set f(x, z) = z1−(1/(1−θ)) − θxz−1/(1−θ). One has

∂f

∂z
(x, z) =

θ

1 − θ
z−1/(1−θ)

(
x

z
− 1

)
.

Since θX̃k +(1−θ)λk = Zk, λk < Zk < X̃k or X̃k < Zk < λk. In both cases, f(X̃k, Zk) <

f(X̃k, X̃k). As a consequence,

λk � (Ỹ r/2
k X̃−1

k )θ/(1−θ)λ̃r
k.

From Hölder’s inequality for the measure dµα = |∇uα|2g dvg and the equalities

Ỹk = lim A0Aα

∫
M

η2
α,k|∇uα|2g dvg,

X̃k = lim A0Aα

∫
M

ηr
α,k|∇uα|2g dvg,
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it follows that Ỹ
r/2
k � X̃k and λk � λ̃

r/s
k . Since, by Lemma 2.1,

C � λk+1 � λ̃k+1 � λk � λ̃k+1 � lim

∫
Bxα (cα) us

α dvg∫
M

us
α dvg

,

we then have

∀N ∈ N, C � λ
Nr/s
0 � lim

∫
Bxα (cα) us

α dvg∫
M

us
α dvg

.

Thereafter,

lim

∫
Bxα (cα) us

α dvg∫
M

us
α dvg

= 1

and Lemma 2.2 is proved. �

An important estimate follows.

Lemma 2.3. There exists C > 0 independent of α such that for all x ∈ M and every
α,

uα(x) dg(x, xα)n/r � C.

Proof. Let us assume by contradiction that there exists a sequence (yα)α of points
of M such that

uα(yα) dg(yα, xα)n/r → +∞. (2.13)

From now on, in most cases we set rα = dg(·, xα). Set vα = uα(yα) dg(yα, xα)n/r. One
can assume without loss of generality that vα = ‖uαr

n/r
α ‖∞.

First, let us prove that for all ν small enough, we have

Byα(uα(yα)−r/n) ∩ Bxα(aαvν
α) = ∅. (2.14)

It is enough to prove dg(yα, xα) � uα(yα)−r/n + aαvν
α or, equivalently, v

(r/n)−ν
α � v−ν

α +
aαuα(yα)r/n. If ν < r/n, we obtain from (2.13) that v

(r/n)−ν
α → ∞ and v−ν

α → 0. One
has yet to show that vαuα(yα)r/n � C. Meanwhile, (2.9) implies

aαuα(yα)r/n � aα‖uα‖r/n
∞

� (Aα‖uα‖2−r
∞ ‖uα‖2(r/n)

∞ )1/2

� C,

which proves (2.14).
Let us now set for all x ∈ B(0, 1)

hα(x) = (exp∗
yα

g)(lαx),

ψα(x) = uα(yα)−1uα(expyα
(lαx)),

where lα = ‖uα‖−((1/2)+(r/n))
∞ uα(yα)1/2.
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From (2.1), one can easily check that

∆hαψα(x) = uα(yα)−1l2α∆guα(expyα
(lαx))

=
kα‖uα‖−1−(2r/n)

∞ uα(yα)r−1

2Aα
ψα(x)r−1 − α‖uα‖−1−(2r/n)

∞ uα(yα)ψα(x)

− (1 − θ)Bα‖uα‖−1−(2r/n)
∞ uα(yα)s−1

θAα
ψα(x)s−1.

Hence, under the assumption ‖ψα‖L∞(B(0,1)) � C and by (2.6),

|∆hα
ψα(x)| � C

‖uα‖−1−(2r/n)+r−1
∞

2Aα

� C
‖uα‖−(r−s)(2(1−θ)/sθ)

∞
Aα

� C.

Let us now show that

‖uα‖L∞(Byα (lα)) � ‖uα‖L∞(Byα (uα(yα)−r/n)) � Cuα(yα).

By the definition of yα, we have for all x ∈ Byα
(uα(yα)−r/n),

uα(yα) dg(yα, xα)n/r � uα(x) dg(x, xα)n/r. (2.15)

Moreover, since x ∈ Byα(uα(yα)−r/n) and uα(yα) � ‖uα‖∞, we have

dg(x, yα) � uα(yα)−r/n,

and by (2.13), uα(yα)−r/n � 1
2dg(yα, xα). Therefore,

dg(xα, x) � dg(yα, xα) − dg(yα, x) � dg(yα, xα) − uα(yα)−r/n � 1
2dg(yα, xα),

which, combined with (2.15), proves that

‖uα‖L∞(Byα (uα(yα)−r/n)) � Cuα(yα).

Hence, we have ‖ψα‖L∞(Byα (lα)) � C and, as a consequence, ‖∆hαψα‖L∞(Byα (lα)) � C.
By arguments already used above, there exists ψ ∈ C0(B(0, 1)) such that ψα → ψ in
C0(B(0, 1)) with ψ(0) > 0. One then has

∫
B(0,1)

ψs
α dvhα = Asθ/2(1−θ)

α uα(yα)−sl−n
α

∫
Byα (lα) us

α dvg∫
M

us
α dvg

+∞∼ C

(
‖uα‖∞
uα(yα)

)(n/2)+s
∫

Byα (lα) us
α dvg∫

M
us

α dvg
.
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Set

mα =
uα(yα)
‖uα‖∞

.

