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THE EFFECTIVE CONE OF MODULI SPACES OF
SHEAVES ON A SMOOTH QUADRIC SURFACE

TIM RYAN

Abstract. Let ξ be a stable Chern character on P1 × P1, and let M(ξ) be the

moduli space of Gieseker semistable sheaves on P1 × P1 with Chern character

ξ. In this paper, we provide an approach to computing the effective cone of

M(ξ). We find Brill–Noether divisors spanning extremal rays of the effective

cone using resolutions of the general elements of M(ξ) which are found using

the machinery of exceptional bundles. We use this approach to provide many

examples of extremal rays in these effective cones. In particular, we completely

compute the effective cone of the first fifteen Hilbert schemes of points on

P1 × P1.
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§1. Introduction

In this paper, we provide an approach to computing extremal rays of the

effective cone of moduli spaces of sheaves on P1 × P1. In particular, we show

that this approach succeeds in computing the entire effective cone on the

first fifteen Hilbert schemes of points.

The effective cone of a scheme is an important invariant which controls

much of the geometry of the scheme [Laz]. For Mori dream spaces, it

determines all of the birational contractions of the space [HK]. However,

in general, determining the effective cone of a scheme is a very difficult

question. There has been progress computing the effective cone for certain

moduli spaces.

Moduli spaces of sheaves (on a fixed surface) are one kind of moduli

space that has been extensively studied (e.g., [BCZ], [BHL+], [CC], [CH3],
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[DN], [Fog], [Gie], [LQ1], [Mar2], [Mar1], [MO1], [MO2], [MW], [Tak],

[Yos3]). In this setting, the geometry of the underlying variety can be used

to study the moduli space. In the past decade, Bridgeland stability has

motivated a program to compute the effective cones of these moduli spaces

by corresponding the edge of the effective cone with the collapsing wall of

Bridgeland stability. The recent advances in Bridgeland stability (e.g., [AB],

[Bri1], [Bri2], [BBMT], [BM3], [BM2], [BMS], [BMT], [CHP], [LQ2], [Mac2],

[Mac1], [MM], [MP], [MS], [Nue2], [Sch], [Tod3], [Tod2], [Tod1], [Tra], [Yos3],

[Yos4]) have helped this approach be successful in general on K3 surfaces

[BM1], Enriques surfaces [Nue1], Abelian surfaces [Yos2], and P2 [CHW].

The proof in the last case varies greatly from the proofs in the other

cases as it is a surface of negative Kodaira dimension. More generally, there

has been a lot of work on P2 (e.g., [ABCH], [BMW], [CH4], [CH1], [CH2],

[DLP], [Hui2], [Hui1], [CZ2], [CZ1], [Woo]). Although much of this work has

been extended to more rational and ruled surfaces (e.g., [Abe], [Bal], [Göt],

[Kar], [Moz], [Qin]), no general method to compute the entire effective cone

of a moduli space of sheaves on P1 × P1 has been given. This is because the

proof in [CHW] relies heavily on properties that are unique to P2.

This paper provides the general framework to potentially extend the

results of [CHW] to del Pezzo and Hirzebruch surfaces and explicitly works

out the framework on P1 × P1. Under some additional hypotheses, this

framework gives a method to compute the entire effective cone of moduli

spaces of sheaves on P1 × P1. The increased ranks of the Picard group and

the derived category in the case of P1 × P1 compared to P2 make the proofs

and results significantly harder to obtain.

These difficulties force us to add two new ingredients to the method. The

first new addition is putting the choice of an exceptional collection in the

context of the work of Rudakov et al. on coils and helices (e.g., [Rud1], [NZ],

[Gor]). Certain special properties of exceptional collections on P2 that were

used are no longer needed once the choice is put in these terms. The second

addition is providing a way to link neighboring extremal rays to show that

there are no missing extremal rays in between them. This addition is needed

as the Picard rank of the moduli spaces are now higher than two, and it

will be essential for expanding these results to other surfaces.

Let ξ be a Chern character of positive integer rank on P1 × P1. Then

there is a nonempty moduli space M(ξ) that parameterizes S-equivalence

classes of semistable sheaves (with respect to the anticanonical divisor) with

that Chern character on P1 × P1 iff ξ satisfies a set of Bogomolov type
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inequalities given by Rudakov in [Rud2]. It is an irreducible [Wal], normal

[Wal], projective variety [Mar3]. We show that these spaces are Q-factorial

[Proposition 2.14] and, furthermore, are Mori dream spaces [Theorem 2.15].

We construct effective Brill–Noether divisors of the form

DV = {U ∈M(ξ) : h1(U ⊗ V ) 6= 0}.

We create an algorithmic method to produce these divisors. Conjecturally,

this method produces a set of divisors spanning the effective cone.

Conjecture. The method laid out in this paper produces a set of

effective divisors spanning the effective cone for M(ξ) for all ξ above

Rudakov’s surface.

One reason for this conjecture is that the method computes the entire

effective cone of the first fifteen Hilbert schemes of points on P1 × P1 (which

is as many as we applied it to). In the last section of the paper, we explicitly

compute the effective cone of
(
P1 × P1

)[n]
for n6 16 as well as several

instances of types of extremal rays that show up in infinite sequences of n,

and we give a rank two example. Even if this method fails to fully compute

the effective cone of every moduli space, it does give a method to produce

effective divisors on these moduli spaces.

The proofs of the steps of the method follow from constructing birational

maps or Fano fibrations to simpler, Picard rank one, spaces and analyzing

them to find our extremal divisors. Given a birational map or Fano fibration,

giving a divisor on an edge of the effective cone follows directly. The difficult

part of the process is constructing the maps.

The moduli spaces that we map to are moduli spaces of Kronecker

modules, KrV (m, n). The way we construct the map is to find a resolution

of the general element of M(ξ) containing a Kronecker module and then to

forget the rest of the resolution. The key then is to find resolutions of the

general element of the moduli space that contain Kronecker modules. On

P1 × P1, we have a powerful tool for finding resolutions of sheaves in the

form of a generalized Beilinson spectral sequence [Gor]. Using this method

for finding a resolution makes it clear that the extremal divisors we construct

are Brill–Noether divisors as they are defined in terms of the jumping of

ranks of cohomology groups appearing in the spectral sequence. Using that

spectral sequence, finding resolutions with Kronecker modules is reduced

to finding the right collections of exceptional bundles spanning the derived

category.
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We find the elements of the right collections by studying Rudakov’s

classification of stable bundles over the hyperbola of Chern characters ζ

with the properties

χ(ζ∗, ξ) = 0 and ∆(ζ) = 1
2 .

Rudakov’s necessary and sufficient inequalities for a Chern character to be

stable each came from an exceptional bundle on P1 × P1, and the right

collections of exceptional bundles are determined by which exceptional

bundles have the sharpest inequalities over this curve. Say that (Eα, Eβ)

is an exceptional pair of bundles that have the sharpest inequalities over

that curve. Then the resolution we get for the general U ∈M(ξ) might look

like

0→ E∗α(K)m3
⊕

F ∗m2
0 → F ∗m1

−1

⊕
E∗m0
β → U → 0.

Using this resolution, we get the maps we need. There are several cases

to be dealt with. On P2, there was only two cases. The new cases are

a phenomenon that will persist on other surfaces and are not unique to

P1 × P1.

We summarize the approach in the most common case. The resolution of

the general object of the moduli space in this case looks like the example

resolution above. Then the resolution has four objects and four maps. The

map W : F ∗m2
0 → F ∗m1

−1 gives the required Kronecker module. We map to

the Kronecker moduli space corresponding to it, f :M(ξ) 99KKrV (m, n).

Constructing the Brill–Noether divisor in this case is slightly tricky because

the bundle whose corresponding divisor spans the extremal ray is not

obviously cohomologically orthogonal to the general object of the moduli

space. That orthogonality is established using properties of the Kronecker

modules in the resolution of a bundle whose corresponding divisor spans the

extremal ray and in the resolution of the general object.

1.1 Organization

In Section 2, we extensively lay out the necessary background and prove

two properties of the moduli spaces we want to study. In Section 3, we define

primary orthogonal Chern characters via controlling exceptional pairs. In

Section 4, we use the controlling pairs and a generalized Beilinson spectral

sequence to resolve the general object of our moduli space which constructs

effective divisors on our space. In Section 5, we use these resolutions to

construct maps from our moduli space to spaces of Kronecker modules that

provide the dual moving curves we need. In Section 6, we use these results
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to compute extremal rays of the effective cone of M(ξ). Finally, in Section 7,

we compute the effective cone of the Hilbert scheme of n points for n6 16,

provide some recurring examples of types of corners, and work out a rank

two example.

§2. Preliminaries

In this section, we discuss all preliminary material needed to understand

the following sections. We base our discussion of the general preliminaries

on sections in [HL] and [LP]. For the subsections more specific to P1 × P1,

we also draw on [Rud1] and [Rud2].

In this paper, all sheaves are coherent torsion-free sheaves. Other than

Proposition 2.14 and Theorem 2.15, we work exclusively on P1 × P1 and so

drop that from labels as convenient. Let E be a sheaf with Chern character

ξ = (ch0, ch1, ch2).

2.1 Slopes and the discriminant

Recall that for a locally free sheaf, we have

ch0(E) = rank(E) = r(E).

Using this equality, we define the slope and discriminant of E to be

µ(E) =
ch1(E)

ch0(E)
and ∆(E) =

1

2
µ(E)2 − ch2(E)

ch0(E)
.

The slope and discriminant are more convenient than the Chern character

for us as they have the property that

µ(E ⊗ F ) = µ(E) + µ(F ) and ∆(E ⊗ F ) = ∆(E) + ∆(F ).

We should note that these notions are easily extended to Chern characters

in K
(
P1 × P1

)
⊗ R.

On a Picard rank one variety, the slope is a generalization of the degree of

a line bundle to higher rank vector bundles. On higher Picard rank varieties,

we can think of the slope as a generalization of a multi-degree that carries

the information of the degree for every choice of embedding. Sometimes we

would like an analog to the degree with respect to a specific embedding so

we give the following definition. The slope with respect to an ample divisor

H is

µH(E) = µ(E) ·H.
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We also call this the H-Slope of E. The two ample divisors that we use

in this paper are OP1×P1(1, 1) and OP1×P1(1, 2) for which the slopes are

denoted µ1,1 and µ1,2, respectively.

We want to write the Riemann–Roch formula in terms of these invariants

so let us recall the definition of the (reduced) Hilbert polynomial.

Definition 2.1. The Hilbert polynomial of a sheaf F with respect to an

ample line bundle H is

PF (k) = χ (F(k)) =
αd
d!
kd + · · ·+ α1k + α0

where F(k) = F ⊗H⊗k, where the dimension of F is d, and where we think

of this as a polynomial in the variable k.

Definition 2.2. The reduced Hilbert polynomial of a sheaf F with

respect to an ample line bundle H is defined to be

pF (k) =
PF (k)

αd

where d is the dimension of F .

The Hilbert polynomial, unlike the individual cohomology groups it sums

over, is a numerical object that is entirely determined by the Chern character

of the sheaf and the Chern character of the ample line bundle.

When ch0(E)> 0, we can write the Riemann–Roch formula as

χ(E) = r (P (µ)−∆) ,

where P (µ) is the Hilbert polynomial of O,

P (m, n) = 1
2(m, n)2 + (1, 1) · (m, n) + 1

= mn+m+ n+ 1 = (m+ 1)(n+ 1).

2.1.1 Classical stability conditions

Using our notations of slope and the reduced Hilbert polynomial, we can

now define the different classical notions of stability that we need.

Definition 2.3. A sheaf F is slope (semi-)stable with respect to an

ample line bundle H if for all proper subsheaves F ′ ⊂F ,

µH(F ′) (6)< µH(F).
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A stronger notation of stability is the notion of Gieseker stability.

Definition 2.4. A sheaf F is Gieseker (semi-)stable with respect to an

ample divisor H if for all proper subsheaves F ′ ⊂F , pF ′ (6)< pF where

the polynomials are compared for all sufficiently large input values. We also

call this γ (semi-)stability.

The ordering on the polynomials could also have been phrased as

the lexicographic ordering on their coefficients starting from the highest

degree term’s coefficient and working down. The condition on the Hilbert

polynomial is equivalent on surfaces to requiring µH(F ′)6 µH(F) and, in

the case of equality, ∆(F ′) (>)>∆(F).

These two notations of stability and semistability are related by a string

of implications that seems slightly odd at first, but becomes clear using this

last equivalence:

slope stable→Gieseker stable→Gieseker semistable→ slope semistable.

As we are focused on P1 × P1, one additional notion of stability is relevant.

Definition 2.5. A sheaf F is γ (semi-)stable if it is Gieseker semistable

with respect to O(1, 1) and for all proper subsheaves F ′ ⊂F , if µ1,1 (F ′) =

µ1,1 (F) and ∆ (F ′) = ∆ (F), then µ1,2 (F ′) (6)< µ1,2 (F).

Again we have implications:

slope stable → Gieseker stable→ γ stable

→ γ semistable→Gieseker semistable→ slope semistable.

Because Gieseker stability generalizes to all varieties, it might seem odd

to add a third, very variety specific, condition. However, adding this third

condition allows γ stability to order all Chern characters in a way that

was not possible for slope or Gieseker stability. This order is possible with

γ stability because it has three conditions that can distinguish the three

variables for a Chern character on P1 × P1: the two coordinates of c1 and

the coordinate of c2.

2.2 Exceptional bundles

In this subsection, we start with a relative version of Euler character-

istic. We eventually see that sheaves E with relative Euler characteristic

χ(E, E) = 1 control the geometry of our moduli spaces.
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2.2.1 The relative Euler characteristic

The relative Euler characteristic of two sheaves on a variety X of

dimension n is

χ(E, F ) =
n∑
i=0

(−1)i exti(E, F )

where exti(E, F ) = dim(Exti(E, F )). For locally free sheaves, we can equiv-

alently define it by the formula

χ(E, F ) = χ(E∗ ⊗ F ) =
n∑
i=0

(−1)ihi(E∗ ⊗ F ).

Restricting to the case where n= 2, we again write out Hirzebruch–

Riemann–Roch in order to explicitly compute this as

χ(E, F ) = r(E)r(F ) (P (µ(E)− µ(F ))−∆(E)−∆(F ))

where P (x, y) = (x+ 1)(y + 1) is the Euler characteristic of OP1×P1(x, y).

Using the alternate definition of relative Euler characteristic, we define a

bilinear pairing on K
(
P1 × P1

)
by

(E, F ) = χ(E∗, F ) = χ(F ∗, E) = χ(E ⊗ F ).

Then we define the orthogonal complement of E, denoted ch(E)⊥, to be all

bundles F such that (E, F ) = 0. Note that the pairing is symmetric so the

orthogonal complement does not depend on whether E is the first or second

element in the pairing.

The Ext groups we used to define the relative Euler characteristic also

allow us to describe a set of vector bundles that control the geometry of

P1 × P1.

Definition 2.6. A sheaf E is exceptional if Hom(E, E) = C and

Exti(E, E) = 0 for all i > 0.

We say a Chern character (slope) is exceptional if there is an exceptional

sheaf with that character (slope). The prototypical exceptional sheaves are

the line bundles, O(a, b). Many of the properties of line bundles pass to

exceptional sheaves on P1 × P1. We list some of these properties without

repeating the proofs. Their proofs are in the previously mentioned paper by

Gorodentsev [Gor].
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Proposition 2.7. On P1 × P1, we have the following results.

• Every exceptional sheaf is a vector bundle.

• There exists a unique exceptional bundle, E, for each exceptional slope.

• The two coordinates of the first Chern class are coprime with the rank

of E.

• The denominator of µ1,1(E) is the rank of E.

• Exceptional bundles are stable with respect to O(1, 1).

Given these properties, it makes sense to define the rank of an exceptional

slope ν to be the smallest r ∈ Z such that rµ1,1(ν) ∈ Z. Also, set the notation

Ea
r
, b
r

for the unique exceptional bundle with slope
(
a
r ,

b
r

)
. Given a Chern

character ξ with slope α=
(
a
r ,

b
r

)
, we interchangeably write E−α = E∗α =

E−a
r
,−b
r

. Similarly, we abuse notation and write the slope and the whole

Chern character interchangeably.

We can characterize exceptional bundles among all stable bundles by

the Euler characteristic χ(E, E). For stable E, Serre duality implies

Ext2(E, E) = Hom(E, E(K)) = 0. Similarly, the stability of E implies that

Hom(E, E) = C. Then for stable E we have

χ(E, E) = 1− ext1(E, E)6 1

with equality precisely when E is exceptional. Conversely, we use

Hirzebruch–Riemann–Roch to explicitly compute

χ(E, E) = r(E)2 (1− 2∆) .

