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In this paper, we study the existence of solutions for a critical time–harmonic
Maxwell equation in nonlocal media

{
∇× (∇× u) + λu =

(
Iα ∗ |u|2∗α

)
|u|2∗α−2u in Ω,

ν × u = 0 on ∂Ω,

where Ω ⊂ R
3 is a bounded domain, either convex or with C1,1 boundary, ν is the

exterior normal, λ < 0 is a real parameter, 2∗α = 3 + α with 0 < α < 3 is the upper
critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing

some suitable Coulomb spaces involving curl operator W
α,2∗α
0 (curl; Ω), we are able to

obtain the ground state solutions of the curl–curl equation via the method of
constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the
Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the
concentration–compactness principle.
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1. Introduction and main results

1.1. Introduction

Let Ω ⊂ R3 be a bounded domain, we are concerned with the curl–curl equation{
∇× (∇× u) + λu = f(x, u) in Ω,
ν × u = 0 on ∂Ω,

(1.1)

where λ < 0 is a real parameter, ν : ∂Ω −→ R3 is the exterior normal. Equation
(1.1) can be derived from the first order Maxwell equation [35]⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇×H = J + ∂tD, (Ampere′s circuital law)
div(D) = �, (Gauss′s law)
∂tB + ∇× E = 0, (Faraday′s law of induction)
div(B) = 0, (Gauss′s law for magnetism)

(1.2)

where E ,H,D,B are corresponded to the electric field, magnetic induction, electric
displacement and magnetic filed, respectively. J is the electric current intensity,
and � is the electric charge density. Generally, these physical quantities satisfy the
following constitutive equations (see [14, § 1.1.3]):

J = σE , D = εE + PNL,H =
1
μ
B −M, (1.3)

where PNL,M denote the polarization field and magnetization filed respectively,
ε, μ, σ are the electric permittivity, magnetic permeability and the electric con-
ductivity . Taking the special case with the absence of charges, currents and
magnetization, namely, J = M = 0, ρ = 0, equation (1.2) becomes the second
curl-curl equation

∇× (
1
μ
∇× E) + ε∂2

t E = −∂2
t PNL. (1.4)

As the electric field and polarization field are time harmonic with the ansatz
E(x, t) = E(x) eiωt, PNL(x, t) = P (x) eiωt, equation (1.4) turns into the time-
harmonic Maxwell equation

∇× (
1
μ
∇× E) − εω2E = ω2P.

In some Kerr-like medias, the polarization field function PNL is usually chosen to
be PNL = α(x)|E|p−2E with 2 � p � 6 for the purpose of simplifying the model.
Then by setting

f(x,E) = ∂EF (x,E) = μω2α(x)|E|p−2E,

one can deduce the main equation (1.1)

∇× (∇× E) + λE = f(x,E),

where λ = −μω2ε. The boundary condition holds when Ω is surrounded by a perfect
conductor, see [14].
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Apparently, equation (1.1) has a variational structure and the solutions are the
critical points of the functional

Jλ(u) =
∫

Ω

|∇ × u|2 dx+
λ

2

∫
Ω

|u|2 dx−
∫

Ω

F (x, u) dx, (1.5)

which is well defined on the natural space

X = W p
0 (curl; Ω) = C∞

0 (Ω,R3)
||·||W p(curl;Ω)

,

where

W p(curl; Ω) = {u ∈ Lp(Ω,R3) : ∇× u ∈ L2(Ω,R3)}

is a Banach space, see [5]. By introducing the Helmholtz decomposition

W p
0 (curl; Ω) = XΩ ⊕Xc

Ω,

where

XΩ : = {v ∈W p
0 (curl; Ω) :

∫
Ω

〈v, ϕ〉dx = 0 for every ϕ

∈ C∞
0 (Ω,R3) with ∇× ϕ = 0}

= {v ∈W p
0 (curl; Ω) : div(v) = 0 in the sense of distributions},

and

Xc
Ω := {w ∈W p

0 (curl; Ω) :
∫

Ω

〈w,∇× ϕ〉dx = 0 forall ϕ ∈ C∞
0 (Ω,R3)},

functional (1.5) can be rewritten as

Jλ(u) = Jλ(v + w) =
1
2

∫
Ω

|∇ × v|2 dx+
λ

2

∫
Ω

|v + w|2 dx−
∫

Ω

F (x, v + w) dx

=
1
2

∫
Ω

|∇v|2 dx+
λ

2

∫
Ω

|v + w|2 dx−
∫

Ω

F (x, v + w) dx,

where ∇× (∇× v) = ∇(∇ · v) −∇ · (∇v) = −Δv for div(v) = 0. Since the opera-
tor ∇× (∇× ·) has an infinite dimension kernel, i.e. ∇× (∇ϕ) = 0 for ϕ ∈ C∞

0 (Ω),
one can easily check that Jλ has the strongly indefinite nature. Particularly, set

λ̃ = μ(Ω)−
p−2

p p−
2
p inf

v∈XΩ:|v|p=1

∫
Ω

|∇ × v|2 dx > 0,

then Jλ has a linking geometry as λ � λ̃, see [31].
To overcome the difficulty of the strong indefiniteness, by assuming that the addi-

tional condition ∇ · u = 0, then the curl–curl operator become the classical Laplace
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operator. Moreover, if consider the Dirichlet boundary condition, it becomes the
classical elliptic equation {

−Δu+ λu = f(x, u) in Ω,
u = 0 on ∂Ω.

(1.6)

This elliptic equation has been widely studied in different dimensional spaces and
topology regions, see the pioneering work of Brezis and Nirenberg [10] and the more
references [11, 12, 19]. Essentially, the non-divergence condition is a Coulomb
gauge condition, which holds in the gauge invariant field. This requires that the
polarization field PNL does not happen or linearly depends on E , otherwise, it
destroys the gauge invariance of the curl–curl equation. If the polarization field
PNL = 0, then the curl–curl equation becomes a linear time harmonic Maxwell
equation, which has been extensively considered in [14, 35, 39]. Physically there
indeed exist some special cylindrically symmetric transverse electric and transverse
magnetic which satisfy the non-divergence condition, and they have been studied
by Stuart and Zhou in [43, 44].

For the general case with ∇ · u 	= 0, the study of the curl–curl equation becomes
much more challenging. The first attempt goes back to the pioneering work of
Benci [7]. Under some nonlinear assumptions on W (t), the authors investigated the
Born–Infeld static magnetic model

∇× (∇×A) = W ′(|A|2)A, in R3, (1.7)

where A = ∇×B is a magnetic potential. In a suitable subspace, Azzollini et al.
[2] obtained the cylindrically symmetric solutions of (1.7) by the Palais principle
of symmetric criticality. By using the Hodge decomposition, the cylindrically sym-
metric solutions with a second form have also been constructed by D’Aprile and
Siciliano in [13]. In fact, in some bounded domains with cylindrically symmetric,
the similar solutions were obtained in [5, 6, 30]. Bartsch, Dohnal and et al. [4]
also analysed the spectrum of the curl–curl operator with cylindrically symmet-
ric periodic potential V (x) = V (r, x3), and considered the following time-harmonic
Maxwell equation

∇× (∇× E) + V (x)E = Γ(x)|E|p−2E, in R3, (1.8)

where Γ(x) is a period function with respect x3. By the method of constraining
symmetric sub-manifold, the cylindrically symmetric ground state solutions of (1.8)
were obtained, one may see [46] for other extended results.

If the problem was set in some non-symmetric bounded domains or some cases
with non-symmetric potential, the methods mentioned above do not work well.
Moreover, due to the lack of weak–weak∗ continuity of J

′
λ(u) , the abstract linking

theorems established in [8, 20, 29] do not work any longer, and so we fail to look for
the suitable (PS) sequences. Even if we can obtain the bounded (PS) sequence, we
still do not know whether the weak limit is a critical point of the functional. Inspired
by the work of Szulkin and Weth in [45], Bartsch and Mederski[5] constructed a
Nehari–Pankov manifold, which is homeomorphism with the upper unit ball of
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the subspace XΩ, and in where, the (PS) sequence is obtained by the Ekeland
variational principle. On the other hand, by the compact embedding

XΩ ↪→ Lp(Ω,R3), 2 � p < 6, (1.9)

they succeeded in verifying the (PS)τ
c condition, see definition 2.20, which implies

the weak-weak∗ continuity of J
′
λ(u). We would also like to mention that the convex-

ity assumption of the nonlinearity f(x, u) plays a key role in finding the bounded
(PS) sequence, see also [6] for the weakened version. For other related results,
we may turn to [40] for the asymptotically linear case and [32] for the case with
supercritical growth at 0 and subcritical growth at infinity.

For the critical case p = 6, the embedding (1.9) above is not compact any more,
then it is rather difficult to verify the (PS)τ

c condition. Mederski [30] proposed a
compactly perturbed method and proved that the (PS) sequence contains a weakly
convergent subsequence with a nontrivial limit point. Later, Mederski and Szulkin
[33] established a general concentration-compactness lemma in RN and obtained
the sharp constant in the curl inequality. As an application, the authors dealt with
the Brezis-Nirenberg type problem by an extend skill. In the entire space R3, the
embedding above is also not compact, then a new critical point theory related to a
new topological manifold has been established by Mederski et al. in [32], there the
compactness was recovered and the existence of multiply solutions was obtained. In
a direct way, Mederski [29] established a global compactness lemma that accounts
for the lack of weak-weak∗ continuity. Moreover, a Pohozaev identity has been
established, which gives a criterion for the nonexistence of classical solution. In an
earlier work, Bartsch [4] showed that no interesting solution can be leaded under
the fully radial symmetry assumption on the potential V (x).

However, for some Kerr-type nonlinear mediums, the material law (1.3) between
the electric field E and the displacement field D becomes more delicate, see
[4, (1.8)],

D = ε0(n(x)2E + PNL(x, E)) with PNL(x, E) = χ(3)(E · E)E ,

where n2(x) = 1 + χ(1)(x) is the square of the refractive index and χ(1), χ(3) denote
the linear and cubic susceptibilities of the medium respectively. Particularly, in
some nonlocal optic materials, the refractive index n(x) is quite dependent on the
electric field E in a small neighbourhood, and the refractive index change 
n can
be represented in general form as


n(E) = s

∫ +∞

−∞
K(x− y)E(x) dx,

see [22, (1)]. This phenomenological model is of great significance in the research
of laser beams and solitary waves in nonlocal nematic liquid crystals, see
[22, 41] and the reference therein. However, these articles are based on the non-
linear Schrödinger equation, which is an asymptotic approximation of Maxwell’s
equations. To investigate more information about the electromagnetic waves in the
nonlocal optic mediums, one need to deal with the full three-dimensional Maxwell
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problem. Recently, Mandel [27] investigated the curl–curl equation with nonlocal
nonlinearity

∇× (∇× E) + E = (K(x) ∗ |E|p)|E|p−2E in R3,

and the author proved that nonlocal media may admit ground states even
though the corresponding local models do not admit. In there, the parameter
λ = −μω2ε = 1 with ε < 0 is corresponded to the new artificially produced metama-
terials with negative reflexive, see [38], and the kernel K(x) = e−|x|2 is a exponent
type responding function which expresses the nonlocal polarization of the nonlocal
optical media, see [22, 37] for more cases with oscillatory kernel functions. What’s
more, nonlocality appears naturally in optical systems with a thermal [26] and it is
known to influence the propagation of electromagnetic waves in plasmas [9]. Non-
locality also has attracted considerable interest as a means of eliminating collapse
and stabilizing multidimensional solitary waves [3] and it plays an important role in
the theory of Bose–Einstein condensation [15] where it accounts for the finite-range
many-body interactions.

1.2. Main results

In the present paper, we are interested in the curl–curl equation with critical
convolution part, namely, we consider the curl–curl equation with Riesz potential
interaction part

∇× (∇× E) + λE = (Iα(x) ∗ |E|p)|E|p−2E in R3,

where Iα : R3 −→ R is the Riesz potential of order α ∈ (0, 3) defined for x ∈ R3 \
{0} as

Iα(x) =
Aα

|x|3−α
, Aα =

Γ
(

3−α
2

)
Γ
(

α
2

)
π

N
2 2α

.

The choice of normalization constant Aα ensures that the kernel Iα enjoys the
semigroup property

Iα+β = Iα ∗ Iβ for each α, β ∈ (0, 3) such that α+ β < 3,

see for example [16, pp. 73-74]. Indeed, the classical elliptic equation with Riesz
potential has been widely studied, and it also has a rich physical background and
mathematical research value, see [17–19, 34, 36] and the reference therein.

We are going to consider the following Brezis–Nirenberg type problem for the
curl–curl equation{

∇× (∇× u) + λu =
(
Iα ∗ |u|2∗

α

)
|u|2∗

α−2u in Ω,
ν × u = 0 on ∂Ω,

(1.10)

where Ω ⊂ R3 is a bounded domain, either convex or with C1,1 boundary, ν is the
exterior normal, λ < 0 is a real parameter, 2∗α = 3 + α with 0 < α < 3 is the upper
critical exponent in the sense of the following Hardy–Littlewood–Sobolev (HLS for
short) inequality, see [24].
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Proposition 1.1. Let t, r ∈ (1,∞), α ∈ (0, N) with 1
t + N−α

N + 1
r = 2. For h ∈

Lr(RN ,RN ), g ∈ Lt(RN ,RN ), there exists a sharp constant C(r, t,N, α) indepen-
dent g and h such that∫

RN

(Iα ∗ |h|)|g|dx � C(r, t,N, α)||h||Lr(RN ,RN )||g||Lt(RN ,RN ). (1.11)

If t = r = 2N
N+α , then there is a equality in (1.11) if and only if h(x) = Cg(x) and

h(x) = A(γ2 + |x− a|2)−N+α
2 (1.12)

for some A ∈ C, 0 	= γ ∈ R and a ∈ RN .

In view of the HLS inequality, the functional corresponds to the nonlocal curl–curl
equation

Jλ(u) =
1
2

∫
Ω

|∇ × u|2 dx+
λ

2

∫
Ω

|u|2 dx− 1
2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx (1.13)

is well defined on the natural space W 2∗
0 (curl; Ω). However, due to the appearance

of the convolution part, this space is not good enough for us to prove the coercive
property of the functional. Therefore, it is necessary to introduce the Coulomb
space

Qα,2∗
α(Ω,R3) = {u : Ω −→ R3

∣∣∣ ∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx <∞},

see definition 2.1 below. Then, we may define the Coulomb space involve curl
operator as

Wα,2∗
α(curl; Ω) = {u ∈ Qα,2∗

α(Ω,R3) : ∇× u ∈ L2(Ω,R3)},

which is a Banach space (see lemma 2.5) if provided with the norm

||u||W α,2∗α (curl;Ω) := (||u||2
Qα,2∗α + |∇ × u|22)1/2.

We also need the following space

W
α,2∗

α
0 (curl; Ω) = C∞

0 (Ω,R3)
||·||

W
α,2∗α (curl;Ω) .