We obtain ∫
Byα (lα) us

α dvg∫
M

us
α dvg

+∞∼ Cm(n/2)+s
α .

Lemma 2.2 and (2.14) imply

lim

∫
Byα (uα(yα)−r/n) us

α dvg∫
M

us
α dvg

= 0.

Consequently, limmα = 0. Now, let us show that there exists a sequence (γk)k>0 of
positive real numbers converging to +∞ such that for all k > 0,

m−γk
α

∫
Byα (2−kuα(yα)−r/n)

ur
α dvg → 0. (2.16)

Let us proceed by induction. Since ‖uα‖L∞(Byα (uα(yα)−r/n)) � Cuα(yα), we have∫
Byα (uα(yα)−r/n)

ur
α dvg � Cuα(yα)r−s

∫
Byα (uα(yα)−r/n)

us
α dvg

� Cmr−s
α ‖uα‖r−s

∞

∫
Byα (uα(yα)−r/n)

us
α dvg.

Therefore, we can set γ0 = r − s by (2.14). Let us assume that we constructed the
sequence up to some k > 0.

Set ηα,k(x) = η(2kuα(yα)r/ndg(yα, x)).
Multiplying (2.1) by uαη2

α,k/mγk
α and integrating over M , we obtain

2Aα

mγk
α

∫
M

|∇ηα,kuα|2g dvg − 2Aα

mγk
α

∫
M

|∇ηα,k|2gu2
α dvg +

2αAα

mγk
α

∫
M

η2
α,ku2

α dvg

+
2(1 − θ)

θ

Bα

mγk
α

∫
M

η2
α,kus

α dvg =
kα

mγk
α

∫
M

η2
α,kur

α, dvg.

(2.17)

Relation (2.16) and Hölder’s inequality imply

Aαm−γk
α

∫
M

|∇ηα,k|2gu2
α dvg � CAαuα(yα)2r/nm−γk

α

∫
Byα (2−kuα(yα)−r/n)

u2
α dvg

� C‖uα‖r−2
∞ m2r/n

α m−γk
α

∫
Byα (2−kuα(yα)−r/n)

u2
α dvg

� C‖uα‖r−2
∞ m2r/n

α m−γk
α (Volg(Byα(2−kuα(yα)−r/n)))1−(2/r)

×
(∫

Byα (2−kuα(yα)−r/n)
ur

α dvg

)2/r

� Cm2−r+(2r/n)−γk+(2/r)γk
α

� Cm(r−s)(2(1−θ)/sθ)−γk(1−(2/r))
α
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and
kαm−γk

α

∫
M

η2
α,kur

α dvg � C.

There are now two possibilities. One is the case

(r − s)
2(1 − θ)

sθ
− γk

(
1 − 2

r

)
� 0.

One then has, by (2.17),

Aαm−γk
α

∫
M

η2
α,ku2

α dvg � C,

Bαm−γk
α

∫
M

η2
α,kus

α dvg � C, (2.18)

Aαm−γk
α

∫
M

|∇ηα,kuα|2g dvg � C.

Moreover, we obtain from (1.3) with u = ηαuα that

(∫
M

ηr
α,kur

α dvg

)2/rθ

� A

∫
M

|∇ηα,kuα|2g dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

+ B

∫
M

η2
α,ku2

α dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

.

Noting that (2.18) is still valid by changing η into ηs/2, we then have

∫
M

|∇ηα,kuα|2g dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� C

AαB
2(1−θ)/sθ
α

Aα

∫
M

|∇ηα,kuα|2g dvg

(
Bα

∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� Cm(1+(2(1−θ)/sθ))γk
α

and
∫

M

η2
α,ku2

α dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� C

B
2(1−θ)/sθ
α

∫
M

η2
α,ku2

α dvg

(
Bα

∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� Cm(1+(2(1−θ)/sθ))γk
α .

Thereafter, by using the relation
∫

Byα (2−(k+1)uα(yα)−r/n)
ur

α dvg �
∫

M

ηr
α,kur

α dvg,
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we obtain ∫
Byα (2−(k+1)uα(yα)−r/n)

ur
α dvg � Cm(rθ/2)(1+(2(1−θ)/sθ))γk

α

� Cm((rθ/n)+1)γk
α .

Consequently, we can set γk+1 = ((rθ/2n) + 1)γk.
The other possibility is

(r − s)
2(1 − θ)

sθ
− γk

(
1 − 2

r

)
< 0.

The same arguments as above give
∫

Byα (2−(k+1)uα(yα)−r/n)
ur

α dvg � Cm(rθ/2)(1+(2(1−θ)/sθ))((r−s)(2(1−θ)/sθ)+(2/r)γk)
α

and

m−γk
α

∫
Byα (2−(k+1)uα(yα)−r/n)

ur
α dvg

� Cm(rθ/2)(1+(2(1−θ)/sθ))((r−s)(2(1−θ)/sθ))+γk((rθ/2)(1+(2(1−θ)/sθ))(2/r)−1)
α .