Putting these together, we see that for a stable bundle

∆(E) =
1

2

(
1− χ(E, E)

r(E)2

)
.

For exceptional bundles, this reduces to

∆(E) =
1

2

(
1− 1

r(E)2

)
.

Since χ(F, F )6 0 for all other stable bundles, we see that exceptional

bundles are the only stable bundles with ∆< 1
2 . As there is a unique

exceptional bundle for an exceptional slope and there can be no other stable

bundles with that discriminant, the moduli space of stable bundles with
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an exceptional Chern character is a single reduced point [Gor]. Giving an

explicit description of the exceptional bundles analogous to the description

of the exceptional bundles on P2 given in [CHW] and [LP] is an open

question.

2.3 Exceptional collections

Exceptional bundles naturally sit inside of collections.

Definition 2.8. A collection of exceptional bundles (E0, . . . , En) is an

exceptional collection if for all i < j, Extk(Ej , Ei) = 0 for all k and there is

at most one k such that Extk(Ei, Ej) 6= 0.

An exceptional collection is strong if k = 0 for all pairs (i, j). We say the

length an exceptional collection (E0, . . . , En) is n+ 1. An exceptional pair

is an exceptional collection of length two. A coil is a maximal exceptional

collection, which in the case of P1 × P1 is length four. Our stereotypical

(strong) coil is (O,O(1, 0),O(0, 1),O(1, 1)).

Every exceptional bundle sits inside of an exceptional collection, and

every exceptional collection can be completed to a coil [Rud2]. Given an

exceptional collection of length three (E0, E1, E2) there are exactly four

ways to complete it to a coil:

(A, E0, E1, E2), (E0, B, E1, E2), (E0, E1, C, E2), and

(E0, E1, E2, D).

In other words, once you pick where you would like the fourth bundle to

be, there is a unique way to complete the exceptional collection to a coil.

This uniqueness follows as an easy consequence of the requirement that the

fourth bundle forms an exceptional pair in the correct way with the other

three bundles. First, we require each bundle to be in an exceptional pair

which imposes an independent condition on its rank and first Chern classes

so they are determined. Then the rank and first Chern class determine its

discriminant, and the bundle is uniquely determined by its Chern classes.

Before we can state how to extend an exceptional collection of length two

to a coil, we must first explain a process that turns an exceptional collection

into different exceptional collections called mutation or reconstruction. We

first define mutation for exceptional pairs and then bootstrap this definition

into a definition for all exceptional collections. The definitions of mutation

that we use are equivalent on P1 × P1 to the general definitions [Gor].
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Definition 2.9. The left mutation of an exceptional pair (E0, E1) is

the exceptional pair L (E0, E1) = (LE0E1, E0) where LE0E1 is determined

by one of the following short exact sequences:

(regular) 0→ LE0E1→ E0 ⊗Hom(E0, E1)→ E1→ 0,

(rebound) 0→ E0 ⊗Hom(E0, E1)→ E1→ LE0E1→ 0, or

(extension) 0→ E1→ LE0E1→ E0 ⊗ Ext1(E0, E1)→ 0.

One of these sequences exists by Gorodentsev [Gor]. By rank considera-

tions only one of the previous short exact sequences is possible so the left

mutation is unique. Rebound and extension mutations are called nonregular.

Right mutation of an exceptional pair, denoted R (E0, E1) = (E1, RE1E0),

is defined similarly by tensoring the Hom or Ext with E1 rather than with

E0. Note that left and right mutation are inverse operations in the sense

that

L (R (E0, E1)) =R (L (E0, E1)) = (E0, E1) .

We can also mutate any part of an exceptional collection. In particular,

replacing any adjacent exceptional pair in an exceptional collection with

any of its left or right mutations gives another exceptional collection. For

example, given an exceptional collection (E0, E1, E2, E3),

(L(E0, E1), E2, E3) , (R(E0, E1), E2, E3) , (E0, L(E1, E2), E3)

(E0, R(E1, E2), E3) , (E0, E1, L(E2, E3)) , and

(E0, E1, R(E2, E3))

are all exceptional collections. Rudakov proved that all possible exceptional

collections can be gotten from our stereotypical collection via these pairwise

reconstructions [Rud1].

Mutating an exceptional collection is then just mutating all of the bundles

in a systematic way. We define the left(right) mutation of an exceptional

collection (E0, E1, E2, . . . , En) as(
LE0 · · · LEn−1En, . . . , LE0LE1E2, LE0E1, E0

)((
En, REnEn−1, REnREn−1En−2, . . . , REn · · ·RE1E0

))
.

For a coil (E0, E1, F0, F1) on P1 × P1, its left mutation is

(F1(K), F2(K), E−1, E0)
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and its right mutation is

(F1, F2, E−1(−K), E0(−K)).

Now, let us return to the problem of completing an exceptional pair to

a coil. Say that we could extend (E0, E1) to the coil (E0, E1, F0, F1), this

extension is not unique, even up to placement because (E0, E1, L(F0, F1))

and (E0, E1, R(F0, F1)) are also coils. To make a unique notation of

extension, we need the notion of a system.

Definition 2.10. Using mutation, each exceptional pair (E0, E1) gen-

erates a system of exceptional bundles {Ei}i∈Z where we inductively define

Ei+1 =REiEi−1 and Ei−1 = LEiEi+1.

Given an exceptional pair (E0, E1), we define the right completion system

of it to be the unique system {Fi} such that (E0, E1, Fi, Fi+1) is a coil. Left

and center completion systems are defined analogously. A left (right,center)

completion pair is any pair (Fi, Fi+1) coming from the left (right,center)

completion system. By Propositions 4.5 and 4.8 of Rudakov’s paper [Rud1],

the completion system is either a system of line bundles or has a minimally

ranked completion pair where the minimally ranked completion pair is the

pair in the system with the lowest sum of the two ranks of the bundles in

the system.

Completing an exceptional collection of length one to a coil can be reduced

to the two steps of completing it to an exceptional pair (which is highly not

unique) and then completing the pair to a coil. In this paper, we start with

pairs and provide a unique way to extend them to a coil.

Given a complex W :Aa→Bb of powers of an exceptional pair (A, B), we

extend the idea of mutation to the complex. Define LW to be the complex

LW : (LAB)a→Ab

and similarly define RW to be the complex

RW :Ba→ (RBA)b.

We also define the mutations relative to an exceptional bundle C where

{C, A, B} ({A, B, C}) is an exceptional collection as follows: if {C, A, B} is

an exceptional collection, define LCW to be the complex

LCW : (LCA)a→ (LCB)b,
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and similarly, if {A, B, C} is an exceptional collection, define RCW to be

the complex

RCW : (RCA)a→ (RCB)b.

We can now state a theorem of Gorodentsev which establishes the spectral

sequence that we need on P1 × P1.

Theorem 2.11. [Gor] Let U be a coherent sheaf on P1 × P1, and let

(E0, E1, F0, F1) be a coil. Write A= (A0, A1, A2, A3) = (E0, E1, F0, F1) and

B = (B−3, B−2, B−1, B0) = (F1(K), F2(K), E−1, E0). There is a spectral

sequence with Ep,q1 -page

Ep,q1 =Bp ⊗ Extq−∆p (A−p, U)

that converges to U in degree 0 and to 0 in all other degrees where ∆p is the

number of nonregular mutations in the string L0 . . . Lp−1Ap which mutates

Ap into B−p.

It should be clear that ∆0 = 0. Considering the spectral sequence con-

verging to different bundles of the coil allows us to deduce that ∆3 = 1 and

that the other two are either 0 or 1 [Kar, Rmk. 1.5.2]. Also, notice that B
is the left mutation of A.

2.4 Moduli spaces of sheaves

Let E be exceptional with Chern character e. Then, E imposes a

numerical condition on stable bundles with “nearby” Chern characters. To

see this condition, start with an exceptional bundle E and another stable

bundle F , we know that there are no maps from E to F if the (1, 1)-slope

of E is bigger than F ’s by F ’s stability so

hom(E, F ) = 0.

Similarly, there are no maps from F to E twisted by the canonical if the

(1, 1)-slope of F is greater than the (1, 1)-slope of E(K) so

hom(F, E(K)) = 0.

By Serre duality,

hom(F, E(K)) = ext2(E, F ) = 0.

Thus, if we have both of these conditions, we know that

χ(E, F ) =−ext1(E, F )6 0.
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This is the numeric condition that E imposes on nearby stable bundles.

Given a fixed exceptional E, we can encode this data by saying that the

Chern character of F must lie on or above a certain surface, δE , in the

(µ,∆) space. We define δE(µ) as follows.

δE(µ) =


(µ1,0(µ)− µ1,0(E) + 1)(µ1,0(µ)− µ1,0(E) + 1)−∆(E)

if µ1,1(E)− 4< µ1,1(µ)6 µ1,1(E)
(µ1,0(E)− µ1,0(µ) + 1)(µ1,0(E)− µ1,0(µ) + 1)−∆(E)

if µ1,1(E)6 µ1,1(µ)< µ1,1(E) + 4
0 otherwise.


Then F ’s Chern character lying on or above δE means that

∆(F )> δE(µ(F )).

Using these conditions, each exceptional bundle gives an inequality that

a Chern character must satisfy in order to be stable. We combine all of these

conditions into one by looking at the maximum over all of the inequalities.

Formally, let E be the set of exceptional bundles and define the δ surface by

Definition 2.12.

δ(µ) = sup
{E∈E}

δE (µ) .

Then saying that a stable Chern character, ζ, must satisfy all of the

inequalities from exceptional bundles is equivalent to

∆(F )> δ(µ(F )).

Alternatively, we say that a stable Chern character must lie on or above the

δ-surface.

Rudakov proved that lying above the δ surface was not only necessary

but also sufficient for a non-semiexceptional Chern character to be stable.

Theorem 2.13. (Main theorem, [Rud2]) Let ξ = (r, µ,∆) be a Chern

character of positive integer rank. There exists a positive dimensional moduli

space of γ-semistable sheaves Mγ (ξ) with Chern character ξ if and only

if c1(µ) · (1, 1) = rµ1,1 ∈ Z, χ= r (P (µ)−∆) ∈ Z, and ∆> δ(µ). The same

conditions are necessary and sufficient for Gieseker semistability as long as

∆> 1
2 and µ /∈ EZ.
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2.5 New basic properties

With this background, we can begin our original work on M(ξ). In the

last subsection, we listed many properties of the nonempty moduli spaces.

In this subsection, we prove that the moduli spaces are Q-factorial and are

Mori dream spaces. In fact, we prove these results for all moduli spaces of

Gieseker semistable sheaves on any del Pezzo surface, not just P1 × P1.

Proposition 2.14. Let M be the moduli space of semistable sheaves

with a fixed Chern character on a del Pezzo surface. Then M is Q-factorial.

Proof. By [Dré2], M is a geometric quotient of a smooth variety.

Applying [Hau, Thm. 4] immediately allows us to conclude that M is Q-

factorial.

The proof that these spaces are Mori dream spaces is slightly more

involved, but similar in flavor.

Theorem 2.15. Let M be the moduli space of semistable sheaves with

a fixed Chern character on a del Pezzo surface. Then M is a Mori dream

space.

Proof. The proof follows the same basic outline as the proof for moduli

spaces of sheaves on P2 [CHW]. By [BCHM], a log Fano variety is a Mori

dream space. This result reduces the theorem to showing that M is a log

Fano variety. Since the anticanonical bundle of M is nef [HL, Thm. 8.2.8 and

8.3.3] and there exists effective divisors E such that −KM − εE is ample for

all sufficiently small ε > 0, showing M is log Fano reduces to showing that

(M, εE) is a klt-pair for all effective divisors E. Showing that (M, εE) is a

klt-pair for all effective divisors E further reduces to showing that M has

canonical singularities.

We now show that M has canonical singularities. By [Dré2], M is also a

geometric quotient of a smooth variety. By [Bou], a geometric quotient of a

variety with rational singularities has rational singularities soM has rational

singularities. As a M is 1-Gorenstein [HL, Thm. 8.3.3], it has canonical

singularities [Kol, Thm. 11.1].

2.6 Additional assumptions

There are two previously mentioned properties that we would also like our

moduli spaces on P1 × P1 to have. We want the complement of the stable

locus to be codimension at least two, and we want them to have Picard

rank 3. The first assumption allows us to ignore the strictly semistable
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locus when we are working with divisors, and the second assumption lets

us use properties of the Picard group that we need. These assumptions are

justified for a few reasons. First, they hold for the Hilbert schemes of points,

which are the primary examples of such moduli spaces. Second, Yoshioka

proved that the second assumption holds for M(ξ) where one of the slope

components of ξ is an integer and ξ is above the δ surface [Yos1]. Lastly,

there are no examples of M(ξ) where ξ is above the δ surface for which

either assumption is known to fail. In fact, both assumptions are believed

to be true above the δ surface. Proving that they hold in this region is the

focus of current research.

We also assume that ξ is above the δ surface and is not a multiple of an

exceptional Chern character.

2.7 The Picard group of M(ξ)

We have a good description of the Picard group of M(ξ) if we assume

that the Picard rank is three which we just added as a standing assumption.

Linear and numerical equivalence coincide on M(ξ), so we have

NS(M(ξ)) = Pic(M(ξ))⊗ R.

As mentioned above, we work with M s(ξ) when it is convenient. M s(ξ) is a

coarse moduli space for the stable sheaves. In contrast, M(ξ) is not a coarse

moduli space, unless ξ is a primitive character, as it identifies S-equivalence

classes of (strictly semistable) sheaves.

In order to understand the classes of the divisors that span the effective

cone, we have to understand the isomorphism

ξ⊥ ∼= NS (M(ξ)) .

We construct this isomorphism by uniquely defining a line bundle on families

of sheaves for each element of ξ⊥ as done in [LP] and [CHW] for the case of

P2.

Let U/S be a flat family of semistable sheaves with Chern character ξ

where S is a smooth variety. Define the two projections p : S × P1 × P1→ S

and q : S × P1 × P1→ P1 × P1. Then consider the composition of maps

λU :K(P1 × P1)
q∗−→ K(S × P1 × P1)

·[U ]−−→K(S × P1 × P1)

−p!−−→ K(S)
det−−→ Pic(S)
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where p! =
∑

(−1)iRip∗. Colloquially, we are taking a sheaf on P1 × P1,

pulling it back along the projection to S × P1 × P1, restricting it to our

family, pushing it forward along the projection onto S, and then taking its

determinant to get a line bundle on S.

Tensoring our family U by p∗L, where L is a line bundle on S, does not

change the given moduli map f : S→M(ξ), but does change the λ map as

follows:

λU⊗p∗L(ζ) = λU (ζ)⊗ L⊗−(ξ,ζ).

Now given a class ζ ∈ ξ⊥, we want a λM map which commutes with the

moduli map in the sense that we should have

λU (ζ) = f∗λM (ζ)

for all U . This equality determines a unique line bundle λM (ζ) on M(ξ) and

gives a linear map λM : ξ⊥→NS(M(ξ)) which is an isomorphism under our

assumptions.

Caveat: We have normalized λM using −p! as in [CHW] rather than p!

as in [HL] and [LP] so that the positive rank Chern characters form the

“primary half space” that we define later this section.

2.8 A basis for the Picard group

Using this isomorphism, we want to construct a basis for the Picard

group. Following Huybrechts and Lehn [HL] and modifying it for P1 × P1,

we define three Chern characters ζ0, ζa, and ζb. Bundles with these Chern

characters are a basis for the Picard space. These Chern characters depend

on the character ξ of the moduli space. Let a be the Chern character of a

line of the first ruling and b be the Chern character of a line of the second

ruling on P1 × P1. We define our Chern characters by the equations

ζ0 = r(ξ)OP1×P1 − χ(ξ∗,OP1×P1)Op,

ζa = r(ξ)a1 − χ(ξ∗, a)Op, and

ζb = r(ξ)b1 − χ(ξ∗, b)Op

where Op is the structure sheaf of a point on P1 × P1. (Note the difference

from the analogous definition in [HL] by a sign due to our convention

for λM .)

Given that (ξ,Op) = r(ξ), it should be clear that they are all in ξ⊥. They

can also be shown to be in ξ⊥ by using Riemann–Roch given that the Chern
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characters (ch0, ch1, ch2) of ζ0, ζa, ζb are

ζ0 = (r(ξ), (0, 0),−χ(ξ)) ,

ζa = (0, (r(ξ), 0) ,−r(ξ)− c1(ξ) · (0, 1)) , and

ζb = (0, (0, r(ξ)) ,−r(ξ)− c1(ξ) · (1, 0)) .