In this way, we can easily check that the functional (1.13) is well defined on
W

α,2∗
α

0 (curl; Ω), see lemma 2.7. In order to obtain the Brezis–Lieb lemma in the dual
space, we extend the linear functionals of the Coulomb space to a mix-norm space,
see proposition 2.2. Correspondingly, to establish the Helmholtz decomposition on
the work space Wα,2∗

α
0 (curl; Ω) and Wα,2∗

α
0 (curl; R3), see (2.34) and lemma 2.15, we
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introduce the following subspace

VΩ : = {v ∈W
α,2∗

α
0 (curl; Ω) :

∫
Ω

〈v, ϕ〉dx

= 0 for every ϕ ∈ C∞
0 (Ω,R3) with ∇× ϕ = 0},

WΩ : = {w ∈W
α,2∗

α
0 (curl; Ω) :

∫
Ω

〈w,∇× ϕ〉dx = 0 for all ϕ ∈ C∞
0 (Ω,R3)}

= {w ∈W
α,2∗

α
0 (curl; Ω) : ∇× w = 0 in the sense of distributions}.

(1.14)
Here and below 〈·, ·〉 denote the inner product. Without misunderstanding, we shall
write VR3 ,WR3 if Ω = R3. Basing on this new decomposition, we can adapt the
classical concentration–compactness lemma to suit the new situation. Owing to the
concentration-compactness lemma, we obtain the weak–weak∗ continuity of J ′

λ(u)
on the Nehari–Pankov manifold [see (4.3)]

Nλ := {u ∈W
α,2∗

α
0 (curl; Ω) \ (ṼΩ ⊕WΩ) : J ′

λ(u)|
Ru⊕ṼΩ⊕WΩ

= 0},

where ṼΩ is a subspace of VΩ on which the quadratic part of Jλ (see 4.1) is neg-
ative semi-definite. Meanwhile, the concentrated compactness lemma implies the
L2(Ω,R3) convergence for the bounded sequence. This allows us to choose the com-
pactly perturbed functional Jcp = J0 = Jλ=0 that satisfies the condition (C1) in
lemma 2.21. By setting another Nehari–Pankov manifold [see (4.4)]

Ncp = {E ∈ (VΩ ⊕WΩ) \WΩ : J ′
cp(u)|Ru⊕WΩ = 0},

and controlling the ground state energy of Jλ lower than the ground state energy
of the perturbed functional Jcp, i.e.

cλ = inf
Nλ

Jλ < inf
Ncp

Jcp = c0,

we can obtain the ground state solutions of the curl–curl equation (1.10).
It remains to prove the achievement of c0. Actually, for the classical elliptic

equation (1.6), the sharp constants corresponded to the infimums of the energy
level are only attained provided Ω = R3, and they are independent on the shape of
domain. Moreover, one can use the extremal functions to prove that the Mountain-
Pass level is below the level where the compactness holds. Inspired by the local
case in [33], we are motivated to investigate the sharp constant of the Sobolev
type inequality involving the curl operator on the entire space R3. Let Scurl,HL =
Scurl,HL(R3) be the largest constant such that the inequality∫

R3
|∇ × u|2 dx � Scurl,HL inf

w∈W
R3

(∫
R3

|Iα/2 ∗ |u+ w|2∗
α |2 dx

) 1
2∗α
. (1.15)

holds for any u ∈Wα,2∗
α(curl; R3) \WR3 . Then the achievement of the sharp

constant Scurl,HL is related to a certain least energy solution of the limiting problem

∇× (∇× u) =
(
Iα ∗ |u|2∗

α

)
|u|2∗

α−2u, in R3, (1.16)
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where u ∈W
α,2∗

α
0 (curl; R3). By setting the functional

J(u) =
1
2

∫
R3

|∇ × u|2 dx− 1
2 · 2∗α

∫
R3

|Iα/2 ∗ |u|2
∗
α |2 dx, (1.17)

and introducing the following Nehari–Pankov manifold [see (3.1)]

N :=
{
u ∈W

α,2∗
α

0 (curl; R3) \WR3 : J ′(u)u = 0 and J ′(u)|W
R3 = 0

}
,

then we have

Theorem 1.2. We have the following two conclusions:

(a). inf
N
J = 2∗

α−1
2·2∗

α
S

2∗α
2∗α−1

curl,HL and is attained. Moreover, if u ∈ N and J(u) = inf
N
J ,

then u is a ground state solution to equation (1.16) and equality holds in
(1.15) for this u. If u satisfies equality (1.15), then there are unique t > 0 and
w ∈ WR3 such that t(u+ w) ∈ N and J(t(u+ w)) = inf

N
J .

(b). Scurl,HL > SHL, where

SHL := inf
u∈D1,2(R3,R3)\{0}

∫
R3 |∇u|2 dx(∫

R3 |Iα/2 ∗ |u|2∗
α |2 dx

) 1
2∗α
. (1.18)

Note that SHL is the best constant of the combination of the HLS inequality
and the Sobolev inequality, see [17, lemma 1.2] for example. It is not clear that
whether the sharp constant Scurl,HL is independent on shape of the domain Ω or
not. Therefore, we may define another two constants Scurl,HL(Ω) and Scurl,HL(Ω).
Scurl,HL(Ω) is the largest possible constant such that the inequality∫

R3
|∇ × u|2 dx � Scurl,HL(Ω) inf

w∈W
R3

(∫
R3

|Iα/2 ∗ |u+ w|2∗
α |2 dx

) 1
2∗α

(1.19)

holds for any u ∈W
α,2∗

α
0 (curl; Ω) \WR3 with a zero extending; Scurl,HL(Ω) is

another constant such that the inequality∫
Ω

|∇ × u|2 dx � Scurl,HL(Ω) inf
w∈WΩ

(∫
Ω

|Iα/2 ∗ |u+ w|2∗
α |2 dx

) 1
2∗α
. (1.20)

holds for any u ∈W
α,2∗

α
0 (curl; Ω) \WΩ, and Scurl,HL(Ω) is largest with this

property. We compare the four constants as follow.

Theorem 1.3. Let Ω be a bounded domain, either convex or with C1,1 boundary.
Then

Scurl,HL = Scurl,HL(Ω) � Scurl,HL(Ω).

Unfortunately, we don’t have any information about the shape of the solutions
of (1.16). Hence, the method of taking cut-off functions and comparing the energy
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levels does not work well any longer. Inspired by the idea in [30], we are going
to investigate the energy levels of the ground states. From [5] we know that the
spectrum of the curl–curl operator in W 2

0 (curl; Ω) consists of the eigenvalue λ0 = 0
with infinite multiplicity and of a sequence of eigenvalues

0 < λ1 � λ1 � λ2 � · · · � λk −→ ∞

with finite multiplicity m(λk) ∈ N.
The main results for the existence are as follow:

Theorem 1.4. Suppose Ω is a bounded domain, either convex or with C1,1

boundary. Let λ ∈ (−λν ,−λν−1] for some ν � 1. Then cλ > 0 and the following
statements hold:

(a) If cλ < c0, then there is ground state solution to (1.10) , i.e. cλ is attained by
a critical point of Jλ. A sufficient condition for this inequality to hold is λ ∈
(−λν ,−λν + S̄curl,HL(Ω)|diamΩ|−

3·2∗α−α−3
2∗α ), where |diamΩ| = max

x,y∈Ω
|x− y|.

(b) There exists εν � S̄curl,HL(Ω)| diam Ω|−
3·2∗α−α−3

2∗α such that cλ is not attained
for λ ∈ (−λν + εν ,−λν−1], and cλ = c0 for λ ∈ (−λν + εν ,−λν−1]. We do
not exclude that ε > λν − λν−1, so these intervals may be empty.

(c) cλ −→ 0 as λ −→ −λ−ν , and the function

(−λν ,−λν + εν ] ∩ (−λν ,−λν−1] � λ �→ cλ ∈ (0,∞)

is continuous and strictly increasing.

(d) There exist at least �{k : −λk<λ<−λk+ 2∗
α−1
2·2∗

α
S̄curl,HL(Ω)| diam Ω|−

3·2∗α−α−3
2∗α }

pairs of solutions ±u to (1.10).

The paper is organized as follow. In §2 we introduce some work spaces on bounded
domains and entire space R3, and we adapt the concentration compactness lemma
for the curl–curl problem with nonlocal nonlinearities. And an abstract critical point
theorem is also recalled in this part for the readers’ convenience. In §3, we show
that the sharp constant Scurl,HL is attained provided Ω = R3, and we compare the
four constants as we introduced. In the last Section, we are devoted to the proof of
theorem 1.4.

2. Preliminaries and variational setting

2.1. Preliminaries

Throughout this paper we assume that Ω ⊂ R3 is a bounded domain, either
convex or with C1,1 boundary. In some cases Ω is only required to be a Lipschitz
domain, see [33] for more details. We shall look for solutions to problem (1.10)
and (1.16) in W

α,2∗
α

0 (curl; Ω) and W
α,2∗

α
0 (curl; R3) respectively. Now we are ready

to introdcue the definitions of the working spaces.
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On a critical time–harmonic Maxwell equation 11

2.1.1. Coulomb space involving curl operator.

Definition 2.1. [ 34, definition 1] Let N ∈ N, α ∈ (0, N) and p � 1. We define
the Coulomb space Qα,p(RN ,RN ) as the vector space of measurable functions u :
RN −→ RN such that

||u||Qα,p(RN ,RN ) =
(∫

RN

|Iα/2 ∗ |u|p|2dx
) 1

2p

< +∞.

It is not difficult to see that || · ||Qα,p(RN ,RN ) defines a norm, see proposition 2.1
in [34], and the Coulomb space is complete with respect to this norm. By the same
way, we also define Qα,p(Ω,RN ) as the Coulomb space on the bounded domain.
For the the dual space of Qα,p(RN ,RN ), it can be characterized by the following
proposition, and it is also adopted in Qα,p(Ω,RN ).

Proposition 2.2. [ 34, proposition 2.11] Let T be a distribution, then T ∈
(Qα,p(RN ,RN ))′ if and only if there exists G(x, y) ∈ L

2p
2p−1 (RN , L

p
p−1 (RN )) such

that for every ϕ ∈ C∞
0 (RN ,RN ),

〈T, ϕ〉 =
∫

RN

(∫
RN

G(x, y)Iα/2(x− y)
1
p dy

)
ϕ(x) dx.

Proof. By the definition of the Coulomb space Qα,p(RN ,RN ), one can observe that
the map

L : Qα,p(RN ,RN ) −→ L2p(RN , Lp(RN ))

defined by

Lu(x, y) = (Iα/2(x− y))
1
pu(y)

is a linear isometry from Qα,p(RN ,RN ) into L2p(RN , Lp(RN )). Then any linear
functional on Qα,p(RN ) can be extended to a linear functional on L2p(RN , Lp(RN )).
Namely, there exists G(x, y) ∈ L

2p
2p−1

(
RN , L

p
p−1 (RN )

)
such that

〈T, ϕ〉 = 〈G(x, y),Lϕ〉. �

For the Coulomb space involving curl operator, we have the following definition.

Definition 2.3. Let N = 3, α ∈ (0, 3) and p � 1. We define the Coulomb space
involving curl operator Wα,p(curl; R3) as the vector space of functions u ∈
Qα,p(R3,R3) such that u is weakly differentiable in R3, ∇× u ∈ L2(R3,R3) and

||u||W α,p(curl;R3) =

(∫
R3

|∇ × u|2 dx+
(∫

R3
|Iα/2 ∗ |u|p|2 dx

) 1
p

) 1
2

< +∞.

The function || · ||W α,p(curl;R3) defines a norm in view of the proposition 2.1 in
[34]. By the same way, we also define Wα,p(curl; Ω) as the Coulomb space involve
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12 M. Yang, W. Ye, and S. Zhang

curl operator on the bounded spaces, namely,

Wα,p(curl; Ω) := {u ∈ Qα,p(Ω,R3) : ∇× u ∈ L2(Ω,R3)}. (2.1)

We are going to prove that Wα,p(curl; R3) and Wα,p(curl; Ω) are Banach spaces.
The proof of completeness follows by the same arguments as in the proof of theorem
4.3 in [21] and proposition 2.2 in [34]. The first ingredient is the following Fatou
property for locally converging sequences.

Lemma 2.4. Let N = 3, α ∈ (0, 3) and p � 1. If (un)n∈N is a bounded sequence
in Wα,p(curl; R3) that converges to a function u : R3 −→ R3 in L1

loc(R
3,R3), then

u ∈Wα,p(curl; R3),∫
R3

|Iα/2 ∗ |u|p|2 dx � lim inf
n−→∞

∫
R3

|Iα/2 ∗ |un|p|2 dx, (2.2)

and ∫
R3

|∇ × u|2 dx � lim inf
n−→∞

∫
R3

|∇ × un|2 dx. (2.3)

Proof. Since (un)n∈N −→ u is bounded in Wα,p(curl; R3), we have∫
R3

|Iα/2 ∗ |un|p|2 dx � ∞, (2.4)

then by the Fatou lemma, we have∫
R3

lim inf
n−→∞

|Iα/2 ∗ |un|p|2dx � lim inf
n−→∞

∫
R3

|Iα/2 ∗ |un|p|2 dx. (2.5)

By the Fatou lemma again, we have

Iα ∗ (lim inf
n−→∞

|un|p) � lim inf
n−→∞

Iα ∗ (|un|p). (2.6)

Since (un)n∈N −→ u in L1
loc(R

3,R3), for almost every x ∈ R3, we have

Iα ∗ (lim inf
n−→∞

|un|p)(x) −→ Iα ∗ (|u|p)(x). (2.7)

Then (2.2) follows (2.5), (2.6) and (2.7).
We are going to prove (2.3). Define f on D(R3,R3) by

〈f, v〉 =
∫

R3
u · (∇× v) dx, (2.8)

since un −→ u in L1
loc(R

3,R3), we have

|〈f, v〉| = |
∫

R3
u · (∇× v)dx| = lim

n−→∞
|
∫

R3
un · (∇× v) dx|

= lim
n−→∞

|
∫

R3
(∇× un) · v dx| � lim inf

n−→∞
||∇ × un||2

(∫
R3

|v|2 dx
) 1

2

, (2.9)

where we use the Cauchy–Schwarz inequality. Since D(R3,R3) is dense in
L2(R3,R3), by the the Hahn-Banach theorem, the distribution f can be con-
tinuously extend to a linear functional on L2(R3,R3). Therefore, by the Riesz
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representation theorem, there exists F ∈ L2(R3,R3) such that for every v ∈
D(R3,R3) ∫

R3
F · v dx = 〈f, v〉 =

∫
R3
u · (∇× v) dx. (2.10)

Setting ∇× u as the curl of u in the following distribute sense∫
R3
u · (∇× v) dx =

∫
R3

(∇× u) · v dx, (2.11)

we can see F = ∇× u ∈ L2(R3,R3) in the weak sense. Choosing v = ∇× u we find
that ∫

R3
|∇ × u|2 dx � lim inf

n−→∞
||∇ × un||2

(∫
R3

|v|2dx
) 1

2

� lim inf
n−→∞

||∇ × un||2
(∫

R3
|∇ × u|2dx

) 1
2

. (2.12)

Therefore we have ∫
R3

|∇ × u|2 dx � lim inf
n−→∞

∫
R3

|∇ × un|2 dx. (2.13)

�

Lemma 2.5. Let N=3, α ∈ (0, 3) and p � 1. The normed spaces Wα,p(curl; R3) and
Wα,p(curl; Ω) are complete.