Thereafter, the relation

rθ

2

(
1 +

2(1 − θ)
sθ

)
2
r

− 1 =
rθ

2
2(1 − θ)

sθ

(
2
r

(
sθ

2(1 − θ)
+ 1

)
− 2

rθ

sθ

2(1 − θ)

)

=
rθ

2
2(1 − θ)

sθ

2 − s

r
� 0

implies

m−γk
α

∫
Byα (2−(k+1)uα(yα)−r/n)

ur
α dvg � Cm(rθ/2)(1+(2(1−θ)/sθ))((r−s)(2(1−θ)/sθ))

α .

Since
rθ

2

(
1 +

2(1 − θ)
sθ

)
> 1,

set γk+1 = γk + (r − s)(2(1 − θ)/sθ). One can easily check that the sequence (γk)k>0

converges to +∞. Since lαuα(yα)r/n → 0, we have also proved that for all k > 0,

m−γk
α

∫
Byα (lα)

ur
α dvg → 0.

But since ∫
B(0,1)

ψr
α dvhα = uα(yα)−rl−n

α

∫
Byα (lα)

ur
α dvg,
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we also have ∫
Byα (lα)

ur
α dvg

+∞∼ Cm(n/2)+r
α .

This leads to a contradiction and this ends the proof of Lemma 2.3. �

Let c > 0. Before concluding, we need some sharp estimates. The first one is the
following.

Lemma 2.4. If r �= 2, there exists C > 0 independent of α such that

A−r/(r−2)
α

∫
M−Bxα (c)

ur
α dvg � C. (2.19)

If r = 2, for all k > 0, there exists C > 0 independent of α such that

A−k
α

∫
M−Bxα (c)

ur
α dvg � C.

Proof. One starts with the case r �= 2. Let δ ∈ ]0, (sθ/2(1 − θ))[. Lemma 2.3 gives

A−δ
α

∫
M−Bxα (c)

ur
α dvg � CA−δ

α

∫
M−Bxα (c)

us
αrn(r−s)/r

α dvg

� CA−δ
α

∫
M−Bxα (c)

us
α dvg

� CA−δ
α Asθ/2(1−θ)

α .

Hence,

A−δ
α

∫
M−Bxα (c)

ur
α dvg → 0.

Let us show by induction that for all k0 + 1 � k > 0,

A−δ((rθ/2n)+1)k

α

∫
M−Bxα (2kc)

ur
α dvg � C, (2.20)

where k0 is such that

δ

(
rθ

2n
+ 1

)k0

� r

r − 2
.

Set ηα,k(x) = 1 − η(2−kc−1dg(xα, x)) and εk = ((rθ/2n) + 1)k. Assume that (2.20) is
true for some k � k0. Multiplying (2.1) by uαη2

α,k/Aδεk
α and integrating over M , we then

obtain

2Aα

Aδεk
α

∫
M

|∇ηα,kuα|2g dvg − 2Aα

Aδεk
α

∫
M

|∇ηα,k|2gu2
α dvg

+
2αAα

Aδεk
α

∫
M

η2
α,ku2

α dvg +
2(1 − θ)

θ

Bα

Aδεk
α

∫
M

η2
α,kus

α dvg =
kα

Aδεk
α

∫
M

η2
α,kur

α dvg.

(2.21)
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Since δεk � (r/(r − 2)), we have, by Hölder’s inequality and (2.20),

A1−δεk
α

∫
M

|∇ηα,k|2gu2
α dvg � CA1−δεk(1−(2/r))

α

(
A−δεk

α

∫
M−Bxα (2−kc)

ur
α dvg

)2/r

� C

and
kα

Aδεk
α

∫
M

η2
α,kur

α dvg � C.

Hence, by (2.21),
2Aα

Aδεk
α

∫
M

|∇ηα,kuα|2g dvg � C,

2αAα

Aδεk
α

∫
M

η2
α,ku2

α dvg � C,

2(1 − θ)
θ

Bα

Aδεk
α

∫
M

η2
α,kus

α dvg � C.




(2.22)

Moreover, (1.3) with u = ηα,kuα gives

(∫
M

ηr
α,kur

α dvg

)2/rθ

� A

∫
M

|∇ηα,kuα|2g dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

+ B

∫
M

η2
α,ku2

α dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

.

Noting that (2.22) is still valid after changing η into ηs/2, we then have

∫
M

|∇ηα,kuα|2g dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� C

AαB
2(1−θ)/sθ
α

Aα

∫
M

|∇ηα,kuα|2g dvg

(
Bα

∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� CA(1+(2(1−θ)/sθ))δεk
α

and
∫

M

η2
α,ku2

α dvg

(∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� C

B
2(1−θ)/sθ
α

∫
M

η2
α,ku2

α dvg

(
Bα

∫
M

ηs
α,kus

α dvg

)2(1−θ)/sθ

� CA(1+(2(1−θ)/sθ))δεk
α .

Thereafter, (∫
M

ηr
α,kur

α dvg

)2/rθ

� CA(1+(2(1−θ)/sθ))δεk
α .
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Hence, from the inequality
∫

M−Bxα (2k+1c)
ur

α dvg �
∫

M

ηr
α,kur

α dvg,

we obtain ∫
M−Bxα (2k+1c)

ur
α dvg � CA(1+(2(1−θ)/sθ))δ(rθ/2)εk

α .

