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Various perspectives on a pair of simple
inequalities for log x

G. J. O. JAMESON

The basic inequalities
The inequalities in question are

log x ≤
1
2 (x −

1
x ) (1)

and

log x ≥
2 (x − 1)

x + 1
(2)

for .x > 1

Ahead of the proofs we record some preliminary remarks. Write

f (x) =
1
2 (x −

1
x ) ,  g (x) =

2 (x − 1)
x + 1

;

Then the inequalities say  for . Now ,
 and , so it follows that

for  (with all terms negative). Of course equality holds when
. Also,

g(x) ≤ logx ≤ f (x) x > 1 f (1
x) = −f (x)

g (1
x) = −g (x) log (1

x) = − log x f (x) ≤ logx ≤ g(x)
0 < x < 1

x = 1

f (x)
g (x)

=
x2 − 1

2x
 

x + 1
2 (x − 1)

=
(x + 1)2

4x
,

so (2) can be reformulated as follows in terms of :f (x)

f (x) ≤
(x + 1)2

4x
 log x. (3)

Together with (1), this implies that  as , since

tends to 1. (Recall that it is tempting, but wrong, to say  as
; in fact, both tend to 0.) Similarly, (1) can be reformulated in terms

of :

f (x)
log x

→ 1 x → 1 (x + 1)2

4x
f (x) → log x

x → 1
g (x)

g (x) ≥
4x

(x + 1)2
log x

and  as . Clearly, the inequalities are most effective for

close to 1; they say nothing of interest for large .

g (x)
log x

→ 1 x → 1 x

x

Applied to  , inequality (1) saysx1/2

log x ≤ x1/2 − x−1/2. (4)
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We will see later that this is a better approximation than (1), with
applications of its own. By writing  as , we see that
(4) strengthens the well-known inequality  when .
(Meanwhile, the reversed (2) strengthens this inequality for .)

x1/2 − x−1/2 x−1/2 (x − 1)
log x ≤ x − 1 x > 1

0 < x < 1

We now present four completely different proofs of (1) and (2). There is
no need to choose a ‘best’ one. They are all (more or less) equally
elementary, but each one deploys a different set of ideas, and each sheds
light on the inequalities in a distinctive way. Our basic objective is
comparison between these proofs, rather than the inequalities themselves.

Method 1: differentiation, mean-value theorem, positivity of squares. 
Write  (this is to avoid notation like , which I find

unappealing). Then
� (x) = log x log- (x)

f ′ (x) − � ′ (x) =
1
2

+
1

2x2
−

1
x

=
1
2 (1 −

1
x )2

≥ 0,

so  is increasing for all . Since ,
inequality (1) follows. As always with such applications of the mean-value
theorem, the same reasoning can be expressed in integral form:

f (x) − � (x) x > 0 f (1) − � (1) = 0

f (x) − � (x) = ∫
x

1
(f ′ (t) − � ′ (t)) dt =

1
2 ∫

 x

1
(1 −

1
t )2

dt ≥ 0.

(We will refrain from counting this as a fifth method!)

Writing  as , we see thatg (x) 2 −
4

x + 1

� ′ (x) − g′ (x) =
1
x

−
4

(x + 1)2
=

(x + 1)2 − 4x
x (x + 1)2

=
(x − 1)2

x (x + 1)2
≥ 0,

so  is increasing for all , hence (2).� (x) − g (x) x > 0

Method 2: integrals of convex functions. 
This method has the merit of exhibiting a geometrical interpretation of

(1) and (2). Also, it actually finds the bounds for us instead of requiring us
to know them in advance. We use the fact that . Recall that a
function with increasing derivative is convex. In particular,  is convex for

. A convex function  lies below its chords and above its tangents.
Consequently, its integral on  is not greater than the trapezium
estimate:

log x = ∫
 x
1

1
t  dt
1 / t

t > 0 u (t)
[a, b]

∫
b

a
u (t) dt ≤

1
2

(u (a) + u (b)) (b − a) .