Proof. Let (un)n∈N be a Cauchy sequence in Wα,p(curl; R3). By the local estimate
of the Coulomb energy, (un)n∈N is also a Cauchy sequence in Lp

loc(R
3,R3). Hence

there exists u ∈ Lp
loc(R

3,R3) such that (un)n∈N −→ u in Lp
loc(R

3,R3). In light of
lemma 2.4, we conclude that u ∈Wα,p(curl; R3). Moreover, for every n ∈ N the
sequence (un − um)m∈N converges to (un − u) in Lp

loc(R
3,R3). Hence, by lemma

2.4 again, we have

lim sup
n−→∞

(∫
R3

|∇ × un −∇× u|2 dx+
∫

R3
|Iα/2 ∗ |un − u|p|2 dx

)
� lim sup

n−→∞
lim sup
m−→∞

(∫
R3

|∇ × un −∇× um|2 dx+
∫

R3
|Iα/2 ∗ |un − um|p|2 dx

)
� lim sup

m,n−→∞

(∫
R3

|∇ × un −∇× um|2 dx+
∫

R3
|Iα/2 ∗ |un − um|p|2 dx

)
� 0.

This implies Wα,p(curl; R3) is complete. The completeness of Wα,p(curl; Ω) can be
proved in the same way. �
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We also define

Wα,p
0 (curl; Ω) = closure of C∞

0 (Ω; R3) in Wα,p(curl; Ω).

If p lies in some suitable range, then the two Coulomb spaces are the same for the
case Ω = R3.

Lemma 2.6. Let α ∈ (0, 3), 3+α
3 � p � 3 + α, then Wα,p(curl; R3) = Wα,p

0 (curl; R3).

Proof. Let ηR ∈ C∞
0 (R3) be such that |∇ηR| � 2

R for R � |x| � 2R, ηR = 1 for |x| �
R and ηR = 0 for |x| � 2R. Then for u = (u1, u2, u3) ∈Wα,p(curl,R3), we have
ηRu −→ u in Qα,p(R3,R3) as R −→ ∞. Note that

∇× (ηRui) = (∂iηR)uj − (∂jηR)ui + ηR(∂iuj − ∂jui), i 	= j. (2.14)

If p = 2, we have (∂iηR)uj −→ 0 in L2(R3,R3) as α ∈ (0, 3). Indeed, we have∫
R3

(∂ηR)2u2
j dx =

∫
R�|x|�2R

(∂ηR)2u2
j dx �

(
2
R

)2 ∫
R�|x|�2R

u2
j dx

�
(

2
R

)2 ∫
|x|�2R

u2
j dx

� CR−2(2R)
3−α

2

(∫
|x|�2R

|Iα/2 ∗ |u|2|2dx
) 1

2

.

If p 	= 2, let q be such that 1
p + 1

q = 1
2 , then applying the Hölder inequality we have

∫
R3

(∂ηR)2u2
j dx �

(∫
R�|x|�2R

|∂iηR|q dx

) 2
q
(∫

R�|x|�2R

|uj |p dx

) 2
p

� C1(R3−q)
2
q (2R

3−α
2 )

2
p

(∫
|x|�2R

|Iα
2
∗ |u|p|2 dx

) 1
p

� C2R
p−(3+α)

p

(∫
|x|�2R

|Iα/2 ∗ |u|p|2 dx

) 1
p

.

Then, for p � 3 + α, we have (∂iηR)uj −→ 0 in L2(R3,R3) as R −→ ∞. As
∂iuj − ∂jui ∈ L2(R3), it follows that the left-hand side in (2.14) tends to ∂iuj − ∂jui

in L2(R3) as R −→ ∞. Hence ηRu −→ u in Wα,p(curl; R3) and functions of com-
pact support are dense in Wα,p(curl; R3). The rest of the proof is similar to the
[33, lemma 2.1]. �

Lemma 2.7.

(i) Jλ(u) and J(u) are well defined on W
α,2∗

α
0 (curl; Ω) and W

α,2∗
α

0 (curl; R3)
respectively.
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(ii) Let

G(u)(x, y) =

⎛⎝ 1

|x− y|
2∗α−1
2∗α

N− 2·2∗α−1
2·2∗α

α

⎞⎠ |u(y)|2∗
α |u(x)|2∗

α−1.

Then, G(u)(x, y) ∈ L
2·2∗α

2·2∗α−1 (R3;L
2∗α

2∗α−1 (R3)).

(iii) Jλ(u) and J(u) are of class C1.

Proof.

(i) From the definition of Wα,2∗
α

0 (curl; Ω) and Wα,2∗
α

0 (curl; R3) , we know that the
functionals Jλ(u) and J(u) are well defined.

(ii) Set

I(u) =
1

2 · 2∗α

∫
R3

|Iα/2 ∗ |u|2
∗
α |2 dx.

We claim that I ′(u) ∈ (Qα,2∗
α(R3,R3))′. Indeed, for any ϕ ∈ Qα,2∗

α(R3,R3),
we have

〈I ′(u), ϕ〉 =
∫

R3
(Iα ∗ |u|2∗

α)|u|2∗
α−2u · ϕdx �

(∫
R3

(Iα ∗ |u|2∗
α)|u|2∗

αdx
) 2∗α−1

2∗α

·
(∫

R3
(Iα ∗ |u|2∗

α)|ϕ|2∗
αdx

) 1
2∗α

= ||u||
2∗α−1

2

Qα,2∗α (R3,R3)
·
(∫

R3
(Iα/2 ∗ |u|2

∗
α)(Iα/2 ∗ |ϕ|2

∗
αdx)

) 1
2∗α

� ||u||
2∗α−1

2

Qα,2∗α (R3,R3)
·
(∫

R3
|Iα/2 ∗ |u|2

∗
α |2 dx

) 1
2·2∗α

·
(∫

R3
|Iα/2 ∗ |ϕ|2

∗
α |2 dx

) 1
2·2∗α

= ||u||
2∗α+1

2

Qα,2∗α (R3,R3)
· ||ϕ||Qα,2∗α (R3,R3). (2.15)

Then, by the definition of the functional space on Coulomb space, we have
I ′(u) ∈ (Qα,2∗

α(R3,R3))′.
On the other hand, G(u)(x, y) obviously satisfies that

〈I ′(u), ϕ〉 =
∫

R3

(∫
R3
G(u)(x, y)(Iα/2(x− y))

1
2∗α dy

)
ϕ(x) dx, (2.16)

Therefore, by proposition 2.2, we have G(u)(x, y) ∈ L
2·2∗α

2·2∗α−1 (R3;L
2∗α

2∗α−1 (R3)).
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(iii) We are going to show that I ′(u) is continuous. For any sequences un, u and
ϕ ∈ Qα,2∗

α(R3,R3), we have

〈(I ′(un) − I ′(u)), ϕ〉

=
∫

R3

(
Iα ∗ |un|2

∗
α

)
|un|2

∗
α−2un · ϕdx−

∫
R3

(
Iα ∗ |u|2∗

α

)
|u|2∗

α−2u · ϕdx

=
∫

R3

(
Iα ∗ (|un|2

∗
α − |u|2∗

α)
) 1

2∗α
(
Iα ∗ (|un|2

∗
α − |u|2∗

α)
) 2∗α−1

2∗α |un|2
∗
α−2un · ϕdx

+
∫

R3

(
Iα ∗ |u|2∗

α

) 1
2∗α
(
Iα ∗ |u|2∗

α

) 2∗α−1
2∗α (|un|2

∗
α−2un − |u|2∗

α−2u) · ϕdx

�
(∫

R3

(
Iα ∗ (|un|2

∗
α − |u|2∗

α)
)
|ϕ|2∗

αdx

) 1
2∗α

·
(∫

R3

(
Iα ∗ (|un|2

∗
α − |u|2∗

α)
)
|un|2

∗
α dx

) 2∗α−1
2∗α

+
(∫

R3

(
Iα ∗ |u|2∗

α

)
|ϕ|2∗

α dx
) 1

2∗α

·
(∫

R3

(
Iα ∗ |u|2∗

α

)
(|un|2

∗
α−1 − |u|2∗

α−1)
2∗α

2∗α−1 dx
) 2∗α−1

2∗α

= A1 ·A2 +A3 ·A4. (2.17)

By the semi-group property and Hölder inequality, we have

A1 =
(∫

R3

(
Iα/2 ∗ (|un|2

∗
α − |u|2∗

α)
)(

Iα/2 ∗ |ϕ|2
∗
α

)
dx
) 1

2∗α

�
(∫

R3
|Iα/2 ∗ (|un|2

∗
α − |u|2∗

α)|2 dx
) 1

2·2∗α
·
(∫

R3
|Iα/2 ∗ |ϕ|2

∗
α |2 dx

) 1
2·2∗α

= B
1

2·2∗α
1 · ||ϕ||Qα,2∗α (R3,R3), (2.18)

where B1 =
∫

R3 |Iα/2 ∗ (|un|2
∗
α − |u|2∗

α)|2dx. Recalling the mean value
theorem, and noting that |ξ| = |u| + θ|un − u| for some θ ∈ (0, 1), we have

||un|2
∗
α − |u|2∗

α | = C(2∗α)(|u| + θ|un − u|)2∗
α−1|un − u|

= |ξ|2∗
α−1|un − u| for 0 � θ � 1. (2.19)
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Therefore, by linearity of the convolution and by positivity of the
Riesz–kernel, we deduce that

B1 =
∫

R3
|Iα/2 ∗ (|ξ|2∗

α−1|un − u|)|2dx

=
∫

R3
Iα ∗ (|ξ|2∗

α−1|un − u|) · (|ξ|2∗
α−1|un − u|) dx

�
(∫

R3

(
Iα ∗ (|ξ|2∗

α−1|un − u|)
)
|ξ|2∗

α dx
) 2∗α−1

2∗α

·
(∫

R3

(
Iα ∗ (|ξ|2∗

α−1|un − u|)
)
|un − u|2∗

α dx
) 1

2∗α

=
(∫

R3

(
Iα/2 ∗ (|ξ|2∗

α−1|un − u|)
)
·
(
Iα/2 ∗ |ξ|2

∗
α

)
dx
) 2∗α−1

2∗α

·
(∫

R3

(
Iα/2 ∗ (|ξ|2∗

α−1|un − u|)
)
·
(
Iα/2 ∗ |un − u|2∗

α

)
dx
) 1

2∗α

�
(∫

R3
|Iα/2 ∗ (|ξ|2∗

α−1|un − u|)|2 dx
) 1

2
2∗α−1
2∗α

·
(∫

R3
|Iα/2 ∗ |ξ|2

∗
α |2 dx

) 1
2

2∗α−1
2∗α

·
(∫

R3
|Iα/2 ∗ (|ξ|2∗

α−1|un − u|)|2 dx
) 1

2
1

2∗α

·
(∫

R3
|Iα/2 ∗ (|un − u|2∗

α)|2 dx
) 1

2
1

2∗α

� B
1
2
1

(
||un||2

∗
α−1

Qα,2∗α (R3,R3)
+ ||u||2

∗
α−1

Qα,2∗α (R3,R3)

)
· ||un − u||Qα,2∗α (R3,R3).

(2.20)

This implies

B1 �
(
||un||2(2

∗
α−1)

Qα,2∗α (R3,R3)
+ ||u||2(2

∗
α−1)

Qα,2∗α (R3,R3)

)
· ||un − u||2

Qα,2∗α (R3,R3)
. (2.21)

Thus,

A1 �
(
||un||

2∗α−1
2∗α

Qα,2∗α (R3,R3)
+ ||u||

2∗α−1
2∗α

Qα,2∗α (R3,R3)

)
· ||un − u||

1
2∗α
Qα,2∗α (R3,R3)

· ||ϕ||Qα,2∗α (R3,R3). (2.22)
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Similarly, we have

A2 �
(
||un||

(2∗α−1)2

2∗α
Qα,2∗α (R3,R3)

+ ||u||
(2∗α−1)2

2∗α
Qα,2∗α (R3,R3)

)

· ||un − u||
2∗α−1
2∗α

Qα,2∗α (R3,R3)
· ||un||2

∗
α−1

Qα,2∗α (R3,R3)

A3 � ||u||Qα,2∗α (R3,R3)||ϕ||Qα,2∗α (R3,R3)

A4 �
(
||un||2

∗
α−2

Qα,2∗α (R3,R3)
+ ||u||2

∗
α−2

Qα,2∗α (R3,R3)

)
· ||un − u||Qα,2∗α (R3,R3)

· ||u||2
∗
α−1

Qα,2∗α (R3,R3)
.

(2.23)

Therefore, for any un −→ u in Qα,2∗
α(R3,R3), we have 〈(I ′(un) −

I ′(u)), ϕ〉 −→ 0. This implies that I(u) is C1. Therefore, Jλ(u) and J(u) are
of class C1. �

To apply the concentration compactness arguments, we need to introduce the
following Coulomb–Sobolev space.

Definition 2.8. Let Ω ⊂ RN , α ∈ (0, N) and p � 1. We define W 1,α,p(Ω) as the
scalar space of measurable functions u : Ω −→ R such that u ∈ Qα,p(Ω) and u is
weakly differentiable in Ω, Du ∈ Qα,p(Ω,RN ) and

||u||W 1,α,p(Ω) =

((∫
Ω

|Iα/2 ∗ |u|p|2 dx
) 1

2

+
(∫

Ω

|Iα/2 ∗ |Du|p|2 dx
) 1

2
) 1

p

< +∞.

We are going to prove that the Coulomb–Sobolev space W 1,α,p(Ω) is a Banach
space. Firstly, We have the following Fatou property for locally converging sequence.

Lemma 2.9. Let N ∈ N, α ∈ (0, N) and p � 1. If (un)n∈N is a bounded sequence
in W 1,α,p(Ω) such that un −→ u in L1

loc(Ω) and Dun −→ g in L1
loc(Ω,R

N ), then
g = Du and u ∈W 1,α,p(Ω),

∫
Ω

|Iα/2 ∗ |u|p|2 dx � lim inf
n−→∞

∫
Ω

|Iα/2 ∗ |un|p|2 dx, (2.24)

and ∫
Ω

|Iα/2 ∗ |Du|p|2 dx � lim inf
n−→∞

∫
Ω

|Iα/2 ∗ |Dun|p|2 dx. (2.25)
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Proof. The proof of (2.24) follows the same argument in the proof of (2.2). We are
going to prove (2.25). For v ∈ C∞

0 (Ω) we conclude that∫
Ω

un div(v) dx = −
∫

Ω

∇un · v dx. (2.26)

Since un −→ u in L1
loc(Ω), we have∫

Ω

un div(v) dx −→
∫

Ω

u div(v) dx. (2.27)

Since Dun −→ g in L1
loc(Ω,R

N ), we have

−
∫

Ω

∇un · v dx −→ −
∫

Ω

g · v dx. (2.28)

Setting Du as the weak derivation of u in the following distribute sense∫
Ω

u div(v) dx = −
∫

Ω

Du · v dx, (2.29)

we can see g = Du ∈ Lp(Ω,RN ) in the weak sense, andDun −→ Du in L1
loc(Ω,R

N ).
Based on this fact, we can obtain (2.25) by the same analysis in the proof of
(2.2). �

Lemma 2.10. Let N ∈ N, α ∈ (0, N) and p � 1. The normed space W 1,α,p(Ω) is
complete.