Since (
1 +

2(1 − θ)
sθ

)
rθ

2
=

rθ

n
+ 1 >

rθ

2n
+ 1,

we deduce (2.20) with rank k + 1.
Let us remark that we have not only proved (2.19) but similarly, by a last induction,

we have shown that

A−(r/(r−2))+(sθ/2(1−θ))
α

∫
M−Bxα (c)

us
α dvg � C.

The case r = 2 is handled identically, except that the induction can be continued forever.
�

In order to prove Lemma 2.6, we first have to show the following.

Lemma 2.5. There exists t0 > 0 such that

∀x ∈ M − Bxα(t0Arsθ/2n(r−s)(1−θ)
α ), ∆guα(x) < 0.

Proof. Let x ∈ M be such that ∆guα(x) > 0. One then has, by (2.1), that

αAα +
1 − θ

θ
Bαuα(x)s−2 � 1

2kαuα(x)r−2.

Hence, CBα � uα(x)r−s. Moreover, by (2.3), we have Bα � CA
−sθ/2(1−θ)
α . Hence,

uα(x) � CA−sθ/2(r−s)(1−θ)
α .

By using Lemma 2.3, which gives uα(x) � Cr
−n/r
α , we obtain

dg(x, xα) � CArsθ/2n(r−s)(1−θ)
α .

This proves our assertion. �

In order to simplify the notation, set ω = rsθ/2n(r − s)(1 − θ). Set ηα = η(c−1rα).
One can now prove the following.

Lemma 2.6. There exists C > 0 independent of α such that
∫

M

η2
αr2

α|∇uα|2g dvg � C‖uα‖2−r
∞ .
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Proof. Set γα =
∫

M
η2

α,kr2
α|∇uα|2g dvg. Integrating by parts, we obtain

γα =
∫

M

η2
αr2

αuα∆guα dvg − 2
∫

M

uαηαrα〈∇uα,∇ηαrα〉g dvg.

Hence, by Lemma 2.5,

γα �
∫

Bxα (t0Aω
α)

η2
αr2

αuα∆guα dvg + C

∫
M

uαηαrα|∇uα|g |∇ηαrα|g dvg.

Relations (2.1), (2.6) and (2.9) give

|uα∆guα| � 1
2Aα

∣∣∣∣kαur
α − 2αAαu2

α − 2(1 − θ)
θ

Bαus
α

∣∣∣∣
� C

kα

2Aα
‖uα‖r

∞ � A−nω−1
α .

It follows that∫
Bxα (t0Aω

α)
η2

αr2
αuα∆guα dvg � C Volg(Bxα

(t0Aω
α))A−nω−1

α (t0Aω
α)2

� CA2ω−1
α .

One may easily check that

2ω − 1 =
rsθ

n(r − s)(1 − θ)
− 1 =

sθ

2(r − s)(1 − θ)
(r − 2).

Hence ∫
Bxα (t0Aω

α)
η2

αr2
αuα∆guα dvg � CA(sθ/(2(r−s)(1−θ)))(r−2)

α

� C‖uα‖2−r
∞ .

Moreover, Hölder’s inequality leads to

∫
M

uαηαrα|∇uα|g |∇ηαrα|g dvg �
(∫

M

ηr
αrr

α|∇uα|2g dvg

)1/2(∫
M

u2
α|∇ηαrα|2g dvg

)1/2

.

But
|∇ηαrα|2g � C.

Therefore, ∫
M

uαηαrα|∇uα|g |∇ηαrα|g dvg � (γα‖uα‖2−r
∞ )1/2.

One then has
γα

‖uα‖2−r
∞

� C + C

(
γα

‖uα‖2−r
∞

)1/2

,

which proves the lemma. �
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Changing η into ηr/2, we also obtain
∫

M

ηr
αr2

α|∇uα|2g dvg � C‖uα‖2−r
∞ .

We now prove the following main estimate.

Lemma 2.7. There exists C > 0 independent of α such that
∫

M

ur
αηr

αr2
α dvg � C

√
αA2ω

α .

Proof. Assume by contradiction that
∫

M
ur

αηr
αr2

α dvg√
αA2ω

α

→ +∞. (2.23)

Multiplying (2.1) by
uαηr

αr2
α∫

M
ur

αηr
αr2

α dvg

and integrating over M , we obtain

2Aα

∫
M

(∆guα)uαηr
αr2

α dvg∫
M

ur
αηr

αr2
α dvg

+
2αAα

∫
M

u2
αηr

αr2
α dvg∫

M
ur

αηr
αr2

α dvg
+

2(1 − θ)
θ

Bα

∫
M

us
αηr

αr2
α dvg∫

M
ur

αηr
αr2

α dvg
= kα.

(2.24)

An integration by parts and Lemma 2.6 lead to
∣∣∣∣
∫

M

(∆guα)uαηr
αr2

α dvg

∣∣∣∣ � C

∣∣∣∣
∫

M

ηr
αr2

α|∇uα|g dvg +
∫

M

u2
α|∇ηr/2

α rα|g dvg

∣∣∣∣
� C‖uα‖2−r

∞ .