Also, if , thenc = 1
2 (a + b)

∫
b

a
u (t) dt ≥ u (c) (b − a) :
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this is the area below the tangent at . These inequalities are geometrically
compelling, and an analytic proof is straightforward (but we won't spell it
out here). Applied to , they give at once

c

1
t

log x ≤
1
2 (1 +

1
x ) (x − 1) =

1
2 (x −

1
x ) = f (x)

and

log x ≥
x − 1

1
2 (x + 1)

= g (x) .

Method 3: substitution, hyperbolic functions. 
Substitute , so that  and . Then

when  and  when . The inequality  is
equivalent to , which is clear (for ) from the defining series

x = et log x = t f (x) = sinh t t > 0
x > 1 t → 0 x → 1 log x ≤ f (x)

t ≤ sinh t t > 0

sinh t = t +
t3

3!
+

t5

5!
+  … .

A beautifully neat and quick proof! (It also delivers the limit

without involving .) For , substitute instead . Then

lim
x → 0

f (x)
log x

= 1

g (x) g (x) x = e2t

g (x) =
2 (e2t − 1)

e2t + 1
=

2 sinh t
cosh t

.

The inequality  is equivalent to , which is
seen at once by termwise comparison of the series for  with the series

g (x) ≤ log x sinh t ≤ t cosh t
sinh t

t cosh t = t +
t3

2!
+

t5

4!
+  … .

Method 4: substitution, logarithmic series. 

Substitute , so that . Then  implies that

. By the logarithmic series,

x =
1 + y
1 − y

y =
x − 1
x + 1

x > 1

0 < y < 1

1
2

log x =
1
2

log
1 + y
1 − y

= y +
y3

3
+

y5

5
+  … .

This time (2) follows instantly: . To derive (1),
observe that

1
2 log x ≥ y = 1

2g (x)

1
2

log x ≤ y + y3 + y5 +  … =
y

1 − y2
.

Now  and , so1 + y =
2x

x + 1
1 − y =

2
x + 1

2y
1 − y2

=
1

1 − y
−

1
1 + y

= (x + 1) (1
2

−
1
2x) =

1
2 (x −

1
x ) ,

hence (1).
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We remark that all the methods actually establish strict inequality:
 for .g (x) < log x < f (x) x > 1

A reformulation: the logarithmic mean
The logarithmic mean of two distinct positive numbers ,  is defined

to be 
x1 x2

L (x1, x2) =
x2 − x1

log x2 − log x1
.

We assume notation chosen so that . Of course, the arithmetic
mean is  and the geometric mean is .
The basic relationship between these quantities is

x1 < x2
A(x1, x2) = 1

2 (x1 + x2) G(x1, x2) = x1x2

G (x1, x2) ≤ L (x1, x2) ≤ A (x1, x2) . (5)
This, perhaps, explains why it is reasonable to regard  as a “mean”
of some kind. We show here that (5) is essentially equivalent to (1) and (2).

L (x1, x2)

Write . Then  and
x2

x1
= x x > 1

L (x1, x2) = x1
x − 1
log x

= x1L (x, 1) .

Similarly, it is clear that  and ,
so (5) is equivalent to , in other words

A (x1, x2) = x1A (x, 1) G (x1, x2) = x1G (x, 1)
G (x,  1) ≤ L (x,  1) ≤ A (x,  1)

x ≤
x − 1
log x

≤
x + 1

2
.

The right-hand inequality is clearly equivalent to (2). The left-hand
inequality is equivalent to , which we saw in (4).log x ≤ x1/2 − x−1/2

Let us just write  for , similarly  and . In fact, the estimation
(5) can be strengthened to

L L (x,  1) A G

G2/3A1/3 ≤ L ≤ 2
3G + 1

3A. (6)
A proof of (6) using Cauchy's mean-value theorem was given in [1],
together with some historical references. In fact, the ordinary mean-value
theorem works just as well, but, either way, some fairly heavy manipulation
is required. A much neater proof is delivered by a development of our
Method 3. It was set out, along with some further results of this sort, in [2].
Here we will just reproduce the proof of the right-hand inequality.