Proof. Let (un)n∈N be a Cauchy sequence in W 1,α,p(Ω). By the local estimate
of the Coulomb energy, (un)n∈N and (Dun)n∈N are also the Cauchy sequences in
Lp

loc(Ω). Hence there exists u ∈ Lp
loc(Ω) such that (un)n∈N −→ u in Lp

loc(Ω) and
g ∈ Lp

loc(Ω,R
N ) such that (Dun)n∈N −→ g in Lp

loc(Ω,R
N ). In light of lemma 2.9, we

conclude that u ∈W 1,α,p(Ω). Moreover, for every n ∈ N the sequence (un − um)m∈N

converges to (un − u) in Lp
loc(Ω). Hence, by lemma 2.9 again, we have

lim sup
n−→∞

(∫
Ω

|Iα/2 ∗ |Dun −Du|p|2 dx+
∫

Ω

|Iα/2 ∗ |un − u|p|2 dx
)

� lim sup
n−→∞

lim sup
m−→∞

(∫
Ω

|Iα/2 ∗ |Dun −Dum|p|2 dx+
∫

Ω

|Iα/2 ∗ |un − um|p|2 dx
)

� lim sup
m,n−→∞

(∫
Ω

|Iα/2 ∗ |Dun −Dum|p|2 dx+
∫

Ω

|Iα/2 ∗ |un − um|p|2 dx
)

� 0.

This implies W 1,α,p(Ω) is complete. �

We show that the Coulomb–Sobolev space W 1,α,p(Ω) can be naturally identified
with the completion of the set of the test functions C∞

0 (Ω) under the norm || ·
||W 1,α,p .
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Lemma 2.11. Let N ∈ N, α ∈ (0, N) and p � 1. The space of test function C∞
0 (Ω)

is dense in W 1,α,p(Ω).

Proof. Since the test function C∞
0 (Ω) is dense in Qα,p(Ω), see proposition 2.6 in

[34], then, by lemma 2.9 the conclusion also holds in W 1,α,p(Ω). �

Similar to the Poincaré inequality for the local case, we have the following
Poincaré inequality for the nonlocal case.

Lemma 2.12. For all N ∈ N and α ∈ (0, N), there exist p ∈ (N−α
2 ,∞) if α ∈

(0, N − 2), while p ∈ [N,∞) if α ∈ [N − 2, N), such that for every a ∈ Ω and ρ > 0

∫
Bρ(a)

|Iα/2 ∗ |u|p|2 dx � Cρ
N−α

2

(∫
Bρ(a)

|Iα/2 ∗ |Du|p|2 dx

) 1
p

.

Proof. By the HLS inequality (1.11), we have

∫
Bρ(a)

|Iα/2 ∗ |u|p|2 dx � C1(α, ρ, p,N)

(∫
Bρ(a)

|u(x)|
2Np
N+α dx

)N+α
N

. (2.30)

If α ∈ (0, N − 2) and p ∈ (N−α
2 , N) ⊂ (1, N), then we have(∫

Bρ(a)

|u(x)|
2Np
N+α dx

)N+α
N

� C2(α, ρ, p,N)

(∫
Bρ(a)

|u(x)|
Np

N−p dx

)N−p
Np

� C3(α, ρ, p,N)

(∫
Bρ(a)

|Du|p dx

) 2
p

. (2.31)

On the other hand, if α ∈ (0, N − 2) and p ∈ [N,∞), we know there exists h ∈
[ 2Np
N+α+2p , N) such that(∫

Bρ(a)

|u(x)|
2Np
N+α dx

)N+α
N

� C4(α, ρ, p,N)

(∫
Bρ(a)

|Du|h dx

) 2
h

� C5(α, ρ, p,N)

(∫
Bρ(a)

|Du|p dx

) 2
p

, (2.32)

where the Hölder inequality was applied. Consequently, for α ∈ [N − 2, N), there
also exist p ∈ [N,∞) and h ∈ [ 2Np

N+α+2p , N) such that (2.32) holds.
Then the conclusion follows from (2.30), (2.31), (2.32) and the local estimate of

Coulomb energy [34, proposition 2.3], which says that(∫
Bρ(a)

|Du|p dx

) 2
p

� Cρ
N−α

2

(∫
Bρ(a)

|Iα/2 ∗ |Du|p|2 dx

) 1
p

.

�
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To establish the Helmholtz decomposition, we also define the following
Coulomb–Sobolev space.

Definition 2.13. Let Ω ⊂ R3, α ∈ (0, 3) and p ∈ (1,∞). We define W 1,α,p
0 (R3)

and W 1,α,p
0 (Ω) as the completion of C∞

0 (R3) and C∞
0 (Ω) with respect to the norm

||w||W 1,α,p
0 (R3) = |∇w|Qα,p(R3), ||w||W 1,α,p

0 (Ω) = |∇w|Qα,p(Ω).

Proposition 2.14. W 1,α,p
0 (R3) is linearly isometric to

∇W 1,α,p
0 (R3) := {∇w ∈ Qα,p(R3,R3) : w ∈W 1,α,p

0 (R3)},

and W 1,α,p
0 (Ω) is linearly isometric to

∇W 1,α,p
0 (Ω) := {∇w ∈ Qα,p(Ω,R3) : w ∈W 1,α,p

0 (Ω)}.

Proof. Set the map ∇ : W 1,α,p
0 (R3) −→ ∇W 1,α,p

0 (R3). Since the Coulomb space is
complete, the map is obviously injective and surjective. We also easily check that
the map is isometric by the definition ofW 1,α,p

0 (R3), this implies our conclusion. �

2.1.2. Helmholtz decomposition. Let D1,2(R3,R3) denote the completion of
C∞
0 (R3,R3) with respect to the norm |∇ · |2. Recall the subspace VR3 and WR3 of
W

α,2∗
α

0 (curl; R3) in the introduction, we have the following Helmholtz decomposition
on Wα,2∗

α
0 (curl; R3).

Lemma 2.15. VR3 and WR3 are closed subspaces of Wα,2∗
α

0 (curl; R3) and

W
α,2∗

α
0 (curl; R3) = VR3 ⊕∇W 1,α,2∗

α
0 (R3) = VR3 ⊕WR3 . (direct sum) (2.33)

Moreover, VR3 ⊂ D1,2(R3,R3) and the norms |∇ · |2 and || · ||W α,2∗α (curl;R3) are
equivalent in VR3 .

Proof. By the HLS inequality in proposition 1.1, there is a continuous embedding

L2∗
(R3,R3) ↪→ Qα,2∗

α(R3,R3).

Then the conclusion follows from the argument in [28, lemma 3.2]. Indeed,
Since W

1,α,2∗
α

0 (R3) is a complete space, then ∇W 1,α,2∗
α

0 (R3) is a closed sub-
space of Qα,2∗

α(R3,R3). Moreover clVR3 ∩∇W 1,α,2∗
α

0 (R3) = {0} in Qα,2∗
α(R3,R3),

hence VR3 ∩∇W 1,α,2∗
α

0 (R3) = {0} in Wα,2∗
α(curl; R3). In view of the Helmholtz

decomposition, and smooth function ϕ ∈ C∞
0 (R3,R3) can be written as

ϕ = ϕ1 + ∇ϕ2

such that ϕ1 ∈ D1,2(R3,R3) ∩ C∞(R3,R3), div(ϕ1) = 0 and ϕ2 ∈ C∞(R3) is the
Newton potential of div(ϕ). Since ϕ has compact support, then ∇ϕ2 ∈ L6(R3,R3) ⊂
Qα,2∗

α(R3,R3) and ϕ1 = ϕ−∇ϕ2 ∈ VR3 . Observe that ∇×∇ϕ1 = −
ϕ1, hence

|∇ × u|2 = |∇u|2 = ||u||D1,2(R3,R3)

for any u ∈ VR3 . By the Sobolev embedding we have VR3 is continuously embedded
in L6(R3,R3) and by the HLS inequality also in Qα,2∗

α(R3,R3). Therefore the norms
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|| · ||D1,2(R3,R3) and || · ||W α,2∗α (curl; R3) are equivalent on VR3 and by the density
argument we get the decomposition (2.33). �

For the bounded domains case, we recall the definition of V ′
Ω in [5], that is

V ′
Ω = {v ∈W 2

0 (curl; Ω) :
∫

Ω

〈v, ϕ〉dx = 0 for every ϕ ∈ C∞
0 (Ω,R3) with ∇× ϕ = 0}.

Indeed, if ϕ is supported in a ball, we have ϕ = ∇ψ for some ψ ∈ C∞
0 (Ω), hence we

have div(v) = 0 for v ∈ V ′
Ω. This implies that

V ′
Ω = {v ∈W 2

0 (curl; Ω) : div(v) = 0 in the sense of distributions}

⊂ {v ∈W 2
0 (curl; Ω) : div(v) ∈ L2(Ω,R3)} =: XN (Ω).

Furthermore, since Ω is a bounded domain, either convex or with C1,1 bound-
ary, XN (Ω) is continuously embedded in H1(Ω,R3), see [1]. Therefore in view of
the Rellich’s theorem V ′

Ω is compactly embedded in L2(Ω,R3) and continuously
in L6(Ω,R3), so is Qα,2∗

α(Ω,R3). This implies in particular that V ′
Ω ⊂ VΩ. On the

other hand, since Wα,2∗
α

0 (curl; Ω) ⊂W 2
0 (curl; Ω), we have VΩ ⊂ V ′

Ω. Therefore, we
can see that VΩ = V ′

Ω is a Hilbert space with inner product

(v, z) =
∫

Ω

〈∇ × v,∇× z〉 dx =
∫

Ω

〈∇v,∇z〉 dx.

Also, one can easily observe that VΩ is a closed linear subspace of Wα,2∗
α

0 (curl; Ω).
Therefore, by theorem 4.21 (c) in [21], we have the following Helmholtz decompo-
sition

W
α,2∗

α
0 (curl; Ω) = VΩ ⊕WΩ. (direct sum) (2.34)

and that ∫
Ω

〈v, w〉dx = 0 if v ∈ VΩ, w ∈ WΩ, (2.35)

which means that VΩ and WΩ are orthogonal in L2(Ω,R3). Then the norm

||v + w|| := ((v, v) + |w|2
Qα,2∗α )

1
2 , v ∈ VΩ, w ∈ WΩ

is equivalent to || · ||
W

α,2∗α
0 (curl;Ω)

.

For the setting of boundary condition, according to [35, theorem 3.33], there is
a continuous tangential trace operator γt : W 2(curl; Ω) −→ H−1/2(∂Ω) such that

γt(u) = ν × u|∂Ω for any u ∈ C∞(Ω,R3)

and

W 2
0 (curl; Ω) = {u ∈W 2(curl; Ω) : γt(u) = 0}.

Hence the vector field u ∈W
α,2∗

α
0 (curl; Ω) = VΩ ⊕WΩ ⊂W 2

0 (curl; Ω) satisfies the
boundary condition in (1.10).
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On the other hand, WΩ contains all gradient vectors fields, i.e. ∇W 1,α,2∗
α

0 (Ω) ⊂
WΩ. However, for some general domains, {w ∈ WΩ : div(w) = 0} may be nontrivial
(harmonic field) and hence ∇W 1,α,2∗

α
0 (Ω) � WΩ, see [6, pp. 4314–4315]. While in

the topology domains as we supposed, we have the following conclusion, which is a
trivial extended from Lemma 2.3 in [33].

Lemma 2.16. There holds WΩ =Wα,2∗
α

0 (curl; Ω) ∩WR3 =Wα,2∗
α

0 (curl; Ω) ∩∇W 1,α,2∗
α

(Ω). If ∂Ω is connected, then WΩ = ∇W 1,α,2∗
α

0 (Ω). If Ω is unbounded, WΩ =
W

α,2∗
α

0 (curl; Ω) ∩WR3 still holds.

2.2. Concentration–compactness lemma

In view of the Helmholtz decomposition, the work space is decomposed into
a Hilbert space VΩ and a Banach space WΩ. For a bounded sequence in the work
space, one can obtain the a.e convergenc in VΩ by the Rellich compactness theorem,
which is important to the weak-weak∗ continuity of J ′(u). While in the subspace
WΩ, wn = ∇pn ⇀ ∇p = w can not deduce the a.e convergenc. By setting the convex
nonlinearity satisfied the coercive condition, Merderski [33] connected the subspaces
VΩ and WΩ by the global minimum argument, then the a.e. convergenc on WΩ can
be recovered by the second concentration–compactness lemma, see Lions [25]. Since
the nonlinearity becomes a nonlocal term, we make some minor modifications to
the concentration–compactness lemma.

In this subsection, We work in some subspaces ofQα,2∗
α(Ω,R3) andQα,2∗

α(R3,R3).
Let Z ⊂ VΩ be a finite-dimension subspace of Qα,2∗

α(Ω,RN ) such that Z ∩WΩ =
{0} and put

W̃ := WΩ ⊕ Z.

Correspondingly, in R3, we put Z = {0} and W̃ = WR3 . For simplicity, we only
show the discussion on bounded domains Ω, and the case in the entire space R3 is
similar. Note that we always assume that v ∈ VR3 ⊂ D1,2(R3,R3) but not VΩ, we
then have

Lemma 2.17. Assume F (u) = (Iα ∗ |u|2∗
α)|u|2∗

α and f(u) = ∂uF (u), then F (u) is
uniformly strictly convex with respect to u ∈ RN , i.e. for any compact A ⊂ (R3 ×
R3) \ {(u, u) : u ∈ R3}

inf
x∈Ω,(u1,u2)∈A

(
1
2

(F (u1) + F (u2)) − F

(
u1 + u2

2

))
> 0; (2.36)

Moreover, for any v ∈ VR3 we find a unique w̃Ω(v) ∈ W̃ such that∫
Ω

F (v + w̃Ω(v)) dx �
∫

Ω

F (v + w̃) dx for all w̃ ∈ W̃. (2.37)

In other word,∫
Ω

〈f(v + w̃), ζ〉dx = 0 for all ζ ∈ W̃ if and only if w̃ = w̃Ω(v). (2.38)
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Proof. The uniformly convexity of F (u) follows from the proposition 2.8 in [34].
Now, we prove that F (u) is strictly convex. Set I(u) =

∫
R3 F (u) dx and u(x) =

(u1, u2, u3), then for any (s1, s2, s3) ∈ R3 we have

I(u) =
∫

Ω

|Iα/2 ∗ |u|2
∗
α |2 dx =

∫
Ω

[
Iα/2 ∗

(
3∑

i=1

si|ui|2
∗
α

)]2

dx

=
∫

Ω

[
3∑

i=1

sj

(
Iα/2 ∗ |ui|2

∗
α

)]2

dx

Set

g(s1, s2, s3) =

[
3∑

i=1

sj

(
Iα/2 ∗ |ui|2

∗
α

)]2

= h(L(s1, s2, s3)),

where h(t) = t2 ia a strict convex function and

L(s1, s2, s3) =
3∑

i=1

sj

(
Iα/2 ∗ |ui|2

∗
α

)
.

is a linear functional. Then, for each x ∈ R3, g(s1, s2, s3) is convex.
Indeed, fix λ ∈ (0, 1) and (s1, s2, s3), (r1, r2, r3) ∈ R3, we have

g((1 − λ)(s1, s2, s3) + λ(r1, r2, r3)) = h(L((1 − λ)(s1, s2, s3) + λ(r1, r2, r3)))

= h((1 − λ)L(s1, s2, s3)+λL(r1, r2, r3)) � (1−λ)h(L(s1, s2, s3))+λh(L(r1, r2, r3))

= (1 − λ)g(s1, s2, s3) + λg(r1, r2, r3).