Using the map from the previous section, define L0, La, Lb by the formulas

L0 = λM (ζ0), La = λM (ζa), and Lb = λM (ζb). They are a basis for the Picard

space. We know that for n >> 0, L0 ⊗ Lna and L0 ⊗ Lnb are ample [HL].

Now, ζa and ζb span the plane of rank zero sheaves in ξ⊥. Define the

primary half space of ξ⊥ to be the open half space of positive rank Chern

characters and the secondary half space to be the closed half space of

negative rank and rank zero Chern characters in ξ⊥. Similarly, define the

primary and secondary halves of NS(M(ξ)) as the images of these under the

isomorphism λM . Every extremal ray of the effective and nef cones sits in

one of our halves. Call an extremal ray of the effective or nef cone primary

or secondary according to which half it lies in.

We know that the ample cone of M(ξ) lies in the primary half space

because L0 lies in that half space.

2.9 Brill–Noether divisors

Now that we have constructed a basis for the Picard space, we discuss

the divisors that we construct to span the effective cone. These divisors are

examples of Brill–Noether divisors. A Brill–Noether locus in general is the

place where the rank of some cohomology group jumps.

Proposition 2.16. Suppose V ∈M(ζ) is a stable vector bundle and

is cohomologically orthogonal to the general U ∈M(ξ). Put the natural

determinantal scheme structure on the locus

DV = {U ∈M s(ξ) : h1(U ⊗ V ) 6= 0}.

(1) DV is an effective divisor.

(2) If µ1,1(U ⊗ V )>−4, then OM(ξ)(DV )∼= λM (ζ).

(3) If µ1,1(U ⊗ V )< 0, then OM(ξ)(DV )∼= λM (ζ)∗ ∼= λM (−ζ).

Proof. After replacing slope with (1, 1)-slope and −3 with −4 (the first

is the slope of KP2 while the second is the (1, 1)-slope of KP1×P1), the proof

is identical to that of [CHW, Prop. 5.4].
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Given a Brill–Noether divisor, a natural question to ask is whether it lies

in the primary or the secondary half of NS(M(ξ)). The answer is immediate

from the computation of the class of the Brill–Noether divisors.

Corollary 2.17.Keep the notation and hypotheses from Proposition 2.16.

(1) If µ1,1(U ⊗ V )>−4, then [DV ] lies in the primary half of NS(M(ξ)).

(2) If µ1,1(U ⊗ V )< 0, then [DV ] lies in the secondary half of NS(M(ξ)).

Note that since µ1,1(U ⊗ V ) cannot be between −4 and 0 there is no

contradiction in these results.

2.10 The interpolation problem

As we previously mentioned, in order to construct a Brill–Noether divisor,

it is necessary to find a sheaf V for which h1(U ⊗ V ) = 0 for the general U ∈
M(ξ) and the easiest way to do so is to find a sheaf that is cohomologically

orthogonal to U . Cohomological orthogonality implies that χ(U ⊗ V ) = 0.

The vanishing of that Euler characteristic is a strictly weaker condition.

For example, it might be the case that h0 = h1 = 1 and h2 = 0. We would

like an added condition which would make them equivalent. A bundle V is

nonspecial with respect to U if χ(U ⊗ V ) determines the cohomology groups

(i.e., they are lowest ranks allowed by the Euler characteristic). We can

rephrase cohomological orthogonality as V having χ(U ⊗ V ) = 0 and being

nonspecial with respect to U . In general, there are many such sheaves, but

those that interest us are those of “minimum slope”. Finding a sheaf like

this is a form of the interpolation problem.

The Interpolation Problem. Given invariants ξ of a vector bundle

and a polarization H of P1 × P1, find a stable vector bundle V with

minimum µH that is cohomologically orthogonal to the general element of

M(ξ).

Note, if we restrict our interest to line bundles on P1 × P1 and M(ξ) =(
P1 × P1

)[m]
, this is the classical interpolation for points lying on P1 × P1:

find the “lowest” bidegree (a, b) such that m points lie on a curve of type

(a, b).

By construction of the Brill–Noether divisors, any solution of the inter-

polation problem gives an effective Brill–Noether divisor. Our goal is to give

a method to construct Brill–Noether divisors which are sufficient to span

the effective cone in many examples. We show that they span in examples
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by providing an alternate construction of the divisors. This description

provides dual moving curves which prove that they are extremal divisors

in the effective cone.

The alternate construction starts by using the cohomological vanishing

guaranteed by these Brill–Noether divisors to resolve the general objects

of M(ξ). In general, we then use these resolutions to construct maps from

M(ξ) to Picard rank one varieties that have positive dimensional fibers. The

Brill–Noether divisors match up with the pull backs of an ample divisor on

these Picard rank one varieties. We prove the extremality of each divisor

using the dual moving curves that cover the fibers of the morphism.

2.11 Kronecker moduli spaces

The simpler varieties that we map to are moduli spaces of Kronecker

modules.

Definition 2.18. A quiver with two vertices and arrows in only

direction between them is a Kronecker quiver.

Definition 2.19. A Kronecker V -module is a representation of this

quiver and is equivalent to a linear map A⊗ V →B where V is a vector

space of dimension N and A and B are arbitrary vector spaces of dimensions

a and b, respectively.

Definition 2.20. The moduli space of semistable Kronecker V -modules

with dimension vector r = (a, b) is KrN (a, b).

The expected dimension of this space is

(edim)KrN (a, b) = 1− χ(r, r) =Nab− a2 − b2 + 1.

For Kronecker moduli spaces, we also know that they are nonempty and

of the expected dimension if their expected dimension is nonnegative [Rei].

Another fact about Kronecker moduli spaces is that they are Picard rank

one [Dré1]. We use this fact later when we create effective divisors on our

moduli spacesM(ξ) by constructing fibrations from them to these Kronecker

moduli spaces and pulling back a generator of the ample cone of KrN (a, b).

In order to do this, we need to get Kronecker modules from maps between

exceptional bundles.

2.11.1 Kronecker modules from complexes

Given a complex W :Aa→Bb where {A, B} is an exceptional pair, we

get a Kronecker Hom(A, B)-module R with dimension vector r = (a, b).
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The properties of exceptional bundles tell us that homomorphisms of the

Kronecker module are exactly the homomorphisms of W and that χ(r, r′) =

χ(W,W ′) where R′ is the Kronecker module corresponding to a complex

W ′ :Aa
′ →Bb′ . We get these complexes between exceptional bundles from

resolutions of the general objects of our moduli spaces M(ξ).

§3. Corresponding exceptional pairs

In this section, we use exceptional pairs to identify the Brill–Noether

divisors that we expect to span the effective cone by identifying possible

solutions to the interpolation problem.

Let U ∈M(ξ) be a general element. Recall that to solve the interpolation

problem we wanted to find bundles that were cohomologically orthogonal

to U and that being cohomologically orthogonal is equivalent to V having

χ(U ⊗ V ) = 0 and V being cohomologically nonspecial with respect to ξ.

Now, we are able find all cohomologically orthogonal bundles by imposing

each of these two conditions separately.

3.1 Bundles with vanishing Euler characteristic

First, we find bundles V with χ(U ⊗ V ) = 0. As we are trying to compute

the effective cone, scaling Chern characters is relatively unimportant. In

particular, we can scale a Chern character so that ch0 = 1 (unless it was 0

to start).

Definition 3.1. When a Chern character ξ has positive rank, the

orthogonal surface to ξ is

Qξ = {(µ,∆) : (1, µ,∆) lies in ξ⊥} ⊂ R3.

Using the orthogonal surface rather than the full ξ⊥ has the advantage

of working in the three dimensional (µ,∆)-space instead of in the full four

dimensional K(P1 × P1). We define the reference surface, Qξ0 , to be the

orthogonal surface to ξ0 = ch(O) = (1, (0, 0), 0).

Using Hirzebruch–Riemann–Roch to compute the equation of the orthog-

onal surface to ξ gives the formula

Qξ : P (µ(ξ) + µ)−∆(ξ) = ∆

where P (x, y) = (x+ 1)(y + 1). This equation defines a saddle surface that

is a shift of the reference surface. It has unique saddle point at the
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point (−1− x0,−1− y0) where (x0, y0) = µ(ξ). Consequently, any two such

surfaces intersect in a parabola that lies over a line in the slope plane.

Using this language, the condition that χ(U ⊗ V ) = 0 can be rephrased as

saying that V must lie on Qξ. In other words, we can restrict our search for

solutions to the interpolation problem to bundles that lie on the orthogonal

surface (to ξ).

As a side note, we can now give an alternative description of each fractal

part of the δ surface using orthogonal surfaces. Given an exceptional bundle

Eα, δE can equivalently be written as

δE(µ) =

{
QE∗(µ) if µ1,1(E)− 4< µ1,1(µ) and γ(µ)< γ(E),
QE∗(K)(µ) if µ1,1(µ)< µ1,1(E) + 4 and γ(E)< γ(µ).

Thus, every saddle subsurface of the surface δ(µ) = ∆ can be seen to be a

portion of some surface QE .

3.2 Cohomologically nonspecial bundles

Now that we have found the bundles with χ(U ⊗ V ) = 0, we would

like to impose the second condition of cohomological orthogonality, being

nonspecial. In some cases, we can find numerical conditions defining being

nonspecialty as well. Those conditions are in terms of certain exceptional

bundles that we pick out. Picking them out begins with studying Qξ again.

Note that Qξ intersects the plane ∆ = 1
2 . The exceptional bundles that we

want to pick out are those exceptional bundles that control this intersection.

Definition 3.2. A controlling exceptional bundle of ξ is an exceptional

bundle, Eα, for which there exists a slope ν for which δ(ν) = δEα(ν) and

Qξ(ν) = 1
2 .

As promised above, each controlling exceptional bundle provides a neces-

sary condition for a stable Chern character to be nonspecial with respect to

the general element of M(ξ). The condition that a controlling exceptional

bundles imposes on a Chern character is that the Chern character must be

on or above a surface corresponding to that exceptional bundle.

Definition 3.3. The corresponding surface to an exceptional bundle

Eα for ξ is defined as

Qα,ξ(ν) =

{
QE∗α(ν) if χ (E∗α, U)> 0,
QE∗α(K)(ν) if χ (E∗α, U)< 0.
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Then in some, if not all, cases, the Chern characters ν such that

Qα,ξ(ν)> 0 for all controlling bundles Eα of ξ are precisely the nonspecial

Chern characters with respect to ξ.

3.3 Potential extremal rays

The solutions to interpolation are the intersection of the orthogonal

surface and the maximum of the corresponding surfaces. Each part of

this intersection is where the orthogonal surface intersects a corresponding

surface, that is, where Qξ =Qα,ξ for a controlling exceptional Eα of ξ.

The corners of the intersection are where the orthogonal surface intersects

two different corresponding surfaces, that is, where Qξ =Qα,ξ =Qβ,ξ for

controlling exceptionals Eα and Eβ of ξ.

As α, β, and ξ are three linearly independent rational Chern characters,

Qξ ∩Qα,ξ ∩Qβ,ξ is a single point that corresponds to the intersection of

the 3 planes α⊥ ∩ β⊥ ∩ γ⊥, (α+K)⊥ ∩ β⊥ ∩ γ⊥, α⊥ ∩ (β +K)⊥ ∩ γ⊥, or

(α+K)⊥ ∩ (β +K)⊥ ∩ γ⊥. We determine which intersection it is by which

cases of Qα,ξ and Qβ,ξ we are using. We want to find the corners made in

this way in order to get effective divisors. To find those divisors, we first

define all of the possible triple intersections that might work.

Definition 3.4. The corresponding orthogonal point of a pair of con-

trolling exceptional bundles Eα and Eβ is one of the following

(1) the unique point (µ+,∆+) ∈Qξ ∩Qα,ξ ∩Qβ,ξ,
(2) β if β ∈Qξ ∩Qα,ξ, or

(3) α if α ∈Qξ ∩Qβ,ξ.

(2) and (3) can occur simultaneously, but you can treat them individually

so we say “the orthogonal point”.

Some of the corresponding orthogonal points are not actually what we

want, as they can both fail to satisfy interpolation (by being below one of

the other corresponding surfaces) or by not being extremal (as they have a

slope that is not linearly independent of other solutions). We want to pick

out the only the solutions that satisfy interpolation and are extremal among

those solutions.

Definition 3.5. A controlling pair of ξ is an exceptional pair of

controlling exceptional bundles Eα and Eβ of ξ with a corresponding

orthogonal point (µ+,∆+) that is stable.

https://doi.org/10.1017/nmj.2017.24 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.24


T. RYAN 175

We now want to turn these points back into Chern characters for

convenience.

Definition 3.6. A potential (primary) orthogonal Chern character ξ+

to ξ is defined by any character ξ+ = (r+, µ+,∆+) where r+ is sufficiently

large and divisible and (µ+,∆+) is the corresponding orthogonal point of a

controlling pair of ξ.

We call them potential because we see in the next section that we need a

few additional conditions to make sure that they actually span an extremal

ray of the effective cone. We give an approach to showing that some of the

potential primary orthogonal Chern characters span the solutions of the

interpolation problem and that the effective cone of M(ξ) is spanned by the

Brill–Noether divisors DV for many examples of M(ξ) where V are bundles

whose Chern character is an orthogonal Chern character ξ+.

The behavior of these extremal rays depends on the sign of χ(E∗α, U) and

χ(E∗β, U). Keeping the identification of NS (M(ξ))∼= ξ⊥ in mind, recall that

the primary half of the space corresponds to characters of positive rank.

(1) If χ(ξ−α, ξ)> 0 and χ(ξ−β, ξ)> 0, the ray is spanned by a positive rank

Chern character in ξ⊥ ∩ ξ⊥−α ∩ ξ⊥−β.

(2) If χ(ξ−α, ξ)< 0 and χ(ξ−β, ξ)> 0, the ray is spanned by a positive rank

Chern character in ξ⊥ ∩ (ξ−α+K)⊥ ∩ ξ⊥−β.

(3) If χ(ξ−α, ξ)< 0 and χ(ξ−β, ξ)< 0, the ray is spanned by a positive rank

Chern character in ξ⊥ ∩ (ξ−α+K)⊥ ∩ (ξ−β+K)⊥.

(4) If χ(ξ−α, ξ) = 0 or χ(ξ−β, ξ) = 0, the ray is spanned by α or β,

respectively.

§4. The Beilinson spectral sequence

In this section, we find a resolution of the general object U ∈M(ξ)

for each orthogonal Chern character via a generalized Beilinson spectral

sequence. In the next section, we use these resolutions to construct fibrations

M(ξ) 99KKrV (m, n). In the second last section, these fibrations give us

effective divisors on M(ξ).

An orthogonal Chern character already has exceptional pairs associated

to it. In order to use the spectral sequence, we have to complete each of

those exceptional pairs to a coil.

The coil we use to resolve U depends on the behavior of the extremal ray

that we exhibited in the last section.
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(1) If χ (E−α, U)> 0 and χ (E−β, U)> 0, we decompose U according to

the coil
(
F ∗0 , F

∗
−1, E−β, E−α

)
where (F0, F1) is a minimally ranked right

completion pair of (Eα, Eβ).

(2) If χ (E−α, U)6 0 and χ (E−β, U)> 0, we decompose U according to

the coil
(
E−α(K), F ∗0 , F

∗
−1, E−β

)
where (F0, F1) is a minimally ranked

right completion pair of (Eα, Eβ).

(3) If χ (E−α, U)6 0 and χ (E−β, U)6 0, we decompose U according to the

coil
(
E−β(K), E−α(K), F ∗0 , F

∗
−1

)
where (F0, F1) is a minimally ranked

right completion pair of (Eα, Eβ).

The spectral sequence only gives a resolution under some assumptions on

the controlling pairs. These are the additional conditions needed to make a

potential orthogonal Chern character span an extremal ray of the effective

cone. We call those controlling pairs that satisfy the needed conditions

extremal pairs; there is a different definition for if a controlling pair is

extremal based on the signs of some Euler characteristics so we defer the

definition to the following three subsections.

Extremal pairs pick out the exact Chern characters that correspond to

extremal effective divisors using our approach as promised in the previous

section.

Definition 4.1. A primary orthogonal Chern character is the potential

primary orthogonal Chern character associated to an extremal pair.

