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Here we characterize the origin and subsequent disintegration into droplets of the
type of high-speed jets formed after the sudden implosion of a locally spherical
cavity. The full spatio-temporal evolution of these types of impulsively generated
jets is described here making use of just the initial values of the interfacial normal
velocity at the axis of symmetry and of its corresponding second derivative along
the azimuthal direction, obtained straightforwardly from the solution of the Laplace
equation subjected to standard boundary conditions. The predicted time evolutions of
the jet tip radius and velocity, and of the radii of the ejected droplets, are shown to
agree well with experimental observations.
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1. Introduction
Recent technological applications related with the needle-free injection of drugs

(Mitragotri 2006) or printing (Brown et al. 2012; Basaran, Gao & Bhat 2013; Delrot
et al. 2016; Jalaal et al. 2019) resort to the impulsively generated and highly focused
jets produced either after the sudden acceleration of a liquid column limited by a
curved meniscus (Antkowiak et al. 2007; Kiyama et al. 2016) or by the velocities
induced by the rapidly expanding vapour bubble created after the almost instantaneous
vaporization of the liquid or solid volume absorbing a concentrated laser pulse
(Tagawa et al. (2012), Peters et al. (2013), Brasz et al. (2015), Delrot et al. (2016),
Kyriazis, Koukouvinis & Gavaises (2019), Turkoz et al. (2019), Oyarte Galvez et al.
(2020), see figure 1a left). This type of unsteady liquid ligament, which can even
reach supersonic velocities (Tagawa et al. 2012), experience a strong stretching in the
downstream direction until a drop, with a noticeably smaller diameter than the width
of the cavity from which the jet emanates, is ejected from its tip (see figure 1b).
These unique features of highly focused transient jets make them suitable to spread
high viscosity liquids over a substrate (Onuki, Oi & Tagawa (2018), see figure 1a
right) or to deliver, in a controlled manner, tiny amounts of drugs after the fast and
thin jet penetrates the patient’s skin (Tagawa et al. 2013).
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Motivated by the number of emerging applications described above, here we provide
a theoretical model describing the inception and subsequent dynamics of the impulsive
jets emerging from the base of a curved interface. Our theoretical results reveal that,
for given material properties of the liquid, the ejection and subsequent spatio-temporal
evolution of the jet can be described in terms of just the local values around the
axis of symmetry of the initial distribution of normal liquid velocities at the locally
spherical surface. Indeed, if the distribution of normal velocities were uniform, the
interface would be deformed preserving the spherical symmetry, not giving rise to the
emergence of a jet, as will become clear in the following section.

The paper is structured as follows: in § 2 we present the theoretical results and
compare the predictions with both our own experimental results and with those found
in the literature and § 3 is devoted to summarize our main findings in this contribution.

2. Theory and comparison with experiments

The fast and thin vertical jets observed in many different natural flows, like
those appearing when a solid impacts a liquid pool (Gekle & Gordillo 2010) or
after a bubble floating on a free surface bursts (Duchemin et al. 2002; Gordillo &
Rodríguez-Rodríguez 2019; Blanco-Rodríguez & Gordillo 2020), have their origin in
the mass conservation of the radial inflow generated by the implosion of the cavity
walls, this being the reason why these types highly unsteady flows can be modelled
theoretically as the ones induced by a distribution of sinks located at the axis of
symmetry. Similarly, the type of high-speed jets emerging from the base of a curved
interface like the one depicted in figure 1(b), arise as a result of the constancy of the
liquid flow rate of mean velocity V created by either the sudden acceleration of a
liquid column or by the expansion of the gas vapour bubble produced by the almost
instantaneous evaporation of a certain volume of liquid (see figure 1a).

Given the local nature of the flow focusing effect to be described in what follows,
from now on, and without loss of generality, we will refer to the physical situation
depicted in figure 1(c), which sketches a spherical meniscus with a radius of curvature
Rc = Rt/ cos θ of a liquid of density ρ, viscosity µ and interfacial tension coefficient
σ forming a contact angle θ with a cylindrical tube of radius Rt. The origin for
time is set at the instant the mean liquid velocity with respect to the tube walls, V ,
is imposed upstream of the meniscus and, in the following, we will consider that
the hydrodynamic time characterizing the jet formation process, Th, is much smaller
than the typical time of variation of V . Moreover, we will restrict our study to the
case of liquids with viscosities such that the boundary layer thickness verifies the
condition

√
(µ/ρ)Th � Rt, a fact implying that the liquid velocity profile upstream

of the curved interface can be considered as uniform, as it is sketched in figure 1(c).
Dimensionless variables, represented here using lower case letters to differentiate them
from their dimensional counterparts (in capitals), are defined using Rt, V and ρV2

as the characteristic dimensions of length, velocity and pressure, respectively. The
variables z and r depicted in figure 1(c) indicate the axial and radial coordinates,
χ(ψ, t) is the distance measured from the centre of the initial cavity to the free
interface, ψ is azimuthal angle in spherical coordinates and h(ψ, t) is the vertical
distance measured from the base of the initially spherical cavity (see figure 1c). Notice
that χ(ψ, t = 0) = 1/ cos θ = rc. Here we will only focus on the description of
those experimental conditions in which the flow field in the neighbourhood of the free
surface can be described using the incompressible approach and exclude the possibility
that cavitation bubbles appear, as it was reported in Kiyama et al. (2016).
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FIGURE 1. (a) Sketch of the two methods used here to generate the impulsive liquid
jet: the left image illustrates the case in which the jet formation process is triggered
by focusing a laser pulse on a liquid filled tube, whereas the right one corresponds to
the case in which the jet is generated using the more complex geometry reported by
Onuki et al. (2018), when a metal rod is shot up by a coil gun upwards, impacting
the tube. (b) Sequence showing the temporal evolution of the impulsively generated jet
using the type of device described in Onuki et al. (2018). The blue scale bar indicates
1 mm. (c) Illustration of the different variables used to describe the jet ejection process.
(d) Sketch of the device proposed in Onuki et al. (2018) to generate the impulsive
liquid jet.

Then, since viscous effects can be neglected under the conditions indicated above,
the initial normal velocity distribution at the interface can be found by solving the
Laplace equation ∇2φ= 0 for the velocity potential φ, subjected to the impenetrability
condition