Moreover, since L is an injective function, we deduce that g is strictly convex.
Hence, I(u) is strictly convex, so is F (u). On the other hand, I(u) is coercive in
Qα,2∗

α(Ω,R3). Then, by the global minimum theorem, we have (2.37) and (2.38). �

Denote the space of finite measures in R3 by M(R3). Then we have the following
concentration–compactness lemma, see [33, lemma 3.1] for the local case.

Lemma 2.18. Assume F (u) = (Iα ∗ |u|2∗
α)|u|2∗

α . Suppose (vn) ⊂ VR3 , vn ⇀ v0 in
VR3 , vn −→ v0 a.e. in R3, |∇vn|2 ⇀ μ and (Iα ∗ |v0|2

∗
α)|v0|2

∗
α ⇀ ρ in M(R3). Then

there exists an at most countable set I ⊂ R3 and nonnegative weights {μx}x∈I ,
{ρx}x∈I such that

μ � |∇v0|2 + Σ
x∈I

μxδx, ρ =
(
Iα ∗ |v0|2

∗
α

)
|v0|2

∗
α + Σ

x∈I
ρxδx,

and passing to a subsequence, w̃Ω(vn) ⇀ w̃Ω(v0) in W̃, w̃Ω(vn) −→ w̃Ω(v0) a.e. in
Ω and in Lp

loc(Ω) for any 1 � p � 2∗α.

Remark 2.19. If Ω = R3, W̃ = WR3 , we have the same conclusion, that is
w̃R3(vn) ⇀ w̃R3(v0) in W̃, w̃R3(vn) −→ w̃R3(v0) a.e. in R3.
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Proof. Step 1. Let ϕ ∈ C∞
0 (R3), then by the definition of SHL in (1.18), we have(∫

R3
|Iα/2 ∗ |ϕ(vn − v0)|2

∗
α |2 dx

) 1
2∗α
SHL �

∫
R3

|∇(ϕ(vn − v0))|2 dx.

This means that(∫
R3

|ϕ|2·2∗
α

(
Iα ∗ |vn − v0|2

∗
α

)
|(vn − v0)|2

∗
α dx

) 1
2∗α
SHL

�
∫

R3
|ϕ|2|∇(vn − v0)|2 dx+ o(1).

Using the Brezis-Lieb lemma for the nonlocal case on the left-hand side, see
[19, pp. 1226], we then obtain(∫

R3
|ϕ|2·2∗

α dρ
) 1

2∗α
SHL �

(∫
R3

|ϕ|2 dμ
)1/2

, (2.39)

where μ := μ− |∇v0|2 and ρ = ρ− (Iα ∗ |v0|2
∗
α)|v0|2

∗
α . Set I = {x ∈ R3 : μ({x})

> 0}. Since μ is finite and μ, μ have the same singular set, I is at most count-
able and μ � |∇v0|2 + Σx∈Iμxδx. As in the proof of lemma 2.5 in [18] it follows
from (2.39) that ρ = Σx∈Iρxδx. So μ and ρ are as claimed.

Step 2. To recover the a.e. convergence of the sequence on WΩ, we consider the
global minimum argument which connects VR3 and WΩ. Using (2.37) we infer that

|vn + w̃Ω(vn)|2·2
∗
α

Qα,2∗α �
∫

Ω

F (vn + w̃Ω(vn))dx �
∫

Ω

F (vn) dx � |vn|2·2
∗
α

Qα,2∗α . (2.40)

Since the right-hand side above is bounded, so is (|w̃Ω(vn)|Qα,2∗α ). Hence, by the
uniform convexity and reflexivity of Coulomb space, see [34, § 2.4.1], up to a
subsequence, w̃Ω(vn) ⇀ w̃0 for some w̃0.

In the following we are going to prove that w̃Ω(vn) −→ w̃0 a.e. in Ω after taking
subsequence. The convexity of F in u implies that

F

(
u1 + u2

2

)
� F (u1) +

〈
f(u1),

u2 − u1

2

〉
,

applying (2.36), we obtain for any k � 1 and |u1 − u2| � 1
k , |u1|, |u2| � k that

mk � 1
2
(F (u1) + F (u2)) − F

(
u1 + u2

2

)
� 1

4
〈f(u1) − f(u2), u1 − u2〉, (2.41)

where

mk := inf
x∈Ω,u1,u2∈R3

1
2
(F (u1) + F (u2)) − F

(
u1 + u2

2

)
> 0 for

1
k

� |u1 − u2|, |u1|, |u2| � k.

Now we decompose by w̃Ω(vn) = wn + zn, w̃0 = w0 + z0 where wn, w0 ∈ WΩ and
zn, z0 ∈ Z. Obviously, since Z is a finite dimension space, we may assume zn −→ z0
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in Z and a.e. in Ω. Notice that vn + w̃Ω(vn) is bounded in Qα,2∗
α(Ω,R3), we may

introduce

Ωn,k := {x ∈ Ω : |vn + w̃Ω(vn) − v0 − w0 − z0|

� 1
k

and |vn + w̃Ω(vn)|, |v0 + w0 + z0| � k}. (2.42)

Then, by (2.42) and (2.41), we have

4mk

∫
Ωn,k

|ϕ|2·2∗
α dx

�
∫

Ω

|ϕ|2·2∗
α〈f(vn + w̃Ω(vn)) − f(v0 + w0 + z0), vn + w̃Ω(vn) − v0 − w0 − z0〉dx

=
∫

Ω

|ϕ|2·2∗
α〈f(vn + w̃Ω(vn)) − f(v0 + w0 + z0), vn − v0〉dx

+
∫

Ω

|ϕ|2·2∗
α〈f(vn + w̃Ω(vn)) − f(v0 + w0 + z0), w̃Ω(vn) − w0 − z0〉dx = I1 + I2.

(2.43)

Since |vn + w̃Ω(vn)| � k and |v0 + w0 + z0| � k on Ωn,k, we have |vn + w̃Ω(vn)| �
C1|vn| and |v0 + w0 + z0| � C2|v0|. Then, by the similar estimation in (iii) of lemma
2.7 we have

I1 =
∫

Ω

|ϕ|2·2∗
α

〈
(Iα ∗ |vn + w̃Ω(vn)|2∗

α)|vn + w̃Ω(vn)|2∗
α−2(vn + w̃Ω(vn))

−(Iα ∗ |v0 + w0 + z0|2
∗
α)|v0 + w0 + z0|2

∗
α−2(v0 + w0 + z0), vn − v0

〉
dx

=
∫

Ω

|ϕ|2·2∗
α

〈
(Iα ∗ |vn + w̃Ω(vn)|2∗

α)|vn + w̃Ω(vn)|2∗
α−2(vn + zn)

−(Iα ∗ |v0 + w0 + z0|2
∗
α)|v0 + w0 + z0|2

∗
α−2(v0 + z0), vn − v0

〉
dx

� C

∫
Ω

|ϕ|2·2∗
α

〈
(Iα ∗ |vn|2

∗
α)|vn|2

∗
α−2vn − (Iα ∗ |v0|2

∗
α)|v0|2

∗
α−2v0, vn − v0

〉
dx

� C

(∫
Ω

|ϕ|2·2∗
α(Iα ∗ |vn − v0|2

∗
α)|vn − v0|2

∗
α dx

) 1
2∗α

= C

(∫
Ω

|ϕ|2·2∗
α dρ

) 1
2∗α
.

(2.44)

where we use the fact that Z is a finite dimension space and
∫
Ω
〈v, w〉dx = 0 see

(4.2).
Next, we are going to show that I2 = o(1). Fix l � 1. In view of lemmas 2.11,

2.12 and lemma 1.1 in [23], there exists ξn ∈W 1,α,2∗
α(Bl) such that wn = ∇ξn and

we may assume without loss of generality that
∫

Bl
ξn dx = 0. Then by the Poincaré
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inequality in lemma 2.12

||ξn||W 1,α,2∗α (Bl)
� C|wn|Qα,2∗α (Bl,R3) � C|wn|Qα,2∗α (R3,R3),

and passing to a subsequence, ξn ⇀ ξ for some ξ ∈W 1,α,2∗
α(Bl). So by the natural

compactly embedding, ξn −→ ξ in Qα,2∗
α(Bl). Now take any ϕ ∈ C∞

0 (Bl). Since
∇(|ϕ|2·2∗

α(ξn − ξ)) ∈ W̃, in view of (2.38) we get∫
Ω

〈f(vn + w̃Ω(vn)),∇(|ϕ|2·2∗
α(ξn − ξ))〉dx = 0.

That is ∫
Ω

|ϕ|2·2∗
α〈f(vn + w̃Ω(vn)), wn −∇ξ〉dx

=
∫

Ω

〈f(vn + w̃Ω(vn)),∇(|ϕ|2·2∗
α)(ξ − ξn)〉dx

where the right-hand side tends to 0 as n −→ ∞. Since wn ⇀ ∇ξ in Qα,2∗
α(Bl),∫

Ω

|ϕ|2·2∗
α〈f(v0 + ∇ξ + z0), wn −∇ξ〉dx = o(1).

Hence, recalling that w̃Ω(vn) = wn + zn and zn −→ z0, we obtain

I2 =
∫

Ω

|ϕ|2·2∗
α〈f(vn + w̃Ω(vn)) − f(v0 + ∇ξ + z0), w̃Ω(vn) −∇ξ − z0〉dx = o(1).

(2.45)
Since ϕ ∈ C∞

0 (Bl) is arbitrary, it follows from (2.43) and (2.45) that

4mk|Ωn,k ∩E| � (ρ(E))1/2∗
α + o(1) (2.46)

for any Borel set E ⊂ Bl. On the other hand, we can find an open set Ek ⊃ I such
that |Ek| < 1

2k+1 . Then, taking E = Bl \ Ek in (2.46), we have 4mk|Ωn,k ∩ (Bl \
Ek)| = o(1) as n −→ ∞ because supp(ρ) ⊂ I; hence we can find a sufficiently large
nk such that |Ωnk,k ∩Bl| < 1

2k and we obtain

|
∞
∩

j=1

∞
∪

k=j
Ωnk,k ∩Bl| � lim

j−→∞

∞
Σ

k=j
|Ωnk,k ∩Bl| � lim

j−→∞

1
2j−1

= 0.

According to the fact that w̃Ω(vn) ⇀ w̃0, one can employ the diagonal procedure
and hence find a subsequence of w̃Ω(vn) which converges to w̃0 a.e. in Ω = ∪∞

l=1Bl.
Let p ∈ [1, 2∗α]. For Ω′ ⊂ Ω such that |Ω′| < +∞ we have∫
Ω′

|vn − v0 + w̃Ω(vn) − w̃0|p dx � |Ω′|1−
p

2∗α

(∫
Ω

|vn − v0 + w̃Ω(vn) − w̃0|2
∗
α dx

) p
2∗α

� |Ω′|1−
p

2∗α |diamΩ|
3−α

2 · p
2∗α

(∫
Ω

|Iα/2 ∗ |vn − v0 + w̃Ω(vn) − w̃0|2
∗
α |2dx

) 1
2 ·

p
2∗α
,

where diamΩ = max
x,y∈Ω

|x− y|. Hence by the Vitali convergence theorem, vn − v0 +

w̃Ω(vn) − w̃0 −→ 0 in Lp
loc(Ω) after passing to a subsequence.
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Step 3. We show that w̃Ω(v0) = w̃0. Take any w̃ ∈ W̃ and observe that by the
Vitali convergence theorem,

0 =
∫

Ω

〈f(vn + w̃Ω(vn)), w̃〉dx −→
∫

Ω

〈f(v0 + w̃0), w̃〉dx,

up to a subsequence. Now (2.38) implies that w̃0 = w̃Ω(v0) which completes the
proof. �

2.3. Abstract critical point theory

For readers convenient, we end this section with recalling the abstract critical
point lemma, see [5, § 4] and [30, § 3] for more details. Let X be a reflexive
Banach space with norm || · || and with a topological direct sum decomposition
X = X+ ⊕ X̃, where X+ is a Hilbert space with a scalar product. For u ∈ X we
denote by u+ ∈ X+ and ũ ∈ X̃ the corresponding summands so that u = u+ + ũ.
We may assume that 〈u, v〉 = ||u||2 for any u ∈ X+ and that ||u||2 = ||u+||2 + ||ũ||2.
The topology T on X is defined as the product of the norm topology in X+ and
the weak topology in X̃. Thus un

T−→u is equivalent to u+
n −→ u+ and ũ ⇀ ũ.

Let J ∈ C1(X,R) be a functional on X of the form

J(u) =
1
2
||u+|| − I(u) for u = u++ũ ∈ X+⊕X̃

such that the following assumptions hold

(A1) I ∈ C1(X,R) and I(u) � I(0) = 0 for any u ∈ X.

(A2) I is T -sequentially lower semi-continuous: un
T−→u =⇒ lim inf I(un) � I(u).

(A3) If un
T−→u and I(un) −→ I(u) then un −→ u.

(A4) There exists r > 0 such that a := inf
u∈X+:||u||=r

J(u) > 0.

(B1) ||u+|| + I(u) −→ ∞ as ||u|| −→ ∞.

(B2) I(tnun)/t2n −→ ∞ if tn −→ ∞ and u+
n −→ u+ for some u+ 	= 0 as n −→ ∞.

(B3) t2−1
2 I ′(u)(u) + tI ′(u)(v) + I(u) − I(tu+ v) < 0 for every u ∈ N , t > 0, v ∈ X

such that u 	= tu+ v.

We defined the following Nehari–Pankov

N := {u ∈ X \ X̃ : J ′(u)|
Ru⊕X̃ = 0}.

Correspondingly, we defined the (PS)Tc condition for J .

Definition 2.20. We say that J satisfies the (PS)Tc condition in N if every (PS)c

sequence (un) ∈ N has a subsequence which convergence in the T topology:

un ∈ N , J(un) −→ 0, J ′(un) −→ c =⇒ un
T−→u ∈ X along a subsequence.
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We also recall the compactly perturbed problem with respect to another
decomposition of X. Namely, suppose that

X̃ = X0 ⊕X1, (2.47)

where X0,X1 are closed in X̃, and X0 is a Hilbert space. For u ∈ X̃ we denote u0 ∈
X0 and u1 ∈ X1 the corresponding summands so that u = u0 + u1. We use the same
notation for the scalar product in X+ ⊕X0 and 〈u, u〉 = ||u||2 = ||u+||2 + ||u0||2
for any u = u+ + u0 ∈ X+ ⊕X0, hence X+ and X0 are orthogonal. We consider
another functional Jcp ∈ C1(X,R) of the form

Jcp =
1
2
||u++u0||2 − Icp(u) for u = u++u0 + u1 ∈ X+⊕X0 ⊕X1.