It is a current area of research to show the following conjecture for

extremal pairs (including those as defined analogously in the next three

subsections).

Conjecture 4.2. Every ξ above the Rudakov δ-surface has an extremal

pair and every controlling exceptional bundle of it that is in an extremal pair

is in two extremal pairs.

Proving the conjecture would show that the process laid out in this paper

computes the effective cone of M(ξ) for all ξ above the δ surface. There

are two main difficulties in proving this conjecture. First, one would need

to show that every orthogonal surface intersects the δ surface “nicely” by

which we mean that the intersection curve is strictly above the plane ∆ = 1
2 .

Note, this is equivalent to the projection of that curve into the slope plane

missing the Cantor-like set of points where the δ surface intersects the plane

∆ = 1
2 . Second, one would need to show that each controlling pair gotten

from this curve satisfies the necessary hypotheses to be extremal pairs.
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4.1 The “mixed type” spectral sequence

Assume χ (E−α, U)6 0 and χ (E−β, U)> 0. Let the right mutated coil

of
(
E−α(K), F ∗0 , F

∗
−1, E−β

)
be
(
E−β, E

∗
−1, E

∗
−2, E−α

)
. Let ∆i be as in the

spectral sequence with input these two coils.

Definition 4.3. A (mixed type) controlling pair of ξ, (Eα, Eβ), with

corresponding orthogonal slope and discriminant (µ+,∆+) is called extremal

if it satisfies the following conditions:

(1) They are within a unit in both slope coordinates.

(2) µ1,1(Eα), µ1,1(E−2), µ1,1(E−1), and µ1,1(Eβ) are all greater than

µ1,1(U)− 4.

(3) (∆2 = 1 and χ
(
E∗−2, U

)
> 0) or (∆2 = 0 and χ

(
E∗−2, U

)
6 0).

(4) (∆1 = 1 and χ
(
E∗−1, U

)
> 0) or (∆1 = 0 and χ

(
E∗−1, U

)
> 0).

(5) Hom(E−α(K), F ∗−1), Hom(E−α(K), E−β), Hom(F ∗0 , F
∗
−1), and

Hom(F ∗0 , E−β) are all globally generated.

(6) Any bundle sitting in a triangle
(
F ∗−1

)m1
⊕

Em0
−β → U →

(E−α(K)m3
⊕

(F ∗0 )m2) [1] is prioritary.

Given an extremal pair, we can resolve the general object of M(ξ).

Theorem 4.4. The general U ∈M(ξ) admits a resolution of the follow-

ing form

0→ E−α(K)m3
⊕

(F ∗0 )m2 φ→
(
F ∗−1

)m1
⊕

Em0
−β → U → 0.

Proof. Consider a bundle U defined by the sequence

0→ E−α(K)m3
⊕

(F ∗0 )m2 φ→
(
F ∗−1

)m1
⊕

Em0
−β → U → 0

where the map φ ∈Hom(E−α(K)m3
⊕

(F ∗0 )m2 ,
(
F ∗−1

)m1
⊕

Em0
−β ) is general.

The proof proceeds in 4 steps: calculate that ch(U) = ξ, show φ is

injective, confirm the expected vanishings in the spectral sequence, and

prove that U is stable.

Step 1. Calculate ch(U) = ξ. We do not know if φ is injective yet, but we

can compute the Chern character of the mapping cone of φ in the derived

category. Assuming φ is injective, this computes the Chern character of U .

This computation follows from the generalized Beilinson spectral

sequence’s convergence to U . Specifically, we have a spectral sequence with
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E1-page

E−α(K)⊗ Cm32 → F ∗0 ⊗ Cm22 → F ∗−1 ⊗ Cm12 → 0

E−α(K)⊗ Cm31 → F ∗0 ⊗ Cm21 → F ∗−1 ⊗ Cm11 → E−β ⊗ Cm01

0 → F ∗0 ⊗ Cm20 → F ∗−1 ⊗ Cm10 → E−β ⊗ Cm00

that converges in degree 0 to the sheaf U and to 0 in all other degrees.

We omitted all nonzero rows and columns. In particular, row 3 is zero by

the vanishing of h2 for all the sheaves (follows from Definition 4.3). Also

note that either the top or bottom element of each of the middle two rows

vanishes (depending on the value of ∆1 and ∆2). An easy computation

shows that

ch(U) = −(m32 −m31) ch(E−α(K)) + (m22 −m21 +m20) ch(F ∗0 )

− (m12 −m11 +m10) ch(F ∗−1) + (m00 −m01) ch(E−β).

In our situation, we see that this gives

ξ =−m−3 ch(E−α(K)) +m−2 ch(F ∗0 )−m−1 ch(F ∗−1) +m0 ch(E−β)

where the mi are defined in the obvious way.

Step 2. Show φ is injective. The sheaves Hom(E−α(K), F ∗−1),

Hom(E−α(K), E−β), Hom(F ∗0 , F
∗
−1), and Hom(F ∗0 , E−β) are all globally

generated by the controlling pair being an extremal pair. Those bundles

being globally generated immediately implies that

Hom
(
E−α(K)m3

⊕
(F ∗0 )m2 ,

(
F ∗−1

)m1
⊕

Em0
−β

)
is globally generated as well. Using a Bertini-type theorem [Hui2, Prop. 2.6]

and the fact that the virtually computed rank of U is positive, we see that

φ is injective.

Step 3. Verify U ’s spectral sequence has the correct vanishings. We know

that χ(E−α, U)6 0 and χ(E−β, U)> 0. We also know that (χ(E∗−2, U)6 0

and ∆2 = 0) or (χ(E∗−2, U)> 0 and ∆2 = 1). Analogously, we know that

(χ(E∗−1, U)6 0 and ∆1 = 0) or (χ(E∗−1, U)> 0 and ∆1 = 1).

Since we know that all of the groups other than possibly ext1 and hom

vanish, it is enough to check that

hom(E−α, U) = ext∆1(E∗−1, U) = ext∆2(E∗−2, U) = ext1(E−β, U) = 0.
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These vanishings for the specific U we have resolved follow from the

orthogonality properties of exceptional bundles and the relevant long exact

sequences. Once they vanish for a specific U , they vanish for a general U as

needed. We show these four vanishings in order.

First, hom(E−α, F
∗
−1), hom(E−α, E−β), and ext1(E−α, F

∗
0 ) all vanish

since
(
F ∗0 , F

∗
−1, E−β, E−α

)
is a coil and ext1(E−α, E−α(K)) is equal to

ext1(E−α(K), E−α(K)) which vanishes since exceptional bundles are rigid.

This gives hom(E−α, U) = 0 as desired.

For the next vanishing, we have two cases: ∆1 = 0 and ∆1 = 1. We assume

that ∆1 = 0, and the other case is similar. Assuming ∆1 = 0, we need to show

that hom(E∗−1, U) = 0. Next, ext1(E∗−1, E−α(K)), hom(E∗−1, E−β), and

ext1(E∗−1, F
∗
0 ) all vanish since

(
E−α(K), F ∗0 , E−β, E

∗
−1

)
is a coil. Then the

only remaining vanishing we need to prove is hom(E∗−1, F
∗
−1). By assumption

on ∆1, we can write 0→ F ∗−1→ Ea−β → E∗−1→ 0 where a= χ(E−β, E−1).

From this resolution, we see hom(E∗−1, F
∗
−1) ↪→ hom(E∗−1, E−β) = 0, and the

vanishing follows.

For the next vanishing, we have two cases: ∆1 = 0 and ∆1 = 1. We assume

that ∆1 = 0, and the other case is similar. Assuming ∆2 = 0, we need to

show that hom(E∗−2, U) = 0. Then, ext1(E∗−2, E−α(K)), hom(E∗−2, E−β),

and hom(E∗−2, F
∗
−1) all vanish since

(
E−α(K), F ∗−1, E−β, E

∗
−2

)
is a coil.

Then the only remaining vanishing we need to prove is ext1(E∗−2, F
∗
0 ).

By assumption on ∆2, we can write 0→ F ∗0 → Ea−β → LE∗−1
E∗−2→ 0 where

a= χ(E−β, LE∗−1
E∗−2). From this resolution we see that ext1(E∗−2, F

∗
0 )∼=

hom(E∗−2, LE∗−1
E∗−2) since hom(E∗−2, E−β) = ext1(E∗−2, E−β) = 0. Thus, we

reduce to showing that hom(E∗−2, LE∗−1
E∗−2) = 0. Again, by assumption on

∆2, we know that we can write 0→ LE∗−1
E∗−2→ (E∗−1)a→ E∗−2→ 0 from

which we can easily see hom(E∗−2, LE∗−1
E∗−2) ↪→ hom(E∗−2, E

∗
−1) = 0, and the

vanishing follows.

Finally, we show ext1(E−β, U) = 0. Then ext1(E−β, F
∗
−1), ext2(E−β,

E−α(K)), and ext2(E−β, F
∗
0 ) all vanish since (E−α(K), F ∗0 , F

∗
−1, E−β) is a

coil while ext1(E−β, E−β) = 0 since exceptional bundles are rigid. This gives

the vanishing of ext1(E−β, U).

Step 4. Prove that U is stable. Let

S ⊂Hom
(
E−α(K)m3

⊕
(F ∗0 )m2 ,

(
F ∗−1

)m1
⊕

Em0
−β

)
be the open subset of sheaf maps that are injective and have torsion-free

cokernels.
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By the argument of 5.3 of [CHW], it follows that S is nonempty.

Consider the family U/S of quotients parameterized by S. We

need to show that U is a complete family of prioritary sheaves.

Recall that a prioritary sheaf is a torsion-free sheaf U such that

Ext2(U, U(0,−1)) = 0 or Ext2(U, U(−1, 0)) = 0 or, equivalently in our case,

that Hom(U, U(−1,−2)) = 0 or Hom(U, U(−2,−1)) = 0. By Definition 4.3,

the elements of U are prioritary. Again by the general argument of

[CHW, 5.3], the family is a complete family. By [Wal, Thm. 1], the Artin

stack of prioritary sheaves with Chern character ξ is an irreducible stack

that contains the stack of semistable sheaves with Chern character ξ as a

dense open subset. It is then clear that S parameterizes the general sheaves

in M(ξ).

4.2 The “negative type” spectral sequence

Assume χ (E−α, U)6 0 and χ (E−β, U)6 0. Let the right mutated coil of(
E−β(K), E−α(K), F ∗0 , F

∗
−1

)
be
(
F ∗−1, F

∗
−2, E−γ , E−β

)
. Let ∆i be as in the

spectral sequence with input these two coils.

Definition 4.5. A (negative type) controlling pair of ξ, (Eα, Eβ), with

corresponding orthogonal slope and discriminant (µ+,∆+) is called extremal

if it satisfies the following conditions:

(1) They are within a unit in both slope coordinates.

(2) µ1,1(Eα), µ1,1(F−1), µ1,1(F−2), and µ1,1(Eβ) are all greater than

µ1,1(U)− 4.

(3) (∆2 = 0 and χ (E−γ , U)6 0) or (∆2 = 1 and χ (E−γ , U)> 0).

(4) ∆1 = 0, χ
(
F ∗−1, U

)
> 0, and χ

(
F ∗−2, U

)
> 0.

(5) Hom(E−β(K), F ∗−1),Hom(E−α(K), F ∗−1), and Hom(F ∗0 , F
∗
−1) are all

globally generated.

(6) Any bundle sitting in a triangle Fm0
−1 → U → ((F ∗0 )m1

⊕
E−α(K)m2

⊕
E−β(K)m3)[1] is prioritary.

Given an extremal pair, we can resolve the general object of M(ξ).

Theorem 4.6. The general U ∈M(ξ) admits a resolution of the follow-

ing forms

0→ E−β(K)m3
⊕

E−α(K)m2
⊕

(F ∗0 )m1 →
(
F ∗−1

)m0 → U → 0.

As the proof is similar to the proof of the previous theorem, we omit its

proof.
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4.3 The “positive type” spectral sequence

Assume χ (E−α, U)> 0 and χ (E−β, U)> 0. Let the right mutated coil

of
(
F ∗0 , F

∗
−1, E−β, E−α

)
be (E−α, E−γ , F

∗
1 (−K), F ∗0 (−K)). Let ∆i be as in

the spectral sequence with input these two coils.

Definition 4.7. A (positive type) controlling pair of ξ, (Eα, Eβ), with

corresponding orthogonal slope and discriminant (µ+,∆+) is called extremal

if it satisfies the following conditions:

(1) They are within a unit in both slope coordinates.

(2) µ1,1(Eα), µ1,1(F1(K)), µ1,1(F0(K)), and µ1,1(Eβ) are all greater than

µ1,1(U)− 4.

(3) (∆1 = 1 and χ (E−γ , U)> 0) or (∆1 = 0 and χ (E−γ , U)6 0).

(4) χ
(
F ∗−1(−K), U

)
6 0, χ (F ∗0 (−K), U)6 0, and ∆2 = 1.

(5) Hom(F ∗−0, F
∗
−1),Hom(F ∗−0, E−β), and Hom(F ∗0 , E−α) are all globally

generated.

(6) Any bundle sitting in a triangle Fm2
−1

⊕
Em1
−β
⊕

Em0
−α→ U → (F ∗0 )m3 [1]

is prioritary.

Given an extremal pair, we can resolve the general object of M(ξ).

Theorem 4.8. The general U ∈M(ξ) admits a resolution of the follow-

ing forms

0→ (F ∗0 )m3 →
(
F ∗−1

)m2
⊕

Em1
−β

⊕
Em0
−α→ U → 0.

As the proof is similar to the proof of the second previous theorem, we

omit its proof.

§5. The Kronecker fibration

In this subsection, we use the resolutions constructed in the last section

to construct a map to a moduli space of Kronecker modules. In the next

section, these maps produce effective divisors on M(ξ).

One thing that we need to know in order for this to work is that all the

homomorphisms in the derived category are morphisms of complexes. Recall

that Db(P1 × P1) is the bounded derived category of complexes of sheaves

on P1 × P1 and Kom(P1 × P1) is the category of complexes of sheaves on

P1 × P1.

Lemma 5.1. Consider a pair of two term complexes

W = E∗ ⊗ Cm3
⊕

F ∗0 ⊗ Cm2 → F ∗−1 ⊗ Cm1
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and

W ′ = E∗ ⊗ Cm
′
3

⊕
F ∗0 ⊗ Cm

′
2 → F ∗−1 ⊗ Cm

′
1

each sitting in degrees 0 and −1 where E∗, F ∗0 , and F ∗−1 are all exceptional

vector bundles. Every homomorphism W →W ′ in the derived category

Db(P1 × P1) is realized by a homomorphism of the complexes, so

HomDb(P1×P1)(W,W
′) = HomKom(P1×P1)(W,W

′).

Similarly, consider a pair of two term complexes

W = F ∗0 ⊗ Cm2 → F ∗−1 ⊗ Cm1
⊕

E∗ ⊗ Cm0

and

W ′ = F ∗0 ⊗ Cm
′
2 → F ∗−1 ⊗ Cm

′
1

⊕
E∗ ⊗ Cm

′
0

each sitting in degrees 0 and -1 where E∗, F ∗0 , and F ∗−1 are all exceptional

vector bundles. Every homomorphism W →W ′ in the derived category

Db(P1 × P1) is realized by a homomorphism of the complexes, so

HomDb(P1×P1)(W,W
′) = HomKom(P1×P1)(W,W

′).

Proof. The proof of each statement are nearly identical to that

of [CHW, Lem. 5.5] after switching P1 × P1 in place of P2 and not-

ing that Hom
(
Aa
⊕

Bb, Aa
⊕

Bb
)∼= GL(a)×GL(b)×Mb,a(Hom(A, B))

where {A, B} is an exceptional pair and where Mb,a(Hom(A, B)) is the

group of b by a matrices with entries in Hom(A, B).

Let {Eα, Eβ} be an extremal controlling pair to ξ, {F−1, F0} be the left

mutation of the minimally ranked right completion pair of {Eα, Eβ}, ξ+

the primary orthogonal Chern character associated to that exceptional pair

{Eα, Eβ}, and U ∈M(ξ) be a general element. For simplicity, for the rest

of the paper, we assume that χ(E∗β, U)> 0 and χ(E∗α, U)6 0; proving the

other cases is similar. In Section 4, we saw that U has a resolution of the

form

0→ E∗α(K)m3
⊕

F ∗m2
0 → F ∗m1

−1

⊕
E∗m0
β → U → 0.

Using the resolution, we construct dominant rational maps from M(ξ) to

different Kronecker moduli spaces.