Hence, by (2.23),

2Aα

∫
M

(∆guα)uαηr
αr2

α dvg∫
M

ur
αηr

αr2
α dvg

� CA1−2ω
α ‖uα‖2−r

∞√
α

� C√
α

→ 0.

Since
2αAα

∫
M

u2
αηr

αr2
α dvg∫

M
ur

αηr
αr2

α dvg
� 0,

we have, by (2.24),

Bα

∫
M

us
αηr

αr2
α dvg∫

M
ur

αηr
αr2

α dvg
� C.

Therefore, by (2.3),
∫

M
us

αηr
αr2

α dvg

A
sθ/2(1−θ)
α

∫
M

ur
αηr

αr2
α dvg

� C. (2.25)
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Moreover, Lemma 2.4 gives
∫

M

us
αηs

αr2
α dvg −

∫
M

us
αηr

αr2
α dvg � C

∫
M−Bxα (c)

us
α dvg � CA2ω+(sθ/2(1−θ))

α .

It follows from (2.23) and (2.25) that
∫

M
us

αηs
αr2

α dvg

A
sθ/2(1−θ)
α

∫
M

ur
αηr

αr2
α dvg

� C. (2.26)

Now let us prove

∫
M

us
αηs

αrs
α dvg � C

∫
M

us
αηs

αr2
α dvg

(Aω
αα1/4)2−s

. (2.27)

One has, by Lemma 2.3,
∫

M

us
αηs

αrs
α dvg =

∫
Bxα (Aω

αα1/4)
us

αηs
αrs

α dvg +
∫

M−Bxα (Aω
αα1/4)

us
αηs

αrs
α dvg

�
∫

Bxα (Aω
αα1/4)

us
αηs

αrs
α dvg +

C

(Aω
αα1/4)2−s

∫
M−Bxα (Aω

αα1/4)
us

αηs
αr2

α dvg.

Clearly,
∫

Bxα (Aω
αα1/4)

us
αηs

αrs
α dvg � CAsθ/2(1−θ)

α (Aω
αα1/4)s.

Assume by contradiction that

Asθ/2(1−θ)
α (Aω

αα1/4)s � tα
(Aω

αα1/4)2−s

∫
M−Bxα (Aω

αα1/4)
us

αηs
αr2

α dvg, (2.28)

where tα → +∞. We obtain from Lemma 2.3 that
∫

M−Bxα (Aω
αα1/4)

ur
αηr

αr2
α dvg �

∫
M−Bxα (Aω

αα1/4)
ur

αηs
αr2

α dvg

�
∫

M−Bxα (Aω
αα1/4)

us
αηs

αr2−(r−s)(n/r)
α dvg

� C(Aω
αα1/4)−(r−s)(n/r) A

sθ/2(1−θ)
α (Aω

αα1/4)2

tα

� C
√

αA2ω
α .

Moreover, we can easily check that
∫

Bxα (Aω
αα1/4)

ur
αηr

αr2
α dvg � C

√
αA2ω

α ,
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which contradicts (2.23). Hence (2.28) is false and we have proved that
∫

M−Bxα (Aω
αα1/4)

us
αηs

αrs
α dvg � C

(Aω
αα1/4)2−s

∫
M−Bxα (Aω

αα1/4)
us

αηs
αr2

α dvg.

Inequality (2.27) follows.
From (1.3) with u = uαrαηα, we obtain

1 � A

∫
M

|∇uαηαrα|2g dvg(
∫

M
us

αηs
αrs

α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ

+ B

∫
M

u2
αη2

αr2
α dvg(

∫
M

us
αηs

αrs
α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ
.

Let us prove that

lim

∫
M

u2
αη2

αr2
α dvg(

∫
M

us
αηs

αrs
α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ
= 0. (2.29)

One has, by Hölder’s inequality,
∫

M
u2

αη2
αr2

α dvg(
∫

M
us

αηs
αrs

α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ

�
(
∫

M
us

αηs
αrs

α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)(2/rθ)−(2/r)

�
(
∫

M
us

αηs
αrs

α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αr2

α dvg)(1−θ)/θ

�
(

Bα

∫
M

us
αηs

αrs
α dvg∫

M
ur

αηr
αr2

α dvg

)2(1−θ)/sθ (
∫

M
ur

αηr
αr2

α dvg)(2(1−θ)/sθ)−((1−θ)/θ)

B
2(1−θ)/sθ
α

.

Equations (2.27), (2.3) and (2.9) then lead to

∫
M

u2
αη2

αr2
α dvg(

∫
M

us
αηs

αrs
α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ

�
( ∫

M
us

αηs
αr2

α dvg

A
sθ/2(1−θ)
α

∫
M

ur
αηr

αr2
α dvg

)2(1−θ)/sθ

× CAα

(Aω
αα1/4)(2−s)(2(1−θ)/sθ)

(∫
M

ur
αηr

αr2
α dvg

)(2(1−θ)/sθ)−((1−θ)/θ)

.