We define the corresponding Nehari–Pankov manifold for Jcp

Ncp := {u ∈ X \X1 : J ′
cp(u)|Ru⊕X1 = 0},

and assume that Jcp satisfies all corresponding assumption (A1)–(A4), (B1)–(B3),
where we replace X+ ⊕X0, X1 and Icp instead of X+,X and I respectively.
Moreover, we enlist new additional conditions:

(C1) Jcp(un) − Jun
−→ 0 if (un) ⊂ Ncp is bounded and (u+

n + u0
n) ⇀ 0. Moreover

there is M > 0 such that Jcp(u) − J(u) � M ||u+ + u0||2 for u ∈ Ncp.

(C2) I(tnun) \ t2n −→ ∞ and tn −→ ∞ and (I(tu+
n ))n is bounded away from 0 for

any t > 1.

(C3) J ′ is weak-to-weak∗ continuous on N , i.e. if (un)n ⊂ N , un ⇀ u, then
J ′(un) ∗

⇀J ′(u) in X∗. Moreover J is weakly sequentially lower semi-
continuous on N , i.e. if (un)n ⊂ N , un ⇀ u and u ∈ N , then lim inf

n−→∞
J(un) �

J(u).

There we present the abstract critical point theorem:

Lemma 2.21. [ 30, theorem 3.2]: Let J ∈ C1(X,R) be coercive on N and let Jcp ∈
C1(X,R) be coercive on Ncp. Suppose that J and Jcp satisfy (A1)-(A4),(B1)-(B3)
and set c = inf

N
J and d = inf

Ncp

Jcp. Then the following statements hold:

(a) If (C1)–(C2) hold and β < d, then any (PS)β-sequence in N contains a
weakly convergent subsequence with a nontrivial limit point.

(b) If (C1)–(C3) hold and c < d, then c is achieved by a critical point (ground
state) of J .

(c) Suppose that J is even and satisfies the (PS)Tβ -condition in N for any β < β0

for some fixed β0 ∈ (c,∞]. Let

m(N , β0) = sup{γ(J−1((0, β) ∩N ) : β < β0} ∈ N0,

where γ stands for the Krasnoselskii genus for closed and symmetric subsets
of X. Then J has at least m(N , β0) pairs of critical points u and −u such
that u 	= 0 and c � J(u) < β0.
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3. Sharp constant Scurl,HL(R3)

3.1. Proof of theorem 1.2

In this subsection, we consider functional (1.17), which is associated to equation
(1.16), and we work on the following Nehari–Pankov manifold

N :=
{
u ∈W

α,2∗
α

0 (curl; R3) \WR3 : J ′(u)u = 0 and J ′(u)|W
R3 = 0

}
.

Lemma 3.1. There exists a continuous mapping m : VR3 \ {0} −→ N .

Proof. By lemma 2.15, Wα,2∗
α

0 (curl; R3) = VR3 ⊕WR3 . It follows from (2.37) and
(2.38) that if v ∈ VR3 and w̃R3(v) ∈ W̃ = WR3 , then we have J ′(v + w̃R3(v))|W

R3 = 0.
And as

J(t(v + w̃(v))) =
t2

2

∫
R3

|∇v|2 dx− t2·2
∗
α

2 · 2∗α

∫
R3

|Iα/2 ∗ |v + w̃R3(v)|2∗
α |2 dx, (3.1)

there is a unique t(v) > 0 such that

t(v)(v + w̃R3(v)) ∈ N for v ∈ VR3 \ {0}. (3.2)

Setting m(v) := t(v)(v + w̃R3(v)), we then note that

J(m(v)) � J(t(v + w̃R3)) for all t > 0 and w̃R3 ∈ WR3 . (3.3)

Since J(m(v)) � J(v) and there exist a, r > 0 such that J(v) � a if ||v|| = r, this
implies that N is bounded away from WR3 and hence closed. Therefore, by the
similar analysis in [33, lemma 4.4 ], the mapping m is continuous. �

Lemma 3.2. Set S := {v ∈ VR3 : ||v|| = 1}, there exist a (PS)c sequence (vn) for
J ◦m, and a (PS)c sequence (m(vn)) for J on N .

Proof. By the continuity of mapping m, we easily observe that m|S : S −→ N is a
homeomorphism with the inverse u = v +m(v) �→ v

||v|| . Recall the argument in [28,
proposition 4.4(b)], we know that J ◦m|S : S −→ R is of class C1 and is bounded
from below by the constant a > 0. By the Ekeland variational principle, there is a
(PS)c sequence (vn) ⊂ S such that

(J ◦m)(vn) −→ inf
S
J ◦m = inf

N
J � a > 0. (3.4)

Again, by the argument in [28, proposition 4.4(b)], we have (m(vn)) is a (PS)c

sequence for J on N . �

Complete of the proof of theorem 1.2. Firstly, we prove part (a). Taking a min-
imizing sequence (un) = (m(vn)) ⊂ N and set un = t(vn)(vn + w̃R3(vn)) = v′n +

https://doi.org/10.1017/prm.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.11


On a critical time–harmonic Maxwell equation 31

w̃R3(v′n) ∈ VR3 ⊕WR3 . Then we have

J(un) = J(un) − 1
2 · 2∗α

J ′(un)un =
2∗α − 1
2 · 2∗α

|∇ × un|22 =
2∗α − 1
2 · 2∗α

|∇v′n|22.

Since the norm |∇ · |2 is an equivalent norm in VR3 , it follows that J(un) is coercive
on N , hence (v′n) is bounded. On the other hand, we also have

J(un) = J(un) − 1
2
J ′(un)un =

2∗α − 1
2 · 2∗α

∫
R3

|Iα/2 ∗ |un|2
∗
α |2 dx.

By (3.4), J(un) is bounded away from 0, so is |un|Qα,2∗α � 0, and hence by (2.40),
we also have |v′n|Qα,2∗α � 0.

Denote Ts,y(v′) := s1/2v′(s · +y), where s > 0, y ∈ R3. Then, passing to a subse-
quence and using the argument in [42, theorem 1], we have vn = Tsn,yn

(v′n) ⇀ v0 for
some v0 	= 0, where (sn) ⊂ R+ and (yn) ⊂ R3. Taking subsequence again, we also
have vn −→ v0 a.e. in R3 and in view of the concentration–compactness lemma
2.18, we deduce w̃R3(vn) ⇀ w̃R3(v0) and w̃R3(vn) −→ w̃R3(v0) a.e. in R3. Setting
u := v0 + w̃R3(v0) and assume without loss of generality that sn = 1 and yn = 0,
then by lemma 4.6 in [33], we have un ⇀ u and un −→ u a.e. in R3. Moreover, by
lemma 2.7 we have

(Iα ∗ |un|2
∗
α)|un|2

∗
α−2un ⇀ (Iα ∗ |u|2∗

α)|u|2∗
α−2u in (Qα,2∗

α(R3,R3))′,

Therefore, for any z ∈W
α,2∗

α
0 (curl; R3), using weak and a.e. convergence, we have

〈J ′(un), z〉 =
∫

R3
〈∇ × un, z〉dx−

∫
R3

〈(
Iα ∗ |un|2

∗
α

)
|un(x)|2∗

α−2un(x), z
〉

dx

−→ 〈J ′(u), z〉.

This implies that u is a solution to (1.16). Using Fatou’s lemma, we deduce that

inf
N
J = J(un) + o(1) = J(un) − 1

2
J ′(un)un + o(1)

=
2∗α − 1
2 · 2∗α

∫
R3

|Iα/2 ∗ |un|2
∗
α |2 dx+ o(1) � 2∗α − 1

2 · 2∗α

∫
R3

|Iα/2 ∗ |u|2
∗
α |2 dx+ o(1)

= J(u) − 1
2
J ′(u)u+ o(1) = J(u) + o(1).

Hence J(u) � inf
N
J � J(u) and as a solution, u ∈ N .

Next, we show inf
N
J = 2∗

α−1
2·2∗

α
S

2∗α
2∗α−1

curl,HL, where Scurl,HL is the sharp constant in

(1.15), which can be rewritten as follow

Scurl,HL = inf
u∈W

α,2∗α
0 (curl;R3)
∇×u�=0

∫
R3 |∇ × u|2 dx(∫

R3 |Iα/2 ∗ |u+ w̃R3(u)|2∗
α |2dx

) 1
2∗α
. (3.5)

In fact, by (2.37), it is clear that a minimize w̃R3(u) exists uniquely for any u ∈
W

α,2∗
α

0 (curl; Ω), not only u ∈ VR3 . So by lemma 2.15, u+ w̃R3(u) = v + w̃R3(v) ∈
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VR3 ⊕WR3 for some v ∈ VR3 and therefore

inf
w∈W

R3

∫
R3

|Iα/2 ∗ |u+ w|2∗
α |2 dx =

∫
R3

|Iα/2 ∗ |u+ w̃R3(u)|2∗
α |2 dx

=
∫

R3
|Iα/2 ∗ |v + w̃R3(v)|2∗

α |2 dx. (3.6)

On the other hand, since u+ w̃R3(u) ∈ N , J ′(u)u = 0, i.e.∫
R3

|∇ × u|2 dx =
∫

R3
|Iα/2 ∗ |u+ w̃R3(u)|2∗

α |2 dx.

Then we can easily calculate that

inf
N
J =

2∗α − 1
2 · 2∗α

∫
R3

|∇ × u|2dx =
2∗α − 1
2 · 2∗α

S
2∗α

2∗α−1

curl,HL.

As we can see, if u satisfies equality (1.15), then t(u)(u+ w̃R3(u)) ∈ N and is a
minimizer for J |N and the corresponding point v in S is a minimizer for J ◦m|S ,
see (3.4). Hence v is a critical point of J ◦m|S and m(v) = u is a critical point of
J . This completes the proof of (a).

(b) To compare the constants Scurl,HL and SHL, see (3.5) and (1.18), we firstly
claim that Scurl,HL � SHL. In fact, by (3.6) and div(v) = 0, we have

Scurl,HL = inf
v∈V

R3\{0}

∫
R3 |∇v|2 dx(∫

R3 |Iα/2 ∗ |v + w̃R3(v)|2∗
α |2 dx

) 1
2∗α
. (3.7)

Then given ε > 0, we can find v 	= 0 such that

∫
R3

|∇v|2 dx � (Scurl,HL + ε)
(∫

R3
|Iα/2 ∗ |v + w̃R3(v)|2∗

α |2 dx
) 1

2∗α
.

Since w̃R3(v) is a minimizer, we deduce that

∫
R3

|∇v|2 dx � (Scurl,HL + ε)
(∫

R3
|Iα/2 ∗ |v|2

∗
α |2 dx

) 1
2∗α
.

On the other hand, let v = (v1, v2, v3), then |v| = (v2
1 + v2

2 + v2
3)

1
2 . Since 2∗

α

2 > 1,
then by the second inequality in [34, proposition 2.1], we have

(∫
R3

|Iα/2 ∗ |v|2
∗
α |2 dx

) 1
2∗α

=
(∫

R3
|Iα/2 ∗ (v2

1 + v2
2 + v2

3)
2∗α
2 |2 dx

) 1
2∗α

�
3∑
i

(∫
R3

|Iα/2 ∗ |vi|2
∗
α |2 dx

) 1
2∗α
.
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Moreover, by the definition of SHL, see (1.18), we have∫
R3

|∇v|2 dx � (Scurl,HL + ε)
SHL

· SHL ·
3∑
i

(∫
R3

|Iα/2 ∗ |vi|2
∗
α |2 dx

) 1
2∗α

� (Scurl,HL + ε)
SHL

∫
R3

|∇v|2 dx.

Hence we get our claim by Scurl,HL + ε � SHL.
Secondly, we exclude the case Scurl,HL = SHL. Otherwise, all inequalities

above become equalities with ε = 0. Particularly, SHL(
∫

R3 |Iα/2 ∗ |vi|2
∗
α |2 dx)

1
2∗α =∫

R3 |∇vi|2 dx. This implies that all vi are instantons and vi = C( b
b2+|x−a|2 )

N−2
2 , up

to multiplicative constants, see [19, lemma 1.2] for the optimal function of SHL.
A simple calculation shows that div(v) 	= 0. However, this is impossible because
v ∈ V \ {0}. Hence, Scurl,HL 	= SHL. �

3.2. Proof of theorem 1.3

To compare the sharp constants Scurl,HL(R3) and S̄curl,HL(Ω), we have intro-
duced another constant Scurl,HL(Ω). Recall from § 2.1 that we have the following
Helmholtz decomposition in entire space R3 and in the bounded domain Ω:

W
α,2∗

α
0 (curl; R3) = VR3 ⊕WR3 and W

α,2∗
α

0 (curl; Ω) = VΩ ⊕WΩ.

Then, as (3.5), we note that Scurl,HL(Ω) [see (1.19)] can be characterized as

Scurl,HL(Ω) = inf
u∈W

α,2∗α
0 (curl;Ω)
∇×u�=0

sup
w∈W

R3

∫
R3 |∇ × u|2 dx(∫

R3 |Iα/2 ∗ |u+ w|2∗
α |2 dx

) 1
2∗α

= inf
u∈W

α,2∗α
0 (curl;Ω)
∇×u�=0

∫
R3 |∇ × u|2 dx(∫

R3 |Iα/2 ∗ |u+ w̃R3(u)|2∗
α |2 dx

) 1
2∗α
, (3.8)

where u ∈W
α,2∗

α
0 (curl; Ω) is extended by 0 outside Ω. For constant S̄curl,HL(Ω) in

domains Ω 	= R3, it also can be characterized as

S̄curl,HL(Ω) = inf
u∈W

α,2∗α
0 (curl;Ω)
∇×u�=0

sup
w∈WΩ

∫
Ω
|∇ × u|2 dx(∫

Ω
|Iα/2 ∗ |u+ w|2∗

α |2 dx
) 1

2∗α

= inf
u∈W

α,2∗α
0 (curl;Ω)
∇×u�=0

∫
Ω
|∇ × u|2 dx(∫

Ω
|Iα/2 ∗ |u+ w̃Ω(u)|2∗

α |2 dx
) 1

2∗α
. (3.9)

To compare these sharp constants, we introduce the following set

NΩ := {u ∈W
α,2∗

α
0 (curl; Ω) \WΩ;J ′(u)u = 0 and J ′(u)|WΩ = 0}. (3.10)

According to the argument in [33, lemma 4.2], we have tu+ w̃R3(tu) = t(u+
w̃R3(u)) , then we may assume without loss of generality that u+ w̃R3(u) ∈ N in
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(3.8). By the maximality and uniqueness of w̃Ω(u), we easily deduce that the map-
ping u �→ w̃Ω(u) is also continuous. Therefore, we may assume that u+ w̃Ω(u) ∈ NΩ

in (3.9). Then easily calculate that

inf
N
J =

2∗α − 1
2 · 2∗α

S
2∗α

2∗α−1

curl,HL, inf
N
J |

W
α,2∗α
0 (curl;Ω)

=
2∗α − 1
2 · 2∗α

S
2∗α

2∗α−1

curl,HL(Ω), inf
NΩ

J =
2∗α − 1
2 · 2∗α

S̄
2∗α

2∗α−1

curl,HL(Ω). (3.11)

Lemma 3.3. Scurl,HL(Ω) � Scurl,HL, Scurl,HL(Ω) � S̄curl,HL(Ω).