Which Kronecker moduli space we use, as well as the behavior of the

map, depends on which, if any, of the mi are zero. At most two of the mi
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are zero because ξ is not the Chern class of Ef for any exceptional E. We

break up the cases by the number of mi which are zero.

If no mi is zero, we construct a dominant rational map from M(ξ) to

KrN (m2, m1) where N = hom(F ∗0 , F
∗
−1).

If exactly one mi is zero, then we could construct a dominant rational

map to a certain Kronecker moduli space, but that space would always be

a single point as one part of the dimension vector would be 0. The constant

map tells us nothing about our space, so we do not construct it here.

If mi0 and mi1 are zero, we construct a dominant rational map from

M(ξ) to KrN (mj1 , mj0) where N is the dimension of the appropriate

group of homomorphisms and {i0, i1, j0, j1} is some permutation of the set

{0, 1, 2, 3, } and j1 < j0.

5.1 The case when two powers vanish

First note that the cases m3 =m2 = 0 and m1 =m0 = 0 cannot occur

due to the form of the spectral sequence. This leaves four cases where two

exponents vanish to deal with. The proof of the proposition is identical in

each case after you replace the two bundles with nonzero exponents so we

only explicitly prove the proposition in the first case.

5.1.1 When the second and third powers vanish

For this subsubsection, assume that m2 = 0 and m1 = 0 in the resolution

0→ E∗α(K)m3
⊕

F ∗m2
0

φ→ F ∗m1
−1

⊕
E∗m0
β → U → 0.

We see that U determines a complex of the form

W : E∗α(K)m3 → E∗m0
β

which in turn determines a Kronecker Hom(E∗α(K), E∗β)-module.

Conversely, given a general such module and its determined complex, W ′,

there exists an element U ′ ∈M(ξ) such that W ′ is the associated complex

of U ′ by Theorem 4.4. Assuming that the Kronecker module associated to

a general W is semistable, this constructs a rational map

π :M(ξ) 99KKrN (m3, m0)

where N = hom(E∗α(K), E∗β). In order to show that the Kronecker module

associated to a general W is semistable, it suffices by Section 2.11 to show

that KrN (m3, m0) is positive dimensional.
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Proposition 5.2. With the above notation, KrN (m3, m0) is positive

dimensional, and the dominant rational map

π :M(ξ) 99KKrN (m3, m0)

is a birational map.

Proof. By construction, the primary orthogonal Chern characters to ξ

are all semistable so ξ+ is semistable. By assumption, the general U ∈M(ξ)

has the resolution

0→ E∗α(K)m3 → E∗m0
β → U → 0.

A general map in a complex of the form

W : E∗α(K)m3 → E∗m0
β

is injective and has a semistable cokernel with Chern character ξ by

Theorem 4.4. We also know that any isomorphism of two general elements

of M(ξ) is induced by an isomorphism of their resolutions.

Recall from earlier in the section that W corresponds to a Kronecker

hom(E∗α(K), E∗β)-module e with dimension vector (m3, m0). Then we com-

pute that

dim(M(ξ)) = 1− χ(U, U) = 1− χ(e, e) = (edim)KrN (m3, m0).

As dim(M(ξ))> 0, we have that (edim)KrN (m3, m0)> 0. By the properties

of Kronecker moduli spaces, KrN (m3, m0) is positive dimensional. Thus,

the general such module is stable. As isomorphism of complexes corresponds

exactly with isomorphism of Kronecker modules, we obtain a birational map

π :M(ξ) 99KKrN (m3, m0).

5.2 When all of the powers are nonzero

For this subsection, assume that mi 6= 0 for all i in the resolution

0→ E∗α(K)m3
⊕

F ∗m2
0

φ→ F ∗m1
−1

⊕
E∗m0
β → U → 0.

Forgetting most of the information of the resolution, U determines a complex

of the form

W : F ∗m2
0 → F ∗m1

−1

which in turn determines a Kronecker Hom(F ∗0 , F
∗
−1)-module.
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Conversely, given a general such module and its determined complex, W ′,

there exists an element U ′ ∈M(ξ) such that W ′ is the associated complex of

U ′ by Theorem 4.4. Assuming that there is a semistable Kronecker module

associated to a general W , this constructs a rational map

π :M(ξ) 99KKrN (m2, m1)

where N = hom(F ∗0 , F
∗
−1). In order to verify that we get Kronecker modules,

we have to prove a result about the map E∗m0
β → U and U → E∗m3

α (K)[1]

being canonical. To show that the general associated Kronecker module

is semistable, we again have to show that the Kronecker moduli space is

nonempty. We now show that the map E∗m0
β → U is canonical.

Proposition 5.3. With the notation of this subsection, let U ∈M(ξ)

be general. Let W ′ ∈Db(P1 × P1) be the mapping cone of the canonical

evaluation map

E∗β ⊗Hom(E∗β, U)→ U,

so that there is a distinguished triangle

E∗β ⊗Hom(E∗β, U)→ U →W ′→ ·.

Then W ′ is isomorphic to a complex of the form

(E∗α(K)⊗ Cm3)
⊕

(F ∗0 ⊗ Cm2)→
(
F ∗−1 ⊗ Cm1

)
sitting in degrees −1 and 0.

Furthermore, W ′ is also isomorphic to the complex

(E∗α(K)⊗ Cm3)
⊕

(F ∗0 ⊗ Cm2)→
(
F ∗−1 ⊗ Cm1

)
appearing in the Beilinson spectral sequence for U .

Proof. It is easy to show that if

0→A→B ⊕ C→D→ 0

is an exact sequence of sheaves, then the mapping cone of C→D is

isomorphic to the complex A→B sitting in degrees −1 and 0.

Suppose we have a resolution

0→ E∗α(K)m3
⊕

F ∗m2
0

φ→ F ∗m1
−1

⊕
E∗m0
β → U → 0
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of a general U as in Theorem 4.4. We have m0 = hom(E∗β, U). Then

since U is semistable, the map E∗m0
β → U can be identified with the

canonical evaluation E∗β ⊗Hom(E∗β, U)→ U . Thus, the mapping cone of

this evaluation is the complex given by the first component of φ. By

Lemma 5.1, any two complexes of the form E∗α(K)m3
⊕

F ∗m2
0 → Fm1

−1

which are isomorphic in the derived category are in the same orbit of the

GL(m3)×GL(m2)×Mm2,m3(Hom(E∗α(K), F ∗0 ))×GL(m1) action.

Finally, we show that W ′ is isomorphic to the complex which appears in

the Beilinson spectral sequence for U . For simplicity, we assume we are in the

case ∆1 = ∆2 = 1. We recall how to compute the Ep,q1 -page of the spectral

sequence. Let pi :
(
P1 × P1

)
×
(
P1 × P1

)
→ P1 × P1 be the projections, and

let ∆⊂
(
P1 × P1

)
×
(
P1 × P1

)
be the diagonal. There is a resolution of the

diagonal

0→ E∗α(K)� Eα
⊕

F ∗0 � E0→ F ∗−1 � E1→ E∗β � Eβ →O∆→ 0.

We split the resolution of the diagonal into two short exact sequences

0 → E∗α(K)� Eα
⊕

F ∗0 � E0→ F ∗−1 � E1→M → 0 and

0 → M → E∗β � Eβ →O∆→ 0.

Tensoring with p∗2(U) and applying Rp1∗, we get triangles

ΦE∗α(K)�Eα(U)
⊕

ΦF ∗0�E0(U) → ΦF ∗−1�E1(U)→ ΦM (U)→ · and

ΦM (U) → ΦE∗β�Eβ
(U)→ ΦO∆

(U)→ ·,

where ΦF :Db(P1 × P1)→Db(P1 × P1) is the Fourier–Mukai transform with

kernel F . Computing these transforms using Proposition 4.4, we obtain two

different complexes

E∗α(K)⊗H1(Eα ⊗ U)
⊕

F ∗0 ⊗H0(E0 ⊗ U)

→ F ∗−1 ⊗H0(E1 ⊗ U)→ ΦM (U)[1]→ ·

and ΦM (U)→ E∗β ⊗Hom(E∗β, U)→ U → ·

involving ΦM (U); notice that the map E∗β ⊗Hom(E∗β, U)→ U is the canon-

ical one since the map

E∗β � Eβ →O∆

is the trace map. Therefore, ΦM (U)[1] is isomorphic to W by the second

triangle. On the other hand, ΦM (U)[1] is also isomorphic to the complex in

the Beilinson spectral sequence by the first triangle.
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We now turn to showing that the map U → E∗α(K)m0 [1] is canonical in

order to show that the general W is associated to a Kronecker module.

Proposition 5.4. With the notation of this subsection, let U ∈M(ξ)

be general. Let W ′ ∈Db(P1 × P1) be the mapping cone of the canonical

evaluation map

U → E∗α(K)[1]⊗Hom(U, E∗α(K)[1]),

so that there is a distinguished triangle

U → E∗α(K)[1]⊗Hom(U, E∗α(K)[1])→W ′→ ·.

Then W ′ is isomorphic to a complex of the form

(F ∗0 ⊗ Cm2)→
(
F ∗−1 ⊗ Cm1

)⊕ (
E∗β ⊗ Cm0

)
sitting in degrees −2 and −1.

Furthermore, W ′ is also isomorphic to the complex (F ∗0 ⊗ Cm2)→(
F ∗−1 ⊗ Cm1

)⊕ (
E∗β ⊗ Cm0

)
appearing in the Beilinson spectral sequence

for U .

Proof. It is easy to show that if

0→A⊕B→ C→D→ 0

is an exact sequence of sheaves, then the mapping cone of D→A[1] is

isomorphic to the complex B→ C sitting in degrees −2 and −1. Suppose

we have a resolution

0→ E∗α(K)m3
⊕

F ∗m2
0

φ→ F ∗m1
−1

⊕
E∗m0
β → U → 0

of a general U as in Theorem 4.4. We have m3 = hom(U, E∗α(K)[1]). Then

since U is semistable, the map U → E∗α(K)m3 [1] can be identified with

the canonical co-evaluation U → E∗α(K)[1]⊗Hom(U, E∗α(K)[1]). Thus, the

mapping cone of this co-evaluation is the complex given by the second

component of φ. By Lemma 5.1, any two complexes of the form F ∗m2
0 →

Fm1
−1

⊕
E∗m0
β which are isomorphic in the derived category are in the

same orbit of the GL(m2)×GL(m1)×GL(m0)×Mm0,m1(Hom(F ∗−1, E
∗
β))

action.

Finally, we show that W ′ is isomorphic to the complex which appears in

the Beilinson spectral sequence for U . For simplicity, we assume we are in
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the case ∆1 = ∆2 = 0. Recall how to compute the Ep,q1 -page of the spectral

sequence. Let pi :
(
P1 × P1

)
×
(
P1 × P1

)
→ P1 × P1 be the projections, and

let ∆⊂
(
P1 × P1

)
×
(
P1 × P1

)
be the diagonal. There is a resolution of the

diagonal

0→ E∗α(K)� Eα→ F ∗0 � E0→ F ∗−1 � E1

⊕
E∗β � Eβ →O∆→ 0.

We split the resolution of the diagonal into two short exact sequences

0 → F ∗0 � E0→ F ∗−1 � E1

⊕
E∗β � Eβ →M → 0 and

0 → M →O∆→ (E∗α(K)� Eα) [1].

Tensoring with p∗2(U) and applying Rp1∗, we get triangles

ΦF ∗0�E0(U) → ΦF ∗−1�E1(U)
⊕

ΦE∗β�Eβ
(U)→ ΦM (U)→ · and

ΦM (U) → ΦO∆
(U)→ Φ(E∗α(K)�Eα)[1](U)→ ·,

where ΦF :Db(P1 × P1)→Db(P1 × P1) is the Fourier–Mukai transform with

kernel F . Computing these transforms using Theorem 4.4, we obtain two

different complexes

F ∗0 ⊗H1(E0 ⊗ U) → F ∗−1 ⊗H1(E1 ⊗ U)
⊕

E∗β ⊗Hom(E∗β, U)

→ ΦM (U)→ ·

and ΦM (U) → U → E∗α(K)⊗Hom(U, E∗α(K)[1])→ ·

involving ΦM (U); notice that the map U → E∗α(K)[1]⊗Hom(U, E∗α(K)[1])

is the canonical one since the map

O∆→ (E∗α(K)� Eα)[1]

is the cotrace map. Therefore, ΦM (U) is isomorphic to W ′ by the second

triangle. On the other hand, ΦM (U) is also isomorphic to the complex in

the Beilinson spectral sequence by the first triangle.

We now use that these maps are canonical to establish that each

resolution is associated to a Kronecker module.

Proposition 5.5. Let U ∈M(ξ) be a general object with the resolution

0→ E∗α(K)m3
⊕

F ∗m2
0 → F ∗m1

−1

⊕
E∗m0
β → U → 0

with subcomplex

W : F ∗m2
0 → F ∗m1

−1 .

Then W is the complex appearing in the spectral sequence.
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Proof. Let W ′ : F ∗m2
0 → F ∗m1

−1 be the complex appearing in U ’ spectral

sequence. By a Bertini-like statement [Hui2], W ′ is either surjective or

injective.

Assume that it is injective. This means that the E2 page of the spectral

sequence is
E∗α(K)m3 0 0 0

0 0 K 0
0 0 0 E∗m0

β

where K = coker(W ′). In turn this gives that, in the resolution coming

from the spectral sequence, the map from F ∗m2
0 to E∗m0

β is zero. Then,

by Proposition 5.4, we have two short exact sequences

0 → F ∗m2
0

φ→ F ∗m1
−1

⊕
E∗m0
β → L→ 0 and

0 → F ∗m2
0

ψ→ F ∗m1
−1

⊕
E∗m0
β → L→ 0

where W and W ′ are subcomplexes of the respective sequences and the

second component of ψ is zero. The identity map on L induces an

isomorphism of its resolutions, which implies that the first component of φ is

a scalar multiple of the first component of ψ. This then gives an isomorphism

between W and W ′ given by dividing by that scalar multiple in the degree

−1 and the identity in degree 0. Thus, W is the complex in the spectral

sequence converging to U .

The case of surjectivity is similar but uses Proposition 5.3.

We now finish the construction of the map M(ξ) 99KKrN (m2, m1).

Proposition 5.6. With the above notation, KrN (m2, m1) is nonempty

and there is a dominant rational map

π :M(ξ) 99KKrN (m2, m1).

Proof. By construction, we know that the primary orthogonal Chern

characters to ξ are all semistable so ξ+ is semistable. Let V ∈M(ξ+) be

general. Then, by Theorem 4.4, V has the resolution

0→ En1
1 → V → En2

0 → 0

or one of the equivalent resolutions which have the same Kronecker module

structure. Similarly, the general U ∈M(ξ) has the resolution

E∗m0
β → U →

(
E∗α(K)m3

⊕
W
)

[1]
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where W is the complex

F ∗m2
0 → F ∗m1

−1 .

As the point (µ+,∆+) lies on the surface Qξ, we have that χ(V ∗, U) = 0.

By design, the resolution of V immediately forces χ(V ∗, E∗β) = 0 and

χ(V ∗, E∗α(K)) = 0 because of the orthogonality properties of the coil

{E∗α(K), E∗β, E
∗
1 , E

∗
0}. Then vanishings of χ(V ∗, U), χ(V ∗, E∗β), and

χ(V ∗, E∗α(K)) force χ(V ∗, W ) = 0. Since χ(V ∗, W ) = 0 and χ(E∗β, W ) = 0,

we have that χ(LE∗βV
∗, W ) = 0. Shifting only shifts the indices so we have

χ(LE∗βV
∗[1], W ) = 0 as well. In the derived category LE∗βV

∗[1] is isomorphic

to the complex

F ∗n1
0 → F ∗n2

−1

sitting in degrees −1 and 0. Thus, LE∗βV
∗[1] and W both correspond to

Kronecker Hom(F ∗0 , F
∗
1 )-modules. Call them e and f respectively.

Then χ(LE∗βV
∗[1], W ) = 0 tells us that χ(e, f) = 0 which implies that

dim f if a right-orthogonal dimension vector to dim e. Since M(V )

is nonempty, Proposition 5.2 shows that KrN (n1, n2) is nonempty. If

KrN (n1, n2) is positive or 0 dimensional, the discussion at the end of [CHW,

Section 6.1] shows that KrN (m2, m1) is as well. Thus, KrN (m2, m1) is

nonempty as promised.

§6. Primary extremal rays of the effective cone

In this section, we use the maps from M(ξ) to Kronecker moduli spaces

that we constructed in the previous section to give an alternate description

of effective Brill–Noether divisors and to show that they are extremal. Let ξ+

be a primary orthogonal Chern character to M(ξ) with V ∈M(ξ+) general.