We do not need to know the factor  in advance: we can let it emerge
from the reasoning. We look for an inequality , where
 is to be found. In other words, we want

1
3

L ≤ (1 − p) G + pA
p

x − 1
log x

≤ (1 − p) x +
p
2

(x + 1) .
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The substitution  transforms this intox = e2t

e2t − 1

2t
≤ (1 − p) et +

p
2

(e2t + 1) ,

equivalently
sinh t

t
≤ (1 − p) + p cosh t.

Now

sinh t
t

= 1 +
t2

3!
+

t4

5!
+  … ,

while

(1 − p) + p cosh t = 1 + p ( t2

2!
+

t4

4!
+  … ) .

By choosing  we make the  terms coincide, and comparing the

coefficients of , we see that  for , so the

desired inequality holds.

p = 1
3 t2

t2n 1
(2n + 1)!

<
1

3 (2n)!
n ≥ 2

Results concerning  and f (xa) g (xa)
Applying (1) and (2) to , where  and , we obtain

 so
xa x > 1 a > 0

g (xa) ≤ log xa ≤ f (xa)
1
a

g (xa) ≤ log x ≤
1
a

f (xa) .

For , we have already stated the case  in (4).f (x) a = 1
2

With  fixed,  tends to  as : in fact, by (3), applied to ,x 1
af (xa) log x a → 0+ xa

1
a

f (xa) ≤
(xa + 1)2

4xa
log x,

and  as , since . By taking (for example)

, we obtain a sequence convergent to . Similar remarks apply
to .

(xa + 1)2

4xa
→ 1 a → 0+ xa → 1

a = 1 / 2n log x
1
ag (xa)

We illustrate this by recording successive approximations to
generated in this way. Recall that the actual value is approximately
0.693147.

log 2

a 1
ag (2a) 1

af (2a)
1 2

3
3
4

1
2 12 − 8 2 ≈ 0.6863 2 − 1 / 2 ≈ 0.7071
1
4 8(21/4 − 1)2( 2 + 1) ≈ 0.6914 2(21/4 − 2−1/4) ≈ 0.6966
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Do these approximations always improve steadily as  gets closer to 1?
First, consider the special case . It is easy to show that
for any . Equivalently,  for , seen as follows:

a
a = 1

2 2f ( 2) ≤ f (x)
x > 1 2f (x) ≤ f (x2) x > 1

f (x2) =
1
2 (x2 −

1
x2) = (x +

1
x ) f (x)

and . Similarly, , equivalently , sincex + 1
x ≥ 2 g(x) ≤ 2g( x) g (x2) ≤ 2g (x)

g (x2)
g (x)

=
x2 − 1
x2 + 1

 
x + 1
x − 1

=
(x + 1)2

x2 + 1

and .(x + 1)2 ≤ 2 (x2 + 1)

As all this suggests, the following is actually true.

Theorem 
For fixed ,  increases with  for all , and

decreases.
x > 1 1

af (xa) a a > 0 1
ag (xa)

Again we present alternative proofs, illustrating three perfectly valid
ways to establish inequalities of this sort.

Proof 1: differentiation with respect to . x
Fix  with . We have to show that ,

equivalently
a, b a > b > 0 1

af (xa) ≥ 1
bf (xb)

b (xa − x−a) − a (xb − x−b) ≥ 0.
Denote this by , now regarding  as the variable. Then  andp (x) x p (1) = 0

p′ (x) = ab (xa − 1 + x−a − 1) − ab (xb − 1 + x−b − 1)

=
ab
x

[(xa + x−a) − (xb + x−b)] .