Proof. In view of lemma 2.16, Wα,2∗
α

0 (curl; Ω) ⊂W
α,2∗

α
0 (curl; R3), we can easily

observe from (3.8) and (3.5) that Scurl,HL(Ω) � Scurl,HL. Similarly, since WΩ ⊂
WR3 , we can deduce that Scurl,HL(Ω) � S̄curl,HL(Ω) from (3.8) and (3.9). �

To complete theorem 1.3, we shall need the following inequality, which cor-
responds to the condition (B3), and the proof follows a similar argument in
[30, lemma 4.1].

Lemma 3.4. If u ∈W
α,2∗

α
0 (curl; Ω) \ {0}, u ∈ WΩ and t � 0, then

J(u) � J(tu+ w) − J ′(u)
[
t2 − 1

2
u+ tw

]
.

Moreover, strict inequality holds provided t = 1 and w = 0. (Ω = R3 admitted.)

Proof. By an explicit computation and using ∇× w = 0, we show that

J(u) − J(tu+ w) + J ′(u)
[
t2 − 1

2
u+ tw

]
=
∫

Ω

ϕ(t, x) dx,

where

ϕ(t, x) = −
〈(

Iα ∗ |u|2∗
α

)
|u(x)|2∗

α−2u(x),
t2 − 1

2
u(x) + tw(x)

〉
− 1

2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx

+
1

2 · 2∗α

∫
Ω

|Iα/2 ∗ |tu+ w|2∗
α |2 dx.

It is easy to check that ϕ(0, x) > 0 as t = 0 and ϕ(t, x) −→ ∞ as t −→ ∞. Therefore,
if there exist t such that ϕ(t, x) � 0, then there exists t0 > 0 such that ∂tϕ(t0, x) =
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0, namely

∂tϕ(t0, x) = −
〈(
Iα ∗ |u|2∗

α

)
|u(x)|2∗

α−2u(x), t0u(x) + w(x)
〉

+
〈(
Iα ∗ |t0u+ w|2∗

α

)
|t0u(x) + w(x)|2∗

α−2 (t0u(x) + w(x)) , u(x)
〉

= 0,

then either 〈u, t0u+ w〉=0, i.e. −〈u,w〉 = t0〈u, u〉 = t0|u|2, or |u| = |t0 + w|, i.e.,
−t0〈u,w〉 = t20−1

2 |u|2 + 1
2 |w|2. In the first case, we obtain that

ϕ(t0, x) =
(
t20 + 1

2
− 1

2 · 2∗α

)∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx

+
1

2 · 2∗α

∫
R3

|Iα/2 ∗ |t0u+ w|2∗
α |2 dx > 0.

And in the second case, we deduce that

ϕ(t0, x) =
1
2

∫
Ω

(Iα ∗ |u|2∗
α)|u(x)|2∗

α−2|w(x)|2 dx � 0.

Hence ϕ(t, x) � 0 for all t � 0 and the inequality is strict if w 	= 0. If w = 0, we can
see

ϕ(t, x) =
(
t2·2

∗
α

2 · 2∗α
− t2

2
+

1
2
− 1

2 · 2∗α

)∫
Ω

(Iα ∗ |u|2∗
α)|u(x)|2∗

α−2|w(x)|2dx > 0

provided t 	= 1. �

Lemma 3.5. Scurl,HL(Ω) � Scurl,HL.

Proof. By theorem 1.2(a), u is a minimizer for J on N , then we can find a sequence
(un) ⊂ C∞

0 (R3,R3) such that un −→ u. By the Helmholtz decomposition, we have
un = vn + wm, vn ∈ VR3 , wn ∈ WR3 . Since un = vn + wn −→ u = v0 + w̃R3(v0) and
therefore vn −→ v0, wn −→ w̃R3(v0). So v0 	= 0 and vn are bounded away from 0 in
Qα,2∗

α(R3,R3) due to u ∈ N .
Assume without loss of generality that 0 ∈ Ω. There exist λn such that un given

by un(x) := λ
1\2
n un(λnx) are supported in Ω, that is un(x) ∈W

α,2∗
α

0 (curl; Ω). Set
w̃R3(un) ∈ WR3 and choose tn so that tn(un + w̃R3(un)) ∈ N , then

t2n =

(∫
R3 |∇ × un|2 dx

) 1
2∗α−1(∫

R3 |Iα/2 ∗ |un + w̃R3(un)|2∗
α |2 dx

) 1
2∗α−1

. (3.12)

Since the Riesz potential is invariant with respect to translation, we have ||un|| =
||un|| and∫

R3
|Iα/2 ∗ |un + w̃R3(un)|2∗

α |2 dx =
∫

R3
|Iα/2 ∗ |un + w̃R3(un)|2∗

α |2 dx

=
∫

R3
|Iα/2 ∗ |vn + w̃R3(vn)|2∗

α |2 dx.

Therefore, as (un) is bounded, we have (un) and (w̃R3(un)) are bounded away
from 0, so is ||un(x) + w̃R3(un)(x)||Qα,2∗α . Then we deduce that (tn) is bounded,
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hence so is (t2n). Moreover, since J(un) = J(un) −→ 2∗
α−1
2·2∗

α
S

2∗α
2∗α−1

curl,HL and ||J ′(un)|| =
||J ′(un)|| −→ 0, it follows from lemma 3.4 that

2∗α − 1
2 · 2∗α

S
2∗α

2∗α−1

curl,HL = lim
n−→∞

J(un) � lim
n−→∞

(
J(tn(un + w̃R3(un)))

−J ′(un)
[
t2n − 1

2
un + t2nw̃R3(un))

])
= lim

n−→∞
J(tn(un + w̃R3(un))) � 2∗α − 1

2 · 2∗α
S

2∗α
2∗α−1

curl,HL(Ω).

The last inequality follows from the fact that un ∈W
α,2∗

α
0 (curl; Ω). �

Complete of the proof of theorem 1.3. Repeating the proof of theorem 1.2 (b) with
obvious changes, namely, change the domain R3 into Ω, change Scurl,HL into
S̄curl,HL(Ω), we have S̄curl,HL(Ω) � SHL. Since the optimal function for S̄curl,HL(Ω)
is not found in our process, we can not exclude the case S̄curl,HL(Ω) = SHL. As a
consequently, we complete the proof of theorem 1.3 by lemmas 3.3 and 3.5. �

4. Proof of theorem 1.4

According to the spectrum analysis of the curl–curl operator in the introduction,
for λ � 0, we find two closed and orthogonal subspaces V+

Ω and ṼΩ of VΩ such that
the quadratic form Q : VΩ −→ R given by

Q(v) :=
∫

Ω

(|∇ × v|2 + λ|v|2) dx =
∫

Ω

(|∇v|2 + λ|v|2) dx (4.1)

is positive defined on V+
Ω and negative semi-definite on ṼΩ where dimṼΩ <∞.

Writing u = v + w = v+ + ṽ + w ∈ V+
Ω ⊕ ṼΩ ⊕WΩ, the functional Jλ [see (1.13)]

can be expressed as

Jλ(u) =
1
2
||v+||2 +

1
2
||ṽ||2 +

λ

2

∫
Ω

(|v|2 + |w|2) dx− 1
2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx

=
1
2
||v+||2 − Iλ(v + w),

where

Iλ(v + w) = −1
2
||ṽ||2 − λ

2

∫
Ω

(|v|2 + |w|2) dx+
1

2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx.

Similarly as in [5], we shall show that Jλ satisfies the assumptions (A1)–(A4),
(B1)–(B3) and (C1)–(C3) from § 2.2.

Lemma 4.1. Conditions (A1)–(A4), (B1)–(B3) and (C2) in lemma 2.21 hold
for Jλ.
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Proof.

(i) By lemma 2.7, we have Iλ is of class C1. Since Q(v) is negative on ṼΩ, 2∗α is a
upper critical index, we have Iλ(u) � Iλ(0) = 0 for any u ∈W

α,2∗
α

0 (curl; Ω).

(ii) Since Iλ is convex, Iλ is T −sequentialy lower semicontinuous. Hence, (A2)
holds.

(iii) We easily check (A3), since un ⇀ u0 in Qα,2∗
α(Ω,R3), and Iλ(un) −→ Iλ(u0)

imply |un|Qα,2∗α −→ |u0|Qα,2∗α , thus un −→ u0 in Qα,2∗
α(Ω,R3).

(iv) Since VΩ is a Hilbert space, the HLS inequality is still valid on there, then
for any u ∈ V+

Ω , we have

J(u) = J(v, 0) =
1
2
||v||2VΩ

+
λ

2
|v|22 −

1
2 · 2∗α

∫
Ω

|Iα/2 ∗ |v|2
∗
α |2 dx

� 1
2
||v||2VΩ

+
λ

2
|v|22 −

1
2 · 2∗α

(∫
Ω

|v|6 dx
) 1

6∗2

� δ

2
||v||2VΩ

− ε|v|2 − cε|v|36 � δ

4
||v||2VΩ

− C1||v||3VΩ

for some δ, C1 > 0.

(v) Condition (B1) follows from lemma 5.1 (c) in [5]. Suppose that (||v+
n ||VΩ)n is

bounded and ||(vn, wn)|| −→ ∞ as n −→ ∞. Since dim(ṼΩ) <∞ there holds
|vn + wn|Qα,2∗α −→ ∞. Moreover by the orthogonality V+

Ω ⊥ ṼΩ in L2(Ω,R3)
and VΩ ⊥ WΩ in Qα,2∗

α(Ω,R3), we have

||ṽn||2VΩ
� C1|ṽn|22 � C1|vn|22 � C1|vn + wn|22 � C2|vn + wn|2Qα,2∗α (4.2)

for some 0 < C1 < C2. This implies

I(vn, wn) = −1
2
||ṽn|| −

λ

2
|vn + wn|22 +

1
2 · 2∗α

|vn + wn|2
∗
α

Qα,2∗α

� −C2

2
|vn + wn|2Qα,2∗α +

1
2 · 2∗α

|vn + wn|2
∗
α

Qα,2∗α −→ ∞,

because |vn + ∇wn|Qα,2∗α −→ ∞.

(vi) This part we check condition (B2) and (C2). By (4.2), we have

I(tn(vn + wn))

=
1
2
||tnṽn||2VΩ

− λ

2
|tn(vn + wn)|22 +

1
2 · 2∗α

∫
Ω

|Iα/2 ∗ |tn(vn + wn)|2∗
α |2 dx

� −1
2
t2n||ṽn||2VΩ

− λ

2
t2n|vn + wn|22 + t

2·2∗
α

n
1

2 · 2∗α

∫
Ω

|Iα/2 ∗ |vn + wn|2
∗
α |2 dx

� −C2

2
t2n||vn + wn||2Qα,2∗α

+ t
2·2∗

α
n

1
2 · 2∗α

||vn + wn||2·2
∗
α

Qα,2∗α
.
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Then

I(tn(vn + wn))/t2n � −C2

2
||ṽn||2Qα,2∗α

+ t
2·2∗

α−2
n

1
2 · 2∗α

||ṽn||2·2
∗
α

Qα,2∗α
.

If ||(vn, wn)|| −→ ∞ then I(tn(vn + wn))/t2n −→ ∞. If (||(vn, wn)||)n is
bounded. Then (|vn + wn|Qα,2∗α )n is bounded. If |vn + wn|Qα,2∗α −→ 0, then
|vn + wn|2 −→ 0 and by the orthogonality in L2(Ω,R3) which contradicts

u0 	= 0. Therefore t
2·2∗α−2
n

2·2∗
α

||ṽn||2·2
∗
α

Qα,2∗α
−→ ∞ as n −→ ∞ and again I(tn(vn +

wn))/t2n −→ ∞.

(vii) Condition (B3) follows from lemma 3.4 by changing J(u) into Jλ(u). �

To apply the concentration–compactness lemma, we set W̃ := ṼΩ ⊕WΩ with
w̃Ω = ṽ + w, where ṼΩ = Z, see §2.2. On the other hand, we shall extend V+

Ω into
VR3 , which is a closed subspaces of D1,2(R3,R3). Indeed, let U be a bounded domain
in R3, Ω̄ ⊂ U . Since VΩ ⊂ H1(Ω,R3), then each v ∈ VΩ may be extended to v′ ∈
H1

0 (U,R3) such that v′|Ω = v. This extension is bounded as a mapping from VΩ to
H1

0 (U,R3). Since

V ′ := {v′ ∈ H1
0 (U,R3) : v′|Ω ∈ VΩ}

is a closed subspace of H1
0 (U,R3), and hence of D1,2(R3,R3), we then can apply

lemma 2.18 with V+
Ω replacing VR3 . Set the generalized Nehari–Pankov manifold as

follow

Nλ := {u ∈W
α,2∗

α
0 (curl; Ω) \ (ṼΩ ⊕WΩ) : J ′

λ(u)|Ru⊕ṼΩ⊕W̃Ω
= 0}. (4.3)

Lemma 4.2. J ′ is weak-to-weak∗ continuous on Nλ and condition (C3) in lemma
2.21 holds.

Proof. Suppose that un ⇀ u0 in Wα,2∗
α

0 (curl; Ω). Set un = mλ(v+
n ) = v+ + w̃Ω(v+

n ).
Since V+

Ω and W̃Ω are complementary subspaces, v+
n is bounded in V+

Ω . Then
passing to a subsequence, we have v+

n ⇀ v+
0 in V+

Ω , v+
n −→ v+

0 in L2(Ω,R3)
and a.e. in Ω. Therefore, by the concentration–compactness lemma 2.18, we have
w̃Ω(v+

n ) −→ w̃Ω(v+
0 ) in L2(Ω,R3) and also a.e. in Ω. Hence, we also have un −→ u0

a.e. in Ω. Then by the Viltali convergence principle, J ′
λ is weak-to-weak∗ continuous.

Moreover, by the lower semi-continuity of Iλ, (C3) holds. �

Now, we set a compactly perturbed problem. Take X0 := ṼΩ, X1 := WΩ and let
us consider the functional Jcp : X = VΩ ⊕WΩ −→ R given by

Jcp(u) = J0(u) =
1
2

∫
Ω

|∇ × u|2 dx+
1

2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx.

Moreover we define the corresponding Nehari–Pankov manifold

Ncp = {E ∈ (VΩ ⊕WΩ) \WΩ : J ′
cp(u)|Ru⊕WΩ = 0}. (4.4)

Observe that as in lemma 4.1 we show that Jcp satisfies the corresponding condition
(A1)–(A4) and (B1)–(B3).
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Lemma 4.3. Condition (C1) in lemma 2.21 holds.

Proof. For any bounded sequence un ⊂ Ncp, we have un ⇀ u in Ncp. By the
concentrated– compactness lemma 2.18, we have un −→ u in L2(Ω,R3). Since
Jλ(u) − Jcp(u) = λ

2

∫
Ω
|u|2dx, we have condition (C1) holds. �

Lemma 4.4. Jλ is coercive on Nλ and Jcp is coercive on Ncp.