The way in which we can express the Brill–Noether divisor DV depends

greatly on the dimension of the Kronecker moduli space, K, that we map

to (as dictated by the previous section).

If dim(K) = 0 (or a single mi is zero so we did not construct a fibration),

then the Kronecker fibration is a map to a point so it does not give us any

information so we do not use it at all. In this case, V is an exceptional

bundle. This divisor consists exactly of those elements in M(ξ) without the

specified resolution, and the dual moving curve(s) are found by varying the

maps in the resolution.

If dim(K)> 0, then the Kronecker fibration is far more interesting. In

this case, ξ+ may or may not be exceptional and the Brill–Noether divisor

DV is the indeterminacy or exceptional locus of the map from M(ξ) to the
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Kronecker moduli space. Either this map is birational, in which case the

moving curve is gotten by varying the Kronecker module, or the map has

positive dimensional fibers, in which case the moving curve(s) are gotten by

varying the other maps in the resolution to cover the fibers of the map. If

certain numeric inequalities hold, there are two dual moving curves covering

the (positive dimensional) fibers of the map which implies that DV is the

pullback of a generator of the ample cone of the Kronecker moduli space;

in the case, the Brill–Noether divisor DV is also inside the movable cone.

Let {Eα, Eβ} be an associated extremal pair to ξ with orthogonal Chern

character ζ, {F−1, F0} be the left mutation of the minimally ranked right

completion pair of {Eα, Eβ}, U ∈M(ξ) be a general element, and K be the

Kronecker moduli space containing the Kronecker module appearing in the

resolution of U .

6.1 The zero dimensional Kronecker moduli space case

Theorem 6.1. Let ξ+ be a primary orthogonal Chern character to

{α, β} for the Chern character ξ with dim(K) = 0 and let V ∈M(ξ+) be

the element. Then the Brill–Noether divisor

DV = {U ′ ∈M(ξ) : h1(U ′ ⊗ V ) 6= 0}

is on an edge of the effective cone of M(ξ). Using the isomorphism

NS (M(ξ))∼= ξ⊥, DV corresponds to ξ+.

Proof. The general element U ∈M(ξ) fits into the short exact sequence

0→ E∗α(K)m3
⊕

F ∗m2
0 → F ∗m1

−1

⊕(
E∗β
)m0 → U → 0.

In order to show that DV is an effective Brill–Noether divisor, we have to

show that V is cohomologically orthogonal to U . This means showing that

U ⊗ V = Hom(U∗, V ) has no cohomology. How we show this orthogonality

depends upon which if any of the mi vanish. Note that dim(K) = 0 implies

that at most one of the mi is zero because if two are zero then dim(K) =

dim(M(ξ)).

Assume that none of the mi are zero. Then the general element, U ∈
M(ξ), fits into the triangle(

E∗β
)m0 → U → E∗α(K)m3 [1]

⊕
W

where W is the complex (F ∗0 )m2 →
(
F ∗−1

)m1 sitting in degrees -1 and 0.

Similarly, the general element, V ∈M(ξ+), fits into the triangle

En2
1 → V → En1

0 .
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By choice of resolving exceptional bundles, Hom(E∗β,V ) and Hom(E∗α(K),V )

have no cohomology. Thus, to construct the divisor it suffices to show that

Hom(W ∗, V ) has no cohomology. As Hom(W ∗, Eβ) has no cohomology, this

is equivalent to Hom(W ∗, RβV ) having no cohomology. We reduce further to

showing that Hom(W ∗, RβV [1]) has no cohomology as shifting merely shifts

the cohomology. Then if f and e are the Kronecker modules corresponding

to W ∗ and RβV [1], respectively, the vanishing of these cohomologies is

equivalent to the vanishing of the Hom(f, e), but that vanishing follows

directly from [CHW, Thm. 6.1]. Thus, we have the orthogonality that we

needed.

If one of the mi is zero (in which case we have not constructed a Kronecker

fibration explicitly), then V is one of the exceptional bundles Eβ, E1, E0, or

Eα. Then V is cohomologically orthogonal to all three bundles that appear

in the resolution of U so it is automatically cohomologically orthogonal.

Thus, we have shown the cohomological orthogonality in either case.

The class of DV and the fact that it is effective is computed using

Proposition 2.16.

To show it lies on an edge, we construct a moving curve by varying a map

in the resolution.

If m3 6= 0 and m0 6= 0, fix every map except E∗α(K)m3 →
(
E∗β

)m0

, let

S = P Hom
(
E∗α(K)m3 ,

(
E∗β
)m0
)
,

and let U/S be the universal cokernel sheaf (of the fixed map plus the

varying part).

If m3 = 0, fix every map except F ∗m2
0 →

(
E∗β

)m0

, let

S = P Hom
(
F ∗m2

0 ,
(
E∗β
)m0
)
,

and let U/S be the universal cokernel sheaf (of the fixed map plus the

varying part).

If m0 = 0, fix every map except E∗α(K)m3 → (F ∗0 )m1 , let

S = P Hom (E∗α(K)m3 , (F ∗0 )m1) ,

and let U/S be the universal cokernel sheaf (of the fixed map plus the

varying part).

In any case, we have our U and our S. Because M(ξ) is positive

dimensional and the general sheaf in it has a resolution of this form, S
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is nonempty. Then U is a complete family of prioritary sheaves whose fixed

Chern character lies above the δ surface. Define the open set S′ ⊂ S by

S′ := {s ∈ S : Us is stable}.

Thus, by assumption, the complement of S′ has codimension at least 2 which

allows us to find a complete curve in S′ containing the point corresponding

to U for the general element U ∈M(ξ). Notice that this is a moving curve

by the codimension statement. Any curve in S′ is disjoint from DV which

makes the curve dual to it.

This curve makes DV be on an edge. As the resolution only provides one

moving curve, this resolution only shows that it lies on an edge of the cone,

not that it is an extremal ray.

6.2 The positive dimensional Kronecker moduli space case

Theorem 6.2. Let ξ+ be a primary orthogonal Chern character to

{α, β} for the Chern character ξ with dim(K)> 0 and V ∈M(ξ+) be a

general element. Then the Brill–Noether divisor

DV = {U ′ ∈M(ξ) : h1(U ′ ⊗ V ) 6= 0}

lies on the edge of the effective cone of M(ξ). Using the isomorphism

NS (M(ξ))∼= ξ⊥, DV corresponds to ξ+.

Proof. Recall that we have a dominant rational map π :M(ξ) 99KK.

There are two possibilities; either π is a birational map or π has positive

dimensional fibers.

Birational case In this case, either zero or two of the mi can vanish. If zero

vanish, we show that V is cohomologically orthogonal to U by the same

arguments as the previous theorem. If two vanish, then V is again one of

the exceptional bundles so orthogonality is immediate. The class of DV and

the fact that it is effective is computed using Proposition 2.16, and DV is

the exceptional locus of π. Using that fact, we get a dual moving curve to

DV by varying the Kronecker module. Formally, because K is Picard rank

one, there is a moving curve C. Then [π∗(C)] is a moving curve which is

dual to the exceptional locus of π (i.e., dual to DV ). Thus, DV is on the

edge of the effective cone.

Positive dimensional fiber case In this case, none of the mi is zero.

We first show cohomological orthogonality. This means showing that

U ⊗ V = Hom(U∗, V ) has no cohomology. In this case, the general element,
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U ∈M(ξ), fits into the triangle(
E∗β
)m0 → U → E∗α(K)m3 [1]

⊕
W

where W is the complex (F ∗0 )m2 →
(
F ∗−1

)m1 sitting in degrees -1 and 0.

Similarly, the general element, V ∈M(ξ+), fits into the triangle

En2
1 → V → En1

0 .

By choice of resolving exceptional bundles, Hom(E∗β,V ) and Hom(E∗α(K),V )

have no cohomology. Thus, to construct the divisor it suffices to show that

Hom(W ∗, V ) has no cohomology. As Hom(W ∗, Eβ) has no cohomology, we

have that this is equivalent to Hom(W ∗, RβV ) having no cohomology. We

reduce further to showing that Hom(W ∗, RβV [1]) has no cohomology as

shifting merely shifts the cohomology. Then if f and e are the Kronecker

modules corresponding to W ∗ and RβV [1], respectively, the vanishing of

these cohomologies is equivalent to the vanishing of the Hom(f, e), but that

vanishing follows directly from [CHW, Thm. 6.1]

We have now established the cohomological orthogonality. The class of

DV and the fact that it gives an effective divisor are computed using

Proposition 2.16.

As the general U has the given resolution, the fibers of map to K are

covered by varying the other maps of the resolution as we did in the last

proof. As these moving curves sit inside fibers, they are dual to DV since V

is dual to the Kronecker modules in K.

If we can vary two different maps in the resolution other than the

Kronecker module independently, than DV has the same class as the

pullback of an ample divisor of K. This immediately implies that DV is

in the moving cone. We can vary two maps independently if the no mi is

zero and no subcomplex of the resolution has enough dimensions to account

for all of the dimensions of our moduli space.

These theorems together give an effective divisor on M(ξ). These con-

jecturally might give a spanning set of effective divisors for the effective

cone of M(ξ), but even if this method does not do that, it gives a way to

construct effective divisors on many of these moduli spaces. In addition, this

same method works to give secondary extremal rays when the rank of the

moduli space is at least three (for rank less than three all secondary rays

have special meaning).
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In the case that no power in the resolution vanishes, this effective divisor

immediately spans an extremal ray if hom(E∗α(K)m0 , K)−m2
0 < dim(M(ξ))

and hom(E∗α(K)m0 , E∗m3
β )−m2

0 −m2
3 < dim(M(ξ)). Otherwise, this divisor

is known to span an extremal ray as long as both controlling exceptional

bundles are part of another extremal pair.

§7. Examples

The method of the previous section constructs Brill–Noether divisors on

the faces of the effective cone for moduli spaces of sheaves on P1 × P1. In

this section, we work out a series of examples showing the usefulness of

our theorems. We work out the effective cones of the first fifteen Hilbert

schemes of points as well as some series of extremal rays that occur for

infinitely many Hilbert schemes of points on P1 × P1. Lastly, we provide an

extremal edge for the effective cone of a moduli space of rank two sheaves

with nonsymmetric slope so that we see the theorems are useful in that

setting as well.

7.1 The effective cones of Hilbert schemes of at most sixteen

points

The most classical example of a moduli space of sheaves on P1 × P1 is

Hilbert scheme of n points on it. For these Hilbert schemes, the Picard

group has a classical basis, {B, H1, H2}. Each element of this basis has an

extremely geometric interpretation. B is the locus of nonreduced schemes

or equivalently the schemes supported on n− 1 or fewer closed points. H1

is the schemes whose support intersects a fixed line of type (1, 0). Similarly,

H2 is the schemes whose support intersects a fixed line of type (0, 1).

Using this basis, every ray in the Néron–Severi space is spanned by a ray

of the form B, aH1 + bH2 +B, aH1 + bH2, or iH1 + jH2 −B/2. Then we

fix the notation for the last two types of ray as

Ya,b = aH1 + bH2 and

Xi,j = iH1 + jH2 − 1
2B.

Using this notation, we list the extremal rays of the effective cones of(
P1 × P1

)[n]
for n6 16, explicitly work out the case of n= 7, prove that

some sequences of rays are extremal for varying n, and then finally explicitly

work out each remaining extremal ray for n6 16. These are all new results

except for the cases of n6 5.
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n Extremal Rays

2 B, X1,0, and X0,1

3 B, X2,0, and X0,2

4 B, X3,0, X1,1, and X0,3

5 B, X4,0, X 4
3
, 4
3
, and X0,4

6 B, X5,0, X2,1, X1,2, and X0,5

7 B, X6,0, X 12
5
, 6
5
, X2, 3

2
, X 3

2
,2, X 6

5
, 12

5
, and X0,6

8 B, X7,0, X3,1, X1,3, and X0,7

9 B, X8,0, X 24
7
, 8
7
, X2,2, X 8

7
, 24

7
, and X0,8

10 B, X9,0, X4,1, X 5
2
,2, X2, 5

2
, X1,4, and X0,9

11 B, X10,0, X 40
9
, 10

9
, X4, 4

3
, X 12

5
, 12

5
, X 4

3
,4, X 10

9
, 40

9
, and X0,10

12 B, X11,0, X5,1, X3,2, X2,3, X1,5, and X0,11

13 B, X12,0, X 60
11
, 12
11

, X 9
2
, 3
2
, X 7

2
,2, X 8

3
, 8
3
, X2, 7

2
, X 3

2
, 9
2
, X 12

11
, 60
11

, and X0,12

14 B, X13,0, X6,1, X 10
3
, 7
3
, X 7

3
, 10

3
, X1,6, and X0,13

15 B, X14,0, X 84
13
, 14
13

, X4,2, X2,4, X 14
13
, 84
13

, and X0,14

16 B, X15,0, X7,1, X 9
2
,2, X3,3, X2, 9

2
, X1,7, and X0,15

7.2 The effective cone of the Hilbert scheme of 7 points

It is worth showing how the theorem is applied in one of these cases to

compute the effective cone. Recall that the general strategy to compute an

effective cone has two steps. First, provide effective divisors. Second, provide

moving curves which are dual to the effective divisors.

We use our main theorem to do this for the primary extremal rays of the

effective cone; we have to deal with the secondary extremal rays separately.

There is a single secondary extremal ray which is spanned by B. B is clearly

an effective divisor as it is the locus of nonreduced schemes. In order to show

that B spans an extremal ray, we just have to construct two distinct dual

moving curves.

We now construct these moving curves, C1 and C2. We construct C1 by

fixing 6 general points and then varying a seventh point along a curve of

type (1, 0). Similarly, we construct C2 by fixing 6 general points and then

varying a seventh point along a curve of type (0, 1). Any set of 7 distinct
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points lies on at least one curve of type C1, so it is a moving curve. Similarly,

C2 is a moving curve.

We now show that C1 and C2 are dual to B. Starting with six general

points, we can find a line l of type (1, 0) that does not contain any of the

points. We get a curve C ′ of type C1 in the Hilbert scheme by varying

the seventh point along l. As l does not contain any of the six general

points, every point in C ′ corresponds to seven distinct points, so C ′ does

not intersect B. Thus, we get

C1 ·B = C ′ ·B = 0.

Similarly, we get that

C2 ·B = 0.

The only thing left to do in order to show that B spans an extremal ray

is to show that C1 and C2 have distinct classes. Starting with six general

points, we find lines l and l′ of type (1, 0) that does not contain any of the

points. Again, we get a curve C ′ of type C1 in the Hilbert scheme by varying

the seventh point along l. Analogously, we get a divisor H ′ of type H1 as

the locus of schemes whose support intersects l′. As l′ does not contain any

of the general fixed points and does not intersect l, we get that H1 and C ′

are disjoint. Thus,

C1 ·H1 = C ′ ·H ′ = 0.

Using the same six general points, we find a line l0 of type (0, 1) that does

not contain any of the points. We get a curve C0 of type C2 by varying

the seventh point along l0. Then l0 does not contain any of the six general

points by construction but does intersect l′ in exactly one point. Thus,

C2 ·H1 = C0 ·H ′ = 1.

As C1 ·H1 6= C2 ·H1, we know that C1 and C2 are distinct classes. This

observation completes the proof that B spans an extremal ray.

While constructing the primary extremal rays, we construct two moving

curves dual to B. These curves show that B is the only secondary extremal

ray. Also as the slope of the ideal sheaf is (0, 0), the effective cone is

symmetric in the coordinates of H1 and H2 so we only deal with the

primary rays spanned by Xi,j where i> j. Keeping that in mind, we move

to computing the primary extremal rays using our theorem.

One way to think about the main results of this paper are that they

give an algorithm to compute the primary extremal rays of the effective
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cone of M(ξ). That algorithm breaks down roughly into four steps: find

the extremal pairs, use the extremal pairs to resolve the general object of

M(ξ), use those resolutions to construct maps to moduli spaces of Kronecker

modules, and analyze these maps to find divisors spanning extremal rays.

Let us follow those steps in this specific case.

Step 1. As we noted above, the first step is to find all of the extremal

pairs. Proceed by finding all controlling exceptional bundles, finding the

controlling pairs, and then finding which are extremal pairs.

Controlling exceptional bundles are those controlling the δ-surface over

the locus{
X ∈

(
1, µ, 1

2

)
⊂K(P1 × P1) : χ(X ⊗ Iz) = 0 for Iz ∈

(
P1 × P1

)[n]
}
.