Therefore, we have, by (2.26),

∫
M

u2
αη2

αr2
α dvg(

∫
M

us
αηs

αrs
α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ
� A

1−(r(2−s)/n(r−s))
α

α(2−s)(1−θ)/2sθ
.
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Since

1 − r(2 − s)
n(r − s)

=
1

n(r − s)
(n(r − s) − r(2 − s))

=
1

n(r − s)
((n − 2)(r − s) + s(r − 2))

� 0,

(2.29) follows.
Now, let us prove that

∫
M

|∇uαηαrα|2g dvg(
∫

M
us

αηs
αrs

α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ
→ 0. (2.30)

Using (2.27) and (2.26) successively, we obtain
∫

M
|∇uαηαrα|2g dvg(

∫
M

us
αηs

αrs
α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ

� C

(Aω
αα1/4)(2−s)(2(1−θ)/sθ)

∫
M

|∇uαηαrα|2g dvg(
∫

M
us

αηs
αr2

α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αr2

α dvg)1/θ

� CAα

(Aω
αα1/4)(2−s)(2(1−θ)/sθ)

( ∫
M

us
αηs

αr2
α dvg

A
sθ/2(1−θ)
α

∫
M

ur
αηr

αr2
α dvg

)2(1−θ)/sθ

×
∫

M
|∇uαηαrα|2g dvg

(
∫

M
ur

αηr
αr2

α dvg)(1/θ)−(2(1−θ)/sθ)

� C
A

1−(r(2−s)/n(r−s))
α

α(2−s)(1−θ)/2sθ

∫
M

|∇uαηαrα|2g dvg

(
∫

M
ur

αηr
αr2

α dvg)(1/θ)−(2(1−θ)/sθ)

� CA
1−(r(2−s)/n(r−s))−2ω((1/θ)−(2(1−θ)/sθ))
α

α(2−s)(1−θ)/2sθ

(
A2ω

α∫
M

ur
αηr

αr2
α dvg

)(1/θ)−(2(1−θ)/sθ)

×
∫

M

|∇uαηαrα|2g dvg.

Hölder’s inequality leads to∫
M

|∇uαηαrα|2g dvg =
∫

M

|∇uα|2gη2
αr2

α dvg + 2
∫

M

uαηαrα〈∇uα,∇ηαrα〉g dvg

+
∫

M

u2
α|∇ηαrα|2g dvg

�
∫

M

|∇uα|2gη2
αr2

α dvg +
∫

M

u2
α|∇ηαrα|2g dvg

+ 2
(∫

M

|∇uα|2gη2
αr2

α dvg

)1/2(∫
M

u2
α|∇ηαrα|2g dvg

)1/2

.
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Hence, we have, by Lemma 2.6,∫
M

|∇uαηαrα|2g dvg � C‖uα‖2−r
∞ .

Finally, noting that

1
θ

− 2(1 − θ)
sθ

>
2
rθ

− 2(1 − θ)
sθ

= 1 − 2
n

> 0,

we obtain from (2.23) that
∫

M
|∇uαηαrα|2g dvg(

∫
M

us
αηs

αrs
α dvg)2(1−θ)/sθ

(
∫

M
ur

αηr
αrr

α dvg)2/rθ

� C
A

1−(r(2−s)/n(r−s))−2ω((1/θ)−(2(1−θ)/sθ))+2ω−1
α

α(2−s)(1−θ)/2sθ
.

However,

1 − r(2 − s)
n(r − s)

− 2ω

(
1
θ

− 2(1 − θ)
sθ

)
+ 2ω − 1

= 1 − r(2 − s)
n(r − s)

− rs

n(r − s)(1 − θ)
+

2r

n(r − s)
+

rsθ

n(r − s)(1 − θ)
− 1

=
rs

n(r − s)

(
1 − 1

1 − θ
+

θ

1 − θ

)
.

Relation (2.30) follows. Equations (2.29) and (2.30) contradict (1.3) with u = uαrαηα.
As a consequence, (2.23) is false and Lemma 2.7 is proved. �

The last two estimates are important in the third step.

Lemma 2.8. There exists C > 0 independent of α such that

1 − (
∫

M
ur

αηr
α dvg)2/rθ

√
αA2ω

α

� C.

Proof. Let ξ be the Euclidean metric on M . One then has

|∇uαηα|2ξ � |∇uαηα|2g(1 + Cr2
α),

(1 − Cr2
α) dvξ � dvg � (1 + Cr2

α) dvξ,∫
M

|∇uαηα|2ξ dvξ �
∫

M

|∇uαηα|2g(1 + Cr2
α) dvg. (2.31)

Hence, we obtain

1 −
(∫

M

ur
αηr

α dvξ

)2/rθ

� C

(
1 −

∫
M

ur
αηr

α dvξ

)

� C

(∫
M

ur
α dvg −

∫
M

ur
αηr

α dvg + C

∫
M

ur
αηr

αr2
α dvg

)

� C

(∫
M

ur
α(1 − ηr

α) dvg + C

∫
M

ur
αηr

αr2
α dvg

)
.
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One easily checks that, if r > 2, 2ω < r/(r − 2). Therefore, Lemmas 2.6 and 2.7 lead to
Lemma 2.8. �

The final lemma that we need is as follows.

Lemma 2.9. There exists C > 0 independent of α such that
(∫

M

us
αηs

α dvξ

)2(1−θ)/sθ

�
(∫

M

us
αηs

α dvg

)2(1−θ)/sθ

+ CA1+2ω
α

√
α.

