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From the perspective of information theory, it's easy to suspect that current methods for extracting 
information using STEM can't possibly be optimal. After all, when we try to make sense of the multi-
GB data sets produced by spectrum imaging, STEM diffraction, and other similar techniques, usually 
the first thing we do is apply aggressive data reduction techniques. Each EELS spectrum might be 
represented as a combination of a small number of component spectra (using any of a variety of 
techniques including principal component analysis, independent component analysis, and Bayesian 
dictionary learning), and the residual is normally thrown away as noise. In STEM diffraction, often an 
entire diffraction pattern with a MB or more of data is reduced to just three parameters giving the 3D 
orientation of the crystal at that point. In both cases, the analyzed data might be 100 times smaller than 
the raw data and yet may still contain virtually all of the information the user cared about. 
 
Even after data reduction, such data sets can still be highly compressible. Atomic-resolution images 
typically have most of their information crammed into the vicinity of a handful of spatial frequency 
vectors. In nanometer-resolution images the spectrum or diffraction pattern from one pixel almost 
always looks nearly identical to that of one or more nearby pixels, and when it does not, then most likely 
something went wrong with the measurement and that pixel needs to be discarded anyway. Standard 
data-compression algorithms can eliminate this redundant information, reducing the byte count by 
perhaps another factor of 10 without losing a significant amount of real, useful information. 
 
Compressive sensing (CS) is a fast-growing field that has been proposed as a solution to this problem 
[1-3]. CS raises the question: Why acquire all of this redundant information in the first place? Every 
byte that's thrown away represents wasted electron dose and data-acquisition capacity. What if we could 
avoid this? What if we could operate the instrument in a clever way that, in effect, applies data-
compression algorithms before the signal even hits the analog-to-digital convertors? Would that enable 
dramatic improvements in data throughput, time resolution, and/or the ability to study radiation-sensitive 
materials? 
 
We embarked on an extensive series of simulations to answer this question, using existing CS 
algorithms and new ones invented for the purpose, and determined that the answer to this yes-or-no 
question is a very decisive "maybe." The answer is surprisingly sensitive to the details of how you're 
going to implement CS in a STEM and, more importantly, on why you're doing CS in the first place. If 
you're using it to reduce the number of acquisitions needed, perhaps because of the limited bandwidth of 
your detection and/or data storage system or the speed of in situ processes you're interested in studying, 
then there are certainly advantages to be had. The answer still depends on the hardware-implementation 
details, but there are undoubtedly regimes where CS has a substantial advantage. 
 
But if your intent is to reduce radiation dose to the sample, the results are not so encouraging. In fact, 
over a very broad class of problems and acquisition parameters, we found that non-adaptive CS-STEM 
has essentially no practical advantage over conventional STEM in terms of radiation dose, and results 
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appearing to show otherwise are due to the inherent denoising properties of CS reconstruction 
algorithms and not to the change in acquisition mode. Reducing electron dose in CS-STEM runs into 
serious problems with Poisson noise, which has highly detrimental effects on the compression/distortion 
scaling laws that allow CS to work in the first place [4]. This cloud has two silver linings: First, many of 
the apparent advantages of CS can be had without having to do anything difficult or clever with the 
acquisition hardware; advanced data analysis methods applied to conventionally acquired data produce 
equivalent or better results. Second, the result only applies to non-adaptive CS. Adaptive CS techniques 
are another question entirely, and in some cases they may prove highly effective at reducing radiation 
dose. But this will not come about by accident; a great many devils lurk in the details. We will close 
with some proposed solutions to these problems. 
 
Figure 1.  Example simulation, 
showing reconstruction of a 10,000-
pixel STEM-diffraction virtual dark 
field image using 2000 measurements, 
each of which uses a thresholded 
power-law spatial mask, and 
reconstructed using the Poisson-noise-
aware "SPIRAL-TV" algorithm [4]. 
The lower-left image shows the 
reconstruction, while the lower-right 
shows the (much worse) 
reconstruction using conventional l2-
norm-based techniques. 
 

 
Figure 2.  Results from an ensemble of undersampling-
and-inpainting simulations, showing the peak-signal-to-
noise ratio (PSNR) of the reconstruction as a function of 
the number of electrons. PSNR values of ~25 dB or more 
are of acceptable quality, while those much above ~35 dB 
are approaching overexposure. Throughout the useful 
range, undersampling and inpainting (blue, with varying 
sampling fractions) appears to outperform conventional 
measurements (red) but only if we ignore the availability 
of sparsity-based denoising algorithms (black). 
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