Using Mathematica, we find that these controlling exceptional bundles are

{. . . , {0, 6, 1}, {0, 7, 1}, {0, 8, 1}, {0, 9, 1}, {0, 10, 1}, {0, 11, 1}, {0, 12, 1},

{0, 13, 1}, {0, 14, 1}, {1, 27, 5}, {1, 13, 3}, {2, 11, 3}, {1, 2, 1}, {1, 3, 1},

{1, 4, 1}, {6, 12, 5}, {2, 1, 1}, {2, 2, 1}, . . .}

where we record an exceptional bundle with Chern character (r, (µ1, µ2),∆)

as (µ1, µ2, r). We truncated the list before and after all bundles which are

useful in computing the effective cone. We can see that the ones we have

truncated do not matter as our first resolution is dual to B.

There are many, many controlling exceptional pairs, but we do not need

to see all of them.

Finally, we check to see which of these are extremal pairs. They are

whittled down by eliminating each pair that does not have each of the

properties of an extremal pair. The only four controlling pairs that are

extremal pairs are

{O(6, 0),O(7, 0)}, {O(3, 1),O(6, 0)}, {O(2, 1),O(3, 1)}, and

{O(2, 1),O(2, 2)}.

Each extremal pair controls an extremal ray of the effective cone. Recall

that given an extremal pair {A, B}, the extremal ray it corresponds to is

spanned by the primary orthogonal Chern character of the pair: ch(A),

ch(B), or

p= {X ∈K(P1 × P1) :Qξ,A(X) =Qξ,B(X) = χ(Iz ⊗X) = 0}.
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Then the primary orthogonal Chern character for our exceptional pairs

are (1, (6, 0), 0), (1, (6, 0), 0), (5, (12, 6), 12), and (2, (4, 3), 5), respectively.

These Chern characters correspond to the extremal rays X6,0, X6,0, X 12
5
, 6
5
,

and X2, 3
2
, respectively. Notice that one of the rays is repeated twice. This

repetition is because we need all of these extremal pairs to share each of their

elements with another extremal pair in order to link neighboring extremal

rays with moving curves.

Step 2. The next step in computing the effective cone is to turn the extremal

pairs into resolutions of the general element of the Hilbert scheme. We use

Theorems 4.4 and 4.8 to get these resolutions. To apply those theorems, we

have to complete the pairs to coils as described in Section 4. This approach

gives the coils

{O(−7,−1),O(−6,−1),O(−7,−0),O(−6, 0)}

{O(−7,−2),O(−4,−1),O(−3,−1),O(−6, 0)},

{O(−4,−3),O(−4,−2),O(−3,−2),O(−3,−1)}, and

{O(−4,−3),O(−3,−2),O(−3,−1),O(−2,−2)},

respectively.

Given these coils, we get the resolutions we wanted using the spectral

sequence as in the proofs of the relevant theorems. Following the proof, we

get the resolutions

0 → O(−7,−1)7→O(−6,−1)7
⊕
O(−7, 0)→Iz→ 0,

0 → O(−7,−2)→O(−4,−1)
⊕
O(−3,−1)→Iz→ 0,

0 → O(−4,−3)
⊕
O(−4,−2)2

→ O(−3,−2)3
⊕
O(−3,−1)→Iz→ 0, and

0 → O(−4,−3)
⊕
O(−3,−2)→O(−3,−1)

⊕
O(−2,−2)2→Iz→ 0,

respectively.

Step 3. We now get to the third step in the process, turning the resolutions

into maps to Kronecker moduli spaces. There are no Kronecker modules

that are used in the first two resolutions and the Kronecker module in each
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of the last two resolutions are

O(−4,−2)2 → O(−3,−2)3 and

O(−3,−2) → O(−3,−1),

respectively.

This means that we have the maps

π1 :
(
P1 × P1

)[7]
99K Krhom(O(3,2),O(4,2))(3, 2), and

π2 :
(
P1 × P1

)[7]
99K Krhom(O(3,1),O(3,2))(1, 1),

respectively.

Note that the dimensions of these Kronecker moduli spaces are 0 and 1,

respectively, so we only consider the map in the last case.

Step 4. The fourth and final step is actually computing the effective divisors

and their dual moving curves. Let D = aH1 + bH2 − cB/2 be a general

effective divisor.

In the first case, the Brill–Noether divisor is DV where V =O(6, 0). The

moving curve comes from a pencil of maps O(−7,−1)7→O(−6,−1)7. The

restriction this moving curve places on D is that b> 0. In particular, B and

X6,0 are dual to this moving curve.

In the second case, the Brill–Noether divisor is DV where V =O(6, 0).

The moving curve comes from a pencil of maps O(−7,−2)→O(−4,−1).

The restriction this moving curve places on D is that 3b> 6− a. In

particular, X6,0 and X 12
5
, 6
5

are dual to this moving curve.

For π1, the Brill–Noether divisor is DV where V is the exceptional bundle

E 12
5
, 6
5
. Notice that in this case, the Kronecker fibration is a map to a point.

This implies that the divisor DV is rigid. The two types of moving curve

come from pencils of maps O(−4,−3)→O(−3,−2)3 and O(−4,−2)2→
O(−3,−1). These are dual to DV by the resolution

0→O(3, 0)4→ E3
8
3
, 2
3

→ V → 0

since χ((3, 2), (4, 3)) = 12 + 6− 2 ∗ 3 ∗ 3 = 0. The restriction these two mov-

ing curves place on D are that 3b> 6− a and 4b> 12− 3a. In particular,

X 12
5
, 6
5

is dual to both moving curves and X2, 3
2

is dual to the second moving

curve.
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For π2, the Brill–Noether divisor is DV where V is a bundle F2, 3
2

that

has Chern character (2, (4, 3), 5). The two types of moving curve covering

each fiber come from pencils of maps O(−4,−3)→K and O(−4,−3)→
O(−2,−2)2. These are dual to DV by the resolution

0→ V → E 7
3
, 4
3
→O(3, 1)→ 0

since χ((1, 1), (1, 1)) = 2 ∗ 1 ∗ 1− 1 ∗ 1− 1 ∗ 1 + 1 ∗ 1 = 0. The restriction

these two moving curve place on D are that 4b> 12− 3a and 2b> 7− 2a.

In particular, X2, 3
2

is dual to both moving curves, X 12
5
, 6
5

is dual to the first

moving curve, and X 3
2
,2 is dual to the second moving curve.

We have now exhibited 7 effective divisors

{B, X6,0, X 12
5
, 6
5
, X2, 3

2
, X 3

2
,2, X 6

5
, 12

5
, X0,6}

and 7 moving curves that are dual to each pair of extremal rays that span a

face of the effective cone. Taken together, these divisors and moving curves

determine the effective cone.

7.3 Infinite series of extremal rays

As another example of the power of the methods produced in this

paper, we can construct an extremal ray in the Hilbert scheme of n points

for infinite sequences of n. We provide two extremal rays for three such

sequences and one extremal ray for a fourth sequence. The strategy for each

proof is to first find an extremal pair, then use the process outlined by our

theorems to show that they give the desired extremal ray(s).

The first sequence we look at is actually just all n. For this sequence, we

prove what the edges of the effective cone that share the secondary extremal

ray are.

Proposition 7.1. The edge spanned by Xn−1,0 and B is an extremal

edge of the effective cone of
(
P1 × P1

)[n]
. Similarly, the edge spanned by

X0,n−1 and B is an extremal edge of the effective cone of
(
P1 × P1

)[n]
.

Proof. This was proved for n6 5 in [BC]. It is immediate from the

symmetry of the effective cone in terms of a and b that the second statement

is immediate from the first statement. We now prove the first statement.

The first step in proving this edge is an extremal ray is finding an extremal

pair. To find an extremal pair, we first have to find the two controlling
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exceptional bundles that make up the pair. The vector bundle whose Brill–

Noether divisor spans the ray Xn−1,0 is O(n− 1, 0). To find our controlling

exceptional bundles, we need to find exceptional bundles cohomologically

orthogonal to O(n− 1, 0). Then,

χ(O(n− 1, 1),O(n− 1, 0)) = 0 and χ(O(n, 0),O(n− 1, 0)) = 0.

Then it is easy to see that O(n− 1, 1) and O(n, 0) are controlling excep-

tional bundles for the Hilbert scheme, and the pair {O(n− 1, 1),O(n, 0)}
is an extremal pair.

Once we have the extremal pair, we need to turn it into a resolution of

the general object of the Hilbert scheme. We complete the pair to a coil as

prescribed by Theorem 4.8. This completion gives the coil

{O(−n,−1), E((−2−3(n−1))/3),(−2/3),O(−n+ 1,−1),O(−n, 0)}.

Next, we use the Beilinson spectral sequence to resolve the general ideal

sheaf. The spectral sequence gives the resolution

0→O(−n,−1)n→O(−n+ 1,−1)n
⊕
O(−n, 0)→Iz→ 0.

The moving curves are pencils in the space Hom(O(−n,−1),O(−n+

1,−1)). The restriction this moving curve places on D is that b> 0. In

particular, B and Xn−1,0 are dual to this moving curve.

B is known to be an effective divisor. The ray corresponding to Xn−1,0

is spanned by the effective Brill–Noether divisor DV where V =O(n− 1, 0)

by Theorem 6.2. By symmetry, it is clear that B spans an extremal ray. We

have not yet shown that Xn−1,0 spans an extremal ray because we have only

provided one moving curve dual to it. The next two propositions complete

the proof that it spans an extremal ray by providing a second dual moving

curve. The first proposition provides the dual moving curve in the case that

n is even while the second proposition does so in the case that n is odd.

The next proposition provides another edge of the effective cone in the

case that n is even, that is, n= 2k. This edge shares an extremal ray with

the edge provided by the previous theorem. It provides the second dual

moving curve we needed to complete the previous proposition in the case

that n is even.

Proposition 7.2. The edge spanned by X2k−1,0 and Xk−1,1 is an

extremal edge of the effective cone of
(
P1 × P1

)[2k]
for k > 0. Similarly, the
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edge spanned by X0,2k−1 and X1,k−1 is an extremal edge of the effective cone

of
(
P1 × P1

)[2k]
for k > 0.

Proof. This is proved for k = 1 and k = 2 in [BC]. The proof now

proceeds analogously as the previous proof. Again, it is immediate from

the symmetry of the effective cone in terms of a and b that the second

statement immediately follows from the first statement. We now prove the

first statement.

The first step in proving this edge is an extremal ray is finding an extremal

pair. To find an extremal pair, we first have to find the two controlling

exceptional bundles that make up the pair. The vector bundle whose Brill–

Noether divisor spans the ray X2k−1,0 is O(2k − 1, 0). The vector bundle

whose Brill–Noether divisor spans the ray Xk−1,1 is O(k − 1, 1). To find

our controlling exceptional bundles, we need to find exceptional bundles

cohomologically orthogonal to O(2k − 1, 0) and O(k − 1, 1). Then, we have

that

χ(O(k, 1),O(2k − 1, 0)) = 0, χ(O(2k − 1, 0),O(2k − 2, 0)) = 0,

χ(O(k, 1),O(k − 1, 1)) = 0, and χ(O(k − 1, 1),O(2k − 2, 0)) = 0.

Next, it is easy to see that O(2k − 2, 0) and O(k, 1) are controlling excep-

tional bundles for the Hilbert scheme and that the pair {O(2k, 0),O(k, 1)}
is an extremal pair.

Once we have the extremal pair, we need to turn it into a resolution of

the general object of the Hilbert scheme. We complete the pair to a coil as

prescribed by Theorem 4.4. This completion gives the coil

{O(−2k,−2),O(−2k + 1,−2),O(−k − 1,−1),O(−k,−1)}.

Next, we use the Beilinson spectral sequence to resolve the general ideal

sheaf. The spectral sequence gives the resolution

0→O(−2k,−2)→O(−k,−1)2→Iz→ 0.

Using this resolution, the third step is again finding a map to a moduli

space of Kronecker modules. The Kronecker module in this resolution is

O(−2k,−2)→O(−k,−1)2. Then we get a map

π :
(
P1 × P1

)[n]
99KKrhom(O(−2k,−2),O(−k,−1))(1, 2).
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Using this map, we can finally compute the desired part of the effective

cone. By a straightforward dimension count, we know that this map is

birational. Then the two effective Brill–Noether divisors DV and DV ′ where

V =O(2k − 1, 1) and V ′ =O(k − 1, 1) are contracted by this map. Next,

any moving curve in the Kronecker moduli space is dual to these contracted

divisors. Thus, a pencil in the space Hom(O(−2k,−2),O(−k,−1)) provides

a dual moving curve showing that these divisors are on an edge of the

effective cone. Alternatively, we could show that this moving curve gives

the restriction kb> 2k − 1− a. Coupled with the previous proposition, it is

clear that X2k−1,0 spans an extremal ray.

In order to show that Xk−1,1 is an extremal ray at the other end of the

edge, we have to provide another extremal pair. The extremal pair needed

is {O(k − 2, 1),O(k − 1, 1)}. Then we get the coil

{O(−k,−3),O(−k,−2),O(−k + 1,−2),O(−k + 1,−1)}.

The spectral sequence gives the resolution

0→O(−k,−3)2
⊕
O(−k,−2)k−3→O(−k + 1,−2)k→Iz→ 0.

A moving curve is a pencil in the space Hom(O(−k,−2),O(−k + 1,−2)).

The restriction this moving curve places on D is that kb> 4k − 3− 3a. In

particular, Xk−1,1 is dual to this moving curve which has a different slope

than the other moving curve we constructed through this divisor, so we have

shown that it is an extremal ray as promised.

We now move on to the analogous proposition for odd n.

Proposition 7.3. The edge spanned by X2k,0 and X 2k(k−1)
2k−1

, 2k
2k−1

is an

extremal edge of the effective cone of
(
P1 × P1

)[2k+1]
for k > 1. Similarly, the

edge spanned by X0,2k and X 2k
2k−1

,
2k(k−1)

2k−1

is an extremal edge of the effective

cone of
(
P1 × P1

)[2k+1]
for k > 1.

Proof. This is shown for k = 2 in [BC]. Assume k > 2. This proof proceeds

with all of the same elements as the previous proof, but slightly altered

notation due to n being odd. Due to this, we give a much briefer proof.

The first statement implies the second statement by the symmetry of the

effective cone so we prove only the first statement. Then it can be shown

that the pair {O(2k − 1, 0),O(k, 1)} is an extremal pair. Then we get the
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coil

{O(−2k − 1,−2),O(−2k,−2),O(−k − 1,−1),O(−k,−1)}.

The spectral sequence gives the resolution

0→O(−2k − 1,−2)→O(−k − 1,−1)
⊕
O(−k,−1)→Iz→ 0.

A moving curve is a pencil in the space Hom(O(−2k −
1,−2),O(−k,−1)). The restriction this moving curve places on D is

that kb> 2k − a. In particular, X2k,0 and X 2k(k−1)
2k−1

, 2k
2k−1

are dual to this

moving curve.

Then the two effective Brill–Noether divisors DV and DV ′ where V is the

exceptional bundle O(2k, 0) and V ′ is the exceptional bundle E 2k(k−1)
2k−1

, 2k
2k−1

are shown to be on an edge by this moving curve. Coupled with the previous

proposition, it is clear that X2k−1,0 spans an extremal ray.

In order to show that X 2k(k−1)
2k−1

, 2k
2k−1

is an extremal ray at the other end

of the edge, we have to provide another extremal pair. The extremal pair

needed is {O(k − 1, 1),O(k, 1)}. Then we get the coil

{O(−k − 1,−3),O(−k − 1,−2),O(−k,−2),O(−k,−1)}.

The spectral sequence gives the resolution

0 → O(−k − 1,−3)
⊕
O(−k − 1,−2)k−1

→ O(−k,−2)k
⊕
O(−k,−1)→Iz→ 0.

Then we get a map

π :
(
P1 × P1

)[n]
99KKrhom(O(−k−1,−2),O(−k,−2))(k − 1, k).

By a dimension count, we see that this Kronecker moduli space

is zero dimensional so we disregard it. The moving curves are pen-

cils in the spaces Hom(O(−k − 1,−3),O(−k,−2)) and Hom(O(−k −
1,−2),O(−k,−1)). The restrictions these moving curves place on D are

that kb> 2k − a and (k + 1)b> 4k − 3a. In particular, X 2k(k−1)
2k−1

, 2k
2k−1

is dual

to these moving curve which have different slopes, so we have shown that it

is an extremal ray as promised.
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The final sequence we look at is n= 3k + 1. We provide this sequence as

an example of the large class of extremal rays that can be found in more

sporadic sequences.