Proof. Multiplying (2.1) by uαr2
αηr

α/A2ω
α

√
α and integrating over M , we obtain

2A1−2ω
α√
α

∫
M

(∆guα)uαr2
αηr

α dvg + 2
√

αA1−2ω
α

∫
M

u2
αr2

αηr
α dvg

+
2(1 − θ)

θ

Bα

A2ω
α

√
α

∫
M

us
αr2

αηr
α dvg =

kα

A2ω
α

√
α

∫
M

ur
αr2

αηr
α dvg.

One has already shown in the proof of Lemma 2.6 that∫
M

(∆guα)uαr2
αηr

α dvg � C‖uα‖2−r
∞ .

Relation (2.3) and Lemma 2.7 then lead to
∫

M

us
αr2

αηr
α dvg � C

A2ω
α

√
α

Bα
� CA2ω+(sθ/2(1−θ))

α

√
α.

And since this result is also true with η = ηs/r,∫
M

us
αr2

αηs
α dvg � CA2ω+(sθ/2(1−θ))

α

√
α. (2.32)

Noting that dvξ � (1 + Cr2
α) dvg, we obtain

(∫
M

us
αηs

α dvξ

)2(1−θ)/sθ

�
(∫

M

us
αηs

α dvg + C

∫
M

us
αηs

αr2
α dvg

)2(1−θ)/sθ

�
(∫

M

us
αηs

α dvg

)2(1−θ)/sθ(
1 + C

∫
M

us
αηs

αr2
α dvg∫

M
us

αηs
α dvg

)2(1−θ)/sθ

.

Inequality (2.32) implies ∫
M

us
αηs

αr2
α dvg∫

M
us

αηs
α dvg

→ 0.

Consequently,

(∫
M

us
αηs

α dvξ

)2(1−θ)/sθ

�
(∫

M

us
αηs

α dvg

)2(1−θ)/sθ

+ C

(∫
M

us
αηs

α dvg

)(2(1−θ)/sθ)−1 ∫
M

us
αηs

αr2
α dvg.
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One deduces from (2.32) and Lemma 2.2 that

(∫
M

us
αηs

α dvξ

)2(1−θ)/sθ

�
(∫

M

us
αηs

α dvg

)2(1−θ)/sθ

+ C

(∫
M

us
α dvg

)(2(1−θ)/sθ)−1(∫
M

us
αηs

α dvg∫
M

us
α dvg

)(2(1−θ)/sθ)−1 ∫
M

us
αηs

αr2
α dvg

�
(∫

M

us
αηs

α dvg

)2(1−θ)/sθ

+ CA1+2ω
α

√
α.

This ends the proof of the lemma. �

Step 3. Conclusion.

One has, by definition of A0,

(∫
M

ur
αηr

α dvξ

)2/rθ

� A0

∫
M

|∇uαηα|2ξ dvξ

(∫
M

us
αηs

α dvξ

)2(1−θ)/sθ

and, by Lemma 2.6 and (2.31),
∫

M

|∇uαηα|2ξ dvξ �
∫

M

|∇uα|2gη2
α dvg + C‖uα‖2−r

∞ .

Hence, we obtain from Lemma 2.9 that

(∫
M

ur
αηr

α dvξ

)2/rθ

� A0

∫
M

|∇uα|2gη2
α dvg

(∫
M

us
αηs

α dvg

)2(1−θ)/sθ

+ CA4ω
α

√
α. (2.33)

The definition of uα leads to

1 =
(

1
µα

∫
M

|∇uα|2g dvg +
α

µα

∫
M

u2
α dvg

)
Aα. (2.34)

Combining (2.33) and (2.34), we obtain

1 −
(∫

M

ur
αηr

α dvg

)2/rθ

� −A0

∫
M

|∇uα|2gη2
α dvg

(∫
M

us
αηs

α dvg

)2(1−θ)/sθ

+
Aα

µα

∫
M

|∇uα|2g dvg +
αAα

µα

∫
M

u2
α dvg − CA4ω

α

√
α.

Then, noting that

Aα

∫
M

u2
α dvg � CA2ω

α
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and dividing by A2ω
α

√
α, it follows that

1 − (
∫

M
ur

αηr
α dvg)2/rθ

√
αA2ω

α

� − A0√
α

∫
M

|∇uα|2gη2
α dvg

(
∫

M
us

αηs
α dvg)2(1−θ)/sθ

A2ω
α

+
A1−2ω

α

µα
√

α

∫
M

|∇uα|2g dvg +
√

α

µα
− CA2ω

α .

Finally, since

1
µα

� A0,

(
∫

M
us

αηs
α dvg)2(1−θ)/sθ

Aα
� 1,

we find

1 − (
∫

M
ur

αηr
α dvg)2/rθ

√
αA2ω

α

� A0A
1−2ω
α√
α

∫
M

|∇uα|2g(1 − η2
α) dvg + A0

√
α − CA2ω

α .

By Lemma 2.8, the left member is bounded while the right one converges to +∞. This
ends the proof of the theorem.