Now  increases with  for  (the derivative  is positive)
and , so , so , hence also ,
for .

y + 1
y y y > 1 1 − 1

y2

xa > xb xa + x−a > xb + x−b p′ (x) > 0 p (x) ≥ 0
x > 1

Similarly, the statement  is equivalent to ,
where

1
ag(xa) ≤ 1

bg(xb) q (x) ≥ 0

q (x) = a (xa + 1) (xb − 1) − b (xa − 1) (xb + 1)
= (a − b) xa + b − (a + b) xa + (a + b) xb − a + b.

Then , and our statement follows if we can show that
for . Now

q (1) = 0 q′ (x) ≥ 0
x > 1

1
a + b

q′ (x) = (a − b) xa + b − 1 − axa − 1 + bxb − 1 = xb − 1r (x) ,
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where . Then  andr (x) = (a − b) xa − axa − b + b r (1) = 0

r′ (x) = a (a − b) (xa − 1 − xa − b − 1) ≥ 0

for . So , hence , for .x > 1 r (x) ≥ 0 q′ (x) ≥ 0 x > 1

Proof 2: differentiation with respect to . a
One might need to take a moment to get used to the idea that  is fixed

and  is now the variable. Let
x

a

F (a) =
1
a

f (xa) =
1
2a

(xa − x−a) .

Recall that since , we have . Soxa = ea log x d
daxa = xa log x

F′ (a) =
1
2a

(xa + x−a) log x −
1

2a2
(xa − x−a) .

By our inequality (2) applied to ,x2a

2a log x ≥
2 (x2a − 1)

x2a + 1
=

2 (xa − x−a)
xa + x−a

.

It follows that  for all .F′ (a) ≥ 0 a > 0

In similar style, one finds that (1) (applied to ) is what is needed to
show that , where . We leave it to the reader to
verify the details.

xa

G′ (a) ≤ 0 G (a) = 1
ag (xa)

Proof 3: substitution. 
Substitute . We are assuming , so . Thenx = et x > 1 t > 0

1
a

f (xa) =
1
a

sinh at = t + a2 t3

3!
+ a4 t5

5!
+  … .

This clearly increases with : an instant proof again!a

For , as before, we modify the substitution to . Theng x = e2t

1
a

g (xa) =
2 (e2at − 1)

e2at + 1
=

2 sinh at
a cosh at

.

It is not quite so transparent that this decreases with  for fixed . Writing
, we see that the statement is equivalent to saying that  increases

with , where . This is easily established by differentiation:

a t
at = y h (y)

y h (y) =
y cosh y
sinh y

h′ (y) =
1

sinh2 y
((y sinh y + cosh y) sinh y − y cosh2 y)

=
cosh y sinh y − y

sinh2 y
.

This is non-negative, since .cosh y sinh y − y = 1
2 sinh 2y − y ≥ 0
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A completely different way to show that  is increasing (yet another
alternative!) was given in [3]. By quite elementary methods, without
differentiation, it provides a simple criterion for the ratio of two power
series to be monotonic.

h (y)
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The answers to the Nemo page from July 2023 on the hypotenuse were:
1. James Joyce Portrait of the Artist as a Young Man Chapter 5
2. Mary Roberts Tenting Tonight  Chapter 14

Rinehart
3. Grant Allen Charles Darwin  Chapter 5
4. O. Henry Schools and Schools
5. Michael Frayn  Collected Columns: Pas devant les enfants
6. HG Wells The First Men in the Moon Chapter 13

Congratulations to Lawrence Smallman on tracking all of these down.
This month it is time to focus on the force of friction.  Quotations are to be
identified by reference to author and work. Solutions are invited to the
Editor by 23rd January 2024.

1. Being by trade a mason, he wore a long linen apron reaching almost to his
toes, corduroy breeches and gaiters, which, together with his boots, graduated
in tints of whitish-brown by constant friction against lime and stone.

2. A busy little man he always is, in the polishing at harness-house doors,
of stirrup-irons, bits, curb-chains, harness-bosses, anything in the way of
a stable-yard that will take a polish: leading a life of friction. 

Continued on page 487.
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