Proposition 7.4. The ray spanned by Xk− 1
2
,2 is an extremal ray of

the effective cone of
(
P1 × P1

)[3k+1]
for k > 1. Similarly, the ray spanned by

X2,k− 1
2

is an extremal ray of the effective cone of
(
P1 × P1

)[3k+1]
for k > 1.

Proof. This proof again proceeds similarly to the previous proofs so we

provide a concise version. Again, the second statement follows from the first

by symmetry. The extremal controlling pair is {O(k − 1, 2),O(k, 2)}. This

completes to the coil

{O(−k − 1,−4),O(−k,−3),O(−k + 1,−3),O(−k,−2)}.

Then the resolution that we get is

0 → O(−k − 1,−4)
⊕
O(−k,−3)k−1

→ O(−k + 1,−3)k−1
⊕
O(−k,−2)2→ Iz→ 0.

Then we get a map

π :
(
P1 × P1

)[n]
99KKrhom(O(−k,−3),O(−k+1,−3))(k − 1, k − 1),

and V has the resolution

0→O(k, 1)→ E k−1
3
, 7
3
→ V → 0.

Next, the Kronecker modules are dual, so we have cohomological orthog-

onality. This makes DV into a divisor. By Proposition 2.16, we know

its class is Xk− 1
2
,2. We see that it is an extremal ray by look-

ing at pencils in the spaces Hom(O(−k − 1,−4),O(−k + 1,−3)) and

Hom(O(−k,−3),O(−k,−2)) which cover the fibers of the Kronecker fibra-

tion. The restrictions these moving curve places on D are (1 + k)b> 6k − 4a

and kb> 4k − 1− 2a. Note, this implies they are distinct curve classes and

Xk− 1
2
,2 is dual to both moving curves. Thus, the Brill–Noether divisor DV

where V is a bundle with Chern character (2, (2k − 1, 4), 4k − 3) spans an

extremal ray of the effective cone.
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There are a couple more infinite families that we mention but do not

prove. Their proofs follow similar techniques. Working out their proofs is a

good exercise to become comfortable with this type of computation.

These families of rays on a edge require some notation.

Definition 7.5. The symmetric value of the effective cone of(
P1 × P1

)[N ]
is the value a for which the ray spanned by Xa,a is on the

edge of the effective cone.

Note Xa,a may or may not be an extremal ray. We now state the

symmetric value for four infinite sequences of n.

Proposition 7.6. The symmetric value of the effective cone of(
P1 × P1

)[n]
is:

(I) k − 1− 1
2k−2 for n= k2 − 2, k > 1,

(II) k − 1 for n= k2 − 1 or k2, k > 1,

(III) k − 1 + 1
k+1 for n= k2 + 1, k > 1,

(IV) k − 1
2 for n= k2 + k, k > 0.

7.4 Completing the table

Finally, using our methods, we give brief proofs of each of the five corners

in the table at the beginning of this section that do not follow from our

general constructions so far. We only state the propositions and proofs for

one of each pair of symmetric extremal rays.

Proposition 7.7. X4, 4
3

is an extremal ray of
(
P1 × P1

)[11]
.

Proof. Let Z ∈
(
P1 × P1

)[11]
be general. The relevant extremal pair is

{O(−4,−1),O(−3,−2)}. The resolving coil then is

{O(−6,−3),O(−4,−2), E−11
3
,−5

3
,O(−3,−2)}

since

χ(O(−4,−1), IZ) = 1 ∗ 1((1 + 0 + 4)(1 + 0 + 1)− 0− 11) =−1 and

χ(O(−3,−2), IZ) = 1 ∗ 1((1 + 0 + 3)(1 + 0 + 2)− 0− 11) = 1.
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Then the resolutions we get from the generalized Beilinson spectral sequence

are

0 → O(−6,−3)
⊕
O(−4,−2)2

→ E−11
3
,−5

3

⊕
O(−3,−2)→IZ → 0 and

0 → O(2, 2)→ V →O(5, 1)2→ 0.

Next, the Kronecker map is

π :
(
P1 × P1

)[11]
99KKr

hom

(
E 11

3 , 53
,O(4,2)

)(1, 2).

Note that the dimension of this Kronecker moduli space is 4 ∗ 2 ∗ 1− 22 −
12 + 1 = 4.

Then, the Brill–Noether divisor is DV where V is a bundle that has Chern

character (3, (12, 4), 14). The two types of moving curves covering each fiber

come from pencils of maps O(−6,−3)→K and O(−6,−3)→O(−3,−2).

The restrictions these two moving curves place on D are that 3b> 12− 2a

and 6b> 20− 3a. In particular, X4, 4
3

is dual to both moving curves, X 40
9
, 10

9

is dual to the first moving curve, and X 12
5
, 12

5
is dual to the second moving

curve.

Proposition 7.8. X 12
5
, 12

5
is an extremal ray of

(
P1 × P1

)[11]
.

Proof. Let Z ∈
(
P1 × P1

)[11]
be general. The relevant extremal pair is

{O(−2,−3),O(−3,−2)}. The resolving coil then is

{O(−4,−4),O(−3,−3),O(−2,−3),O(−3,−2)}

since

χ(O(−2,−3), IZ) = 1 ∗ 1((1 + 0 + 2)(1 + 0 + 3)− 0− 11) = 1 and

χ(O(−3,−2), IZ) = 1 ∗ 1((1 + 0 + 3)(1 + 0 + 2)− 0− 11) = 1.
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Then the resolutions we get from the generalized Beilinson spectral sequence

are

0 → O(−4,−4)2→O(−3,−3)
⊕
O(−2,−3)

⊕
O(−3,−2)

→ IZ → 0 and

0 → E2
7
3
, 7
3

→ E 26
11
, 26
11
→ V → 0.

Next, the Kronecker map is

π :
(
P1 × P1

)[11]
99KKrhom(O(3,3),O(4,4))(1, 2).

Note that the dimension of this Kronecker moduli space is 2 ∗ 2 ∗ 1− 22 −
12 + 1 = 0 so the map tells us nothing.

Then, the Brill–Noether divisor is DV where V is a bundle that has Chern

character (5, (12, 12), 26). There are two types of moving curves coming from

pencils of maps K→O(−2,−3) and K→O(−3,−2). The restrictions these

two moving curves place on D are that 3b> 20− 6a and 6b> 20− 3a. In

particular, X 12
5
, 12

5
is dual to both moving curves, X4, 4

3
is dual to the first

moving curve, and X 4
3
,4 is dual to the second moving curve.

Proposition 7.9. X 9
2
, 3
2

is an extremal ray of
(
P1 × P1

)[13]
.

Proof. Let Z ∈
(
P1 × P1

)[13]
be general. The relevant extremal pair is

{O(−5,−1),O(−4,−2)}. The resolving coil then is

{O(−7,−3),O(−5,−2), E−14
3
,−5

3
,O(−4,−2)}

since

χ(O(−5,−1), IZ) = 1 ∗ 1((1 + 0 + 5)(1 + 0 + 1)− 0− 13) =−1 and

χ(O(−4,−2), IZ) = 1 ∗ 1((1 + 0 + 4)(1 + 0 + 2)− 0− 13) = 2.

Then the resolutions we get from the generalized Beilinson spectral sequence

are

0 → O(−7,−3)
⊕
O(−5,−2)3

→ E−14
3
,−5

3

⊕
O(−4,−2)2→IZ → 0 and

0 → O(6, 1)→ V →O(3, 2)→ 0.
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Next, the Kronecker map is

π :
(
P1 × P1

)[13]
99KKr

hom

(
E 14

3 , 53
,O(5,2)

)(1, 3).

Note that the dimension of this Kronecker moduli space is 4 ∗ 1 ∗ 3− 32 −
12 + 1 = 3.

Then, the Brill–Noether divisor is DV where V is a bundle that has

Chern character (2, (9, 3), 12). There are two types of moving curves coming

from pencils of maps O(−7,−3)→K and O(−7,−3)→O(−4,−2)2. The

restrictions these two moving curves place on D are that 4b> 15− 2a and

7b> 24− 3a. In particular, X 9
2
, 3
2

is dual to both moving curves, X 7
2
,2 is dual

to the first moving curve, and X 60
11
, 12
11

is dual to the second moving curve.

Proposition 7.10. X 8
3
, 8
3

is an extremal ray of
(
P1 × P1

)[13]
.

Proof. Let Z ∈
(
P1 × P1

)[13]
be general. The relevant extremal pair is

{O(−2,−3),O(−3,−2)}. The resolving coil then is

{O(−4,−5),O(−5,−4),O(−4,−4),O(−3,−3)}

since

χ(O(−2,−3), IZ) = 1 ∗ 1((1 + 0 + 2)(1 + 0 + 3)− 0− 13) =−1 and

χ(O(−3,−2), IZ) = 1 ∗ 1((1 + 0 + 3)(1 + 0 + 2)− 0− 13) =−1.

Then the resolution we get from the generalized Beilinson spectral sequence

is

0→O(−4,−5)
⊕
O(−5,−4)→O(−3,−3)3→IZ → 0,

so there is no Kronecker map.

Next, the Brill–Noether divisor is DV where V is the exceptional bundle

E 8
3
, 8
3
. There are two types of moving curves coming from pencils of maps

O(−4,−5)→O(−3,−3)3 and O(−5,−4)→O(−3,−3)3. The restrictions

these two moving curves place on D are that 5b> 24− 4a and 4b> 24− 5a.

In particular, X 8
3
, 8
3

is dual to both moving curves, X 7
2
,2 is dual to the first

moving curve, and X2, 7
2

is dual to the second moving curve.

Proposition 7.11. X 10
3
, 7
3

is an extremal ray of
(
P1 × P1

)[14]
.
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Proof. Let Z ∈
(
P1 × P1

)[14]
be general. The relevant extremal pair is

{O(−3,−3),O(−4,−2)}. The resolving coil then is

{O(−5,−4),O(−4,−3),O(−4,−2),O(−3,−3)}

since

χ(O(−3,−3), IZ) = 1 ∗ 1((1 + 0 + 3)(1 + 0 + 3)− 0− 14) = 2, and

χ(O(−4,−2), IZ) = 1 ∗ 1((1 + 0 + 4)(1 + 0 + 2)− 0− 14) = 1.

Then the resolution we get from the generalized Beilinson spectral sequence

is

0→O(−5,−4)2→O(−4,−2)
⊕
O(−3,−3)2→IZ → 0,

so there is no Kronecker map.

Next, the Brill–Noether divisor is DV where V is the exceptional bundle

E 10
3
, 7
3
. There are two types of moving curves coming from pencils of maps

O(−5,−4)2→O(−4,−2) and O(−5,−4)2→O(−3,−3)2. The restriction

these two moving curves place on D are that 3b> 17− 3a and 4b> 16− 2a.

In particular, X 10
3
, 7
3

is dual to both moving curves, X 7
3
, 10

3
is dual to the first

moving curve, and X6,1 is dual to the second moving curve.

7.5 A rank two example

Let ξ =
(
log(2), (1

2 , 0), 2
)
. Then, we can find that {O(−1, 2),O(0, 1)} is

an extremal pair for M(ξ). It gives the resolution

0→O(−1,−4)→O(0,−2)
⊕
O(0,−1)2→ U → 0

where U ∈M(ξ) is general. This gives that the divisor DO(−1,3) lies on an

edge of the effective cone. In this case, we can actually do two dimension

counts to see that varying either map gives a moving curve dual to DO(−1,3)

so it in fact spans an extremal ray of the effective cone.
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[Göt] L. Göttsche, Rationality of moduli spaces of torsion free sheaves over rational
surfaces, Manuscripta Math. 89 (1996), 193–201.

[Hau] J. Hausen, A generalization of Mumford’s geometric invariant theory, Doc. Math.
6 (2001), 571–592.

[HK] Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000),
331–348.

[Hui1] J. Huizenga, Restrictions of Steiner bundles and divisors on the Hilbert scheme
of points in the plane, Int. Math. Res. Not. IMRN 2013(21) (2013), 4829–4873.

[Hui2] J. Huizenga, Effective divisors on the Hilbert scheme of points in the plane and
interpolation for stable bundles, J. Algebraic Geom. 25(1) (2016), 19–75.

[HL] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves,
second edition, Cambridge Mathematical Library, Cambridge University Press,
Cambridge, 2010.

[Kar] B. V. Karpov, Semistable sheaves on Del Pezzo surfaces and Kronecker modules,
preprint, 1994.

[Kol] J. Kollár, “Singularities of pairs”, in Algebraic Geometry, Santa Cruz 1995,
Proc. Symp. Pure Math. Amer. Math. Soc. 62, 1997, 221–286.

https://doi.org/10.1017/nmj.2017.24 Published online by Cambridge University Press

http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1312.1748
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
http://www.arxiv.org/abs/1512.02661
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1090/proc/13470
https://doi.org/10.1017/nmj.2017.24


214 EFFECTIVE CONE OF MODULI OF SHEAVES ON A QUADRIC

[Laz] R. Lazarsfeld, “Classical setting: line bundles and linear series”, in Positivity
in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 48,
Springer, Berlin, 2004.

[LP] J. Le Potier, Lectures on Vector Bundles, Cambridge Studies in Advanced
Mathematics 54, Cambridge University Press, Cambridge, 1997, translated by
A. Maciocia.

[LQ1] W.-P. Li and Z. Qin, Stable vector bundles on algebraic surfaces, Trans. Amer.
Math. Soc. 345 (1994), 833–852.

[LQ2] J. Lo and Z. Qin, Mini-walls for Bridgeland stability conditions on the derived
category of sheaves over surfaces, Asian J. Math. 18(2) (2014), 321–344.

[Mac1] A. Maciocia, Computing the walls associated to Bridgeland stability conditions
on projective surfaces, Asian J. Math. 18(2) (2014), 263–280.

[MM] A. Maciocia and C. Meachan, Rank 1 Bridgeland stable moduli spaces on a
principally polarized abelian surface, Int. Math. Res. Not. IMRN 2013(9) (2013),
2054–2077.

[MP] A. Maciocia and D. Piyaratne, Fourier–Mukai transforms and Bridgeland
stability conditions on abelian threefolds, Int. J. Math. 27 (2016), 1650007,
27 pages.

[Mac2] E. Macr̀ı, A generalized Bogomolov–Gieseker inequality for the three-dimensional
projective space, Algebra Number Theory 8(1) (2014), 173–190.

[MS] E. Macr̀ı and B. Schmidt, Lectures on Bridgeland stability. CIMPA-ICTP-Mexico
research school 2016, preprint, arXiv:1607.01262, 2016.

[MO1] A. Marian and D. Oprea, Counts of maps to Grassmannians and intersections
on the moduli space of bundles, J. Differential Geom. 76(1) (2007), 155–175.

[MO2] A. Marian and D. Oprea, “A tour of theta dualities on moduli spaces of sheaves”,
in Curves and Abelian Varieties, Contemporary Mathematics 465, American
Mathematical Society, Providence, RI, 2008, 175–201.

[Mar1] M. Maruyama, Stable vector bundles on an algebraic surface, Nagoya Math. J.
58 (1975), 25–68.

[Mar2] M. Maruyama, Moduli of stables sheaves, I, J. Math. Kyoto Univ. 17 (1977),
91–126.

[Mar3] M. Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ. 18 (1978),
577–614.

[MW] K. Matsuki and R. Wentworth, Mumford–Thaddeus principle on the moduli space
of vector bundles on an algebraic surface, Inernat. J. Math. 8(1) (1997), 97–148.

[Moz] S. Mozgovoy, Invariants of moduli spaces of stable sheaves on ruled surfaces,
preprint, 2013, arXiv:1302.4134.

[Nue1] H. Nuer, MMP via wall-crossing for Bridgeland moduli spaces on an Enriques
surface, in preparation.

[Nue2] H. Nuer, Projectivity and birational geometry of Bridgeland moduli spaces on an
Enriques surface, Proc. London Math. Soc. 113(3) (2016), 345–386.

[NZ] D. Yu. Nogin and S. K. Zube, “Computing invariants of exceptional bundles on a
quadric”, in Helices and Vector Bundles: Seminaire Rudakov, 148, 1990, 23–32.

[Qin] Z. Qin, Moduli of stable sheaves on ruled surfaces and their Picard group, J.
Reine Angew. Math. 433 (1992), 201–219.

[Rei] M. Reineke, “Moduli of representations of quivers”, in Trends in Representation
Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc.,
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