3. Some applications

3.1. The best-constant problem for the logarithmic Sobolev inequality

In this subsection we prove Corollary 1.2. Fix r = 2. One then has the following inequal-
ities:
(∫

M

|u|2 dvg

)1+(2/n((2−s)/s))

�
(

A

∫
M

|∇u|2g dvg +B

∫
M

|u|2 dvg

)(∫
M

|u|s dvg

)4/n(2−s)

,

where 1 � s < 2. Let us denote them by Is(A, B). We proved in § 2 above that all these
inequalities hold with their first best constant. Set

A(s) = inf{A ∈ R s.t. ∃B ∈ R for which Is(A, B) is valid},

B(s) = inf{B ∈ R s.t. Is(A(s), B) is valid}.

It is clear that Is′(A, B) implies Is(A, B) when s′ > s. Therefore, A(s) is increasing.
According to [3], A(s) is bounded by a constant independent of s. Hence, A(s) converges
to a constant A(2) as s → 2. If s′ > s, Is(A(s′), B(s′)) holds. One can then set

A′(s) = inf{A ∈ R s.t. Is(A, B(s′)) is valid}.

Thereafter, by definition of A′(s), for all ε > 0, there exists u ∈ C∞(M) such that
‖u‖s = 1 and

A′(s)
∫

M

|∇u|2g dvg + B(s′)
∫

M

|u|2 dvg �
(∫

M

|u|2 dvg

)1+(2/(n(2−s)/s))

+ ε.
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Adding the previous inequality with Is(A(s), B(s))(u) and noting that A(s) � A′(s), we
easily obtain B(s′) − B(s) � Vg(M)(2/s)−1ε. Since ε is arbitrary, we have proved that
B(s) is decreasing and converges to a constant B(2) as s → 2. Now, taking the limit in
Is(A(s), B(s)) as s → 2, we obtain that for all u > 0 such that ‖u‖2 = 1 the logarithmic
Sobolev inequality

∫
M

u2 lnu2 dvg � 1
2n ln

(
A(2)

∫
M

|∇u|2g dvg + B(2)
)

.

Clearly, A(2) = A0(2, 2, 0, n) = (2/nπe) is optimal and the inequality is optimal in the
sense that no constant can be lowered. This proves Corollary 1.2.

3.2. Heat-kernel upper-bounds estimates

We discuss here one application of the estimates of the heat-kernel upper bounds.
When M is a complete manifold (not necessarily compact), it is well known (see, for
example, [6]) that all the previous inequalities are equivalent to

‖Pt‖1,∞ � C

tn/2 ,

where (Pt)t>0 is the heat semigroup on M . Moreover, when M is the Euclidean space
R

n, we have

‖Pt‖1,∞ =
1

(4πt)n/2 .

Hence, it is quite obvious that, on a manifold, we should have the small-time estimate

‖Pt‖1,∞ ∼ 1
(4πt)n/2 .

Corollary 1.3 gives additional information on this estimate when M is compact. In order
to prove it, we need the following theorem from Bakry (see [2] for a detailed proof in the
more general case of the Markov diffusion generators).

Theorem 3.1. Let us assume that, for all u ∈ C∞(M) such that u > 0 and ‖u‖2 = 1,
∫

M

u2 lnu2 dvg � φ

(∫
M

|∇u|2g dvg

)
,

where φ : R+ → R+ is concave, increasing and of class C1. One then has for all 1 � p <

q � ∞
‖Pt‖p,q � em,

where

t =
∫ q

p

φ′(v(s))
ds

4(s − 1)
and m =

∫ q

p

(φ(v(s)) − v(s)φ′(v(s)))
ds

s2 ,

provided we find a function v � 0 for which these two integrals are finite.
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Set

v(s) =
λs2

s − 1
− 1

2nπeB(2),

where λ � 1
8nπeB(2) is a parameter and B(2) is the constant introduced in the previous

subsection. One has

φ(x) = 1
2n ln

(
2

nπe
x + B(2)

)
.

It is an easy matter to check that

φ′(v(s)) = 1
2n

s − 1
λs2

and that

φ(v(s)) − v(s)φ′(v(s)) = 1
2n ln

(
2λs2

nπe2(s − 1)

)
+

n2πeB(2)(s − 1)
4λs2 .

Some easy computations then lead to

t =
∫ ∞

1

n

8λs2 ds =
n

8λ

and

m = 1
2n

∫ ∞

1
ln

(
2λs2

nπe2(s − 1)

)
ds

s2 +
n2πeB(2)

4λ

∫ ∞

1

s − 1
s4 ds

= 1
2n ln

(
2λ

nπe2

)
+ 1

2n

∫ ∞

1
ln

(
s2

s − 1

)
ds

s2 +
n2πeB(2)

24λ

= 1
2n ln

(
2λ

nπe2

)
+ n +

n2πeB(2)
24λ

= 1
2n ln

(
2λ

nπ

)
+

n2πeB(2)
24λ

.

Since λ = n/8t,

m = 1
2n ln

(
1

4πt

)
+ 1

3nπeB(2)t.

It follows that
‖Pt‖1,∞ � 1

(4πt)n/2 enπeB(2)t/3

with 0 < t � (πeB(2))−1. This yields Corollary 1.3.
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