Proof. The proof is similar to lemma 4.6 in [30]. Let un = vn + wn ∈ Nλ and
suppose that ||un|| −→ ∞. Observe that

Jλ(un) = Jλ(un) − 1
2
J ′

λ(un)(un) =
(

1
2
− 1

2 · 2∗α

)
|un|2·2

∗
α

Qα,2∗α � C1|wn|2·2
∗
α

Qα,2∗α

for some constant C1 > 0, since WΩ is closed, clVΩ ∩WΩ = {0} in Qα,2∗
α(Ω,R3) and

the projection clVΩ ⊕WΩ = {0} onto WΩ is continuous. Hence, if |un|Qα,2∗α −→ ∞,
then Jλ(un) −→ ∞ as n −→ ∞. Suppose that |un|Qα,2∗α is bounded, Then ||vn|| −→
∞ and

Jλ(un) = Jλ(un) − 1
2 · 2∗α

J ′
λ(un)(un)

=
(

1
2
− 1

2 · 2∗α

)(∫
Ω

|∇ × vn|2 dx+ λ

∫
Ω

|vn + wn|2 dx
)

�
(

1
2
− 1

2 · 2∗α

)(∫
Ω

|∇ × vn|2 dx+ λC2|un|2Qα,2∗α

)
,

for some constant C2 > 0. Thus Jλ(un) −→ ∞. Similarly, we show that Jcp is
coercive on Ncp. �

Lemma 4.5. Let cλ < c0 and (un)n∈N ⊂ Nλ be a Palais-Smale sequence at cλ, i.e.
Jλ(un) −→ cλ and J ′

λ(un) −→ 0 as n −→ ∞. Then un ⇀ u0 	= 0 for some u0 in
Wα,2∗

α(curl; Ω). Moreover, cλ is achieved by a critical point of Jλ.

Proof. The conclusion follows from lemmas 4.1, 4.3, 4.2, 4.4 and 2.21(a)(b). �

As we introduced before, we shall verify the (PS)c condition. Similar to
[33, lemma 6.4] we need the following version of the Brezis-Lieb lemma. Setting

N(u) =
(
Iα ∗ |u|2∗

α

)
|u(x)|2∗

α−2u(x),

then we have the following lemma.

Lemma 4.6. Suppose (un) is bounded in Qα,2∗
α(Ω,R3) and un −→ u a.e. in Ω. Then

N(un) −N(un − u) −→ N(u) in (Qα,2∗
α(Ω,R3))′ as n −→ ∞.

Proof. By the proof of lemma 2.7, we haveN(u) : Qα,2∗
α(Ω,R3) −→ (Qα,2∗

α(Ω,R3))′.

Therefore, it turns to prove that G(un) −G(un − u) −→ G(u) in L
2·2∗α

2·2∗α−1 (Ω, L
2∗α

2∗α−1
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(Ω)). Since un −→ u a.e. in Ω, we have G(un) −G(un − u) −→ G(u) a.e. in
Ω. Since un is bounded in Qα,2∗

α(Ω,R3), we have G(un) is bounded in

L
2·2∗α

2·2∗α−1

(
Ω, L

2∗α
2∗α−1 (Ω)

)
, so is G(un) −G(un − u). Then we have G(un) −G(un −

u) ⇀ G(u). Therefore, we only need to prove that

|G(un) −G(un − u)|
L

2·2∗α
2·2∗α−1 (Ω,L

2∗α
2∗α−1 (Ω))

→ |G(u)|
L

2·2∗α
2·2∗α−1

(
Ω,L

2∗α
2∗α−1 (Ω)

) .

Indeed, let A =

(
1

|x−y|
2∗α

2∗α−1 N− 2·2∗α
2·2∗α

α

) 2∗α
2∗α−1

. Then by using Vitali’s convergence

theorem we obtain

∫
Ω

(∫
Ω

|G(un) −G(un − u)|
2∗α

2∗α−1 dy
) 2·2∗α

2·2∗α−1

dx

=
∫

Ω

(∫
Ω

(A)
(
|un(y)|2∗

α |un(x)|2∗
α−1

− |un(y) − u(y)|2∗
α |un(x) − u(x)|2∗

α−1
) 2∗α

2∗α−1
dy

) 2·2∗α
2·2∗α−1

dx

=
∫

Ω

(∫
Ω

(A)
(∫ 1

0

d
dt

(
|un(y) + (t− 1)u(y)|2∗

α |un(x)

− (t− 1)u(x)|2∗
α−1

) 2∗α
2∗α−1

dt

)
dy

) 2·2∗α
2·2∗α−1

dx

=
∫ 1

0

[∫
Ω

(∫
Ω

(A)
(

(2∗α)2

2∗α − 1

〈
|un(y) + (t− 1)u(y)|

(2∗α)2

2∗α−1−2|un(x)

+ (t− 1)u(x)|2∗
α(un(y) + (t− 1)u(y)), u(y)

〉
+2∗α

〈
|un(y) + (t− 1)u(y)|

(2∗α)2

2∗α−1 |un(x)

+(t− 1)u(x)|2∗
α−2(un(x) + (t− 1)u(x)), u(x)

〉)
dy
) 2·2∗α

2·2∗α−1
dx

]
dt

−→
∫ 1

0

[∫
Ω

(∫
Ω

(A)
(

(2∗α)2

2∗α − 1

〈
|tu(y)|

(2∗α)2

2∗α−1−2|tu(x)|2∗
α(tu(y)), u(y)

〉

+2∗α

〈
|tu(y)|

(2∗α)2

2∗α−1 |tu(x)|2∗
α−2(tu(x)), u(x)

〉)
dy
) 2·2∗α

2·2∗α−1

dx

⎤⎦dt
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=
∫

Ω

(∫
Ω

(A)
(
|u(y)|2∗

α |u(x)|2∗
α−1

) 2∗α
2∗α−1

dy

) 2·2∗α
2·2∗α−1

dx

=
∫

Ω

(∫
Ω

|G(u)|
2∗α

2∗α−1 dy
) 2·2∗α

2·2∗α−1

dx. �

Lemma 4.7. Let cλ < c0 and (un)n∈N ⊂ Nλ be the Palais-Smale sequence at cλ.
Then un −→ u0 	= 0 in W

α,2∗
α

0 (curl; Ω) along a subsequence, where u0 is the
nontrivial weak limit in lemma 4.5.

Proof. Let (un) be a (PS)cλ
−sequence such that (un) ⊂ Nλ. By lemma 4.4, (un)

is bounded and we can assume that un ⇀ u0 in W
α,2∗

α
0 (curl; Ω). Then as in the

proof of lemma 4.2, we have J
′
λ(u0) = 0, this implies that u0 is a solution for (1.10).

Moreover, by the concentration–compactness lemma, we have un −→ u0 in L2∗
α

loc(Ω),
see the same analysis in lemma 4.2. On the other hand, By the compactly perturbed
analysis in lemma 4.5, the weak limits u0 	= 0. Then by the general principle for the
refined nonlocal Brezis-Lieb identity in [34, proposition 4.3 (ii) (iii)], we have

lim
n−→∞

(∫
Ω

(Iα ∗ |un|2
∗
α)|un|2

∗
α dx−

∫
Ω

(Iα ∗ |un − u0|2
∗
α)|un − u0|2

∗
α dx

)
−→

∫
Ω

(Iα ∗ |u0|2
∗
α)|u0|2

∗
α dx,

we hence have

lim
n−→∞

(Jλ(un) − Jλ(un − u0)) = Jλ(u0) � 0,

and by lemma 4.6

lim
n−→∞

(J ′
λ(un) − J ′

λ(un − u0)) = J ′
λ(u0) = 0.

Since J ′(un) −→ 0 and un −→ u0 in L2(Ω,R3), we have

lim
n−→∞

J ′
0(un − u0) = 0. (4.5)

Suppose lim inf
n−→∞

||un − u0|| > 0. Since lim
n−→∞

J ′
0(un − u0)(un − u0) = 0, we infer

that

lim inf
n−→∞

|∇ × (un − u0)|2 > 0.

Let un − u0 = vn + w̃Ω(vn) ∈ VΩ ⊕WΩ according to the Helmholtz decomposition
in W

α,2∗
α

0 (curl; Ω). If vn −→ 0 in Qα,2∗
α(Ω,R3), then by (4.5) we have J ′

0(un −
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u0)vn −→ 0, thus

|∇ × (un − u0)|22 = |∇ × vn|22 = J ′
0(un − u0)vn

+
∫

Ω

〈(
Iα ∗ |un − u0|2

∗
α

)
|un − u0|2

∗
α−2(un − u0), vn

〉
dx −→ 0

as n −→ ∞, which is a contradiction. Therefore |vn|Qα,2∗α is bounded away from
0. If wn := w̃Ω(un − u0) ∈ WΩ, then (wn) is bounded and since un − u0 + wn =
vn + w̃Ω(vn) ∈ VΩ ⊕WΩ, |un − u0 + wn|Qα,2∗α is bounded away from 0. Choose tn
so that tn(un − u0 + wn) ∈ NΩ, see (3.10). As in (3.12) we have

t2n =

(∫
Ω
|∇ × (un − u0)|2 dx

) 1
2∗α−1(∫

Ω
|Iα/2 ∗ |un − u0 + wn|2∗

α |2 dx
) 1

2∗α−1
,

and so (tn) is bounded. Then using lemma 3.4, we have

J0(un − u0) � J0(tn(un − u0 + wn)) − J ′
0(un − u0)

[
t2n − 1

2
(un − u0 + t2nwn)

]
,

so by (4.5) and since un −→ u0 in L2(Ω,R3),

cλ = lin
n−→∞

Jλ(un − u0) = lim
n−→∞

J0(un − u0) � lim
n−→∞

J0(tn(un − u0 + wn)) � c0,

which is a contradiction. Therefore, passing to a subsequence, un −→ u0, hence also
in the T −topology. �

Finally, we shall compare cλ and c0 in some ranges of λ. Recall from the third

identity in (3.11), we note that c0 = 2∗
α−1
2·2∗

α
S̄

2∗α
2∗α−1

curl,HL(Ω) � 2∗
α−1
2·2∗

α
S

2∗α
2∗α−1

HL .

Lemma 4.8. Let λ ∈ (−λν ,−λν−1] for some ν � 1. There holds

cλ = inf
Nλ

Jλ � 2∗α − 1
2 · 2∗α

(λ+ λν)
2∗α

2∗α−1 |diamΩ|
3·2∗α−α−3

2∗α−1 ,

cλ < c0 if λ < −λν + S̄curl,HL(Ω)|diamΩ|−
3·2∗α−α−3

2∗α .

Proof. Let eν be an eigenvector corresponding to λν . Then eν ∈ V+
Ω . Choose t > 0,

ṽ ∈ ṼΩ and w ∈ WΩ so that u = v + w = teν + ν̃ + w ∈ Nλ. Since λk � λν for k <
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ν,

cλ � Jλ(teν + ṽ + w)

=
λν

2

∫
Ω

|tev|2 dx+
1
2

∫
Ω

|∇ × ṽ|2 dx+
λ

2

∫
Ω

|u|2 dx− 1
2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx

� λν

2

∫
Ω

|v|2 dx+
λ

2

∫
Ω

|u|2 dx− 1
2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx

� λ+ λν

2

∫
Ω

|u|2 dx− 1
2 · 2∗α

∫
Ω

|Iα/2 ∗ |u|2
∗
α |2 dx,

� λ+ λν

2

∫
Ω

|u|2 dx− 1
2 · 2∗α

1
|diamΩ|3−α

(∫
Ω

|u|2∗
α dx

)2

,

where |diamΩ| = max
x,y∈Ω

|x− y|. Then using the Hölder inequality, we get

cλ � λ+ λν

2

[(∫
Ω

|u|2∗
αdx

) 1
2∗α
]2

|Ω|
2∗α−2
2∗α − 1

2 · 2∗α
1

|diamΩ|3−α

(∫
Ω

|u|2∗
α dx

)2

� λ+λν

2

[(∫
Ω

|u|2∗
α dx

) 1
2∗α
]2

|diamΩ|3·
2∗α−2
2∗α − 1

2 · 2∗α
1

|diamΩ|3−α

(∫
Ω

|u|2∗
α dx

)2

� 2∗α − 1
2 · 2∗α

(λ+ λν)
2∗α

2∗α−1 |diamΩ|
3·2∗α−α−3

2∗α−1 ,

where the last inequality follows from the inequality A
2 t

2 − 1
p t

p � ( 1
2 − 1

p )A
p

p−2

(A > 0).

Since c0 = 2∗
α−1
2·2∗

α
S̄

2∗α
2∗α−1

curl,HL(Ω), the second inequality follows immediately. �

Complete of the Proof of theorem 1.4. Note that if λ < −λν + S̄curl,HL(Ω)|diam

Ω|−
3·2∗α−α−3

2∗α , then cλ < c0, and by lemma 4.7, Jλ satisfies the (PS)cλ
condition,

hence satisfies the (PS)Tcλ
condition. Then statement (a) follows from lemma 4.5,

and the remaining statements (b)–(d) are similar to [33, theorem 1.4] and can be
proved by the same strategy. �

Funding
The first author Minbo Yang was partially supported by National Natural Sci-
ence Foundation of China (No. 11971436) and Zhejiang Provincal Natural Science
Foundation (No. LZ22A010001). The second author Weiwei Ye was partially sup-
ported by Natural Science Research key Projects in Universities in Anhui Province
of China (No. 2023AH050425).

Author contribution
The authors declare that they contribute to the paper equally, they all joined in
the work of analysis, calculation and organizing the paper.

https://doi.org/10.1017/prm.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.11


44 M. Yang, W. Ye, and S. Zhang

Conflict of interest
The authors declare that they have no conflict of interest between each other.

Data availability statement
All of the data for the research is included in the manuscript.

References

1 C. Amrouche, C. Bernardi, M. Dauge and V. Girault. Vector potentials in three-dimensional
non-smooth domains. Math. Methods Appl. Sci. 21 (1998), 823–864.

2 A. Azzollini, V. Benci, T. D’Aprile and D. Fortunato. Existence of static solutions of the
semilinear Maxwell equations. Ric. Mat. 55 (2006), 123–137.

3 O. Bang, W. Krolikowski, J. Wyller and J. Rasmussen. Collapse arrest and soliton
stabilization in nonlocal nonlinear media. Phys. Rev. E 66 (2002), 046619.

4 T. Bartsch, T. Dohnal, M. Plum and W. Reichel. Ground states of a nonlinear curl–curl
problem in cylindrically symmetric media. Nonlinear Differ. Equ. Appl. 34 (2016), 23–52.

5 T. Bartsch and J. Mederski. Ground and bound state solutions of semilinear time-harmonic
Maxwell equations in a bounded domain. Arch. Ration. Mech. Anal. 215 (2015), 283–306.

6 T. Bartsch and J. Mederski. Nonlinear time-harmonic Maxwell equations in an anisotropic
bounded medium. J. Funct. Anal. 272 (2017), 4304–4333.

7 V. Benci and D. Fortunato. Towards a unified field theory for classical electrodynamics.
Arch. Ration. Mech. Anal. 173 (2004), 379–414.

8 V. Benci and P. H. Rabinowitz. Critical point theorems for indefinite functionals. Invent.
Math. 52 (1979), 241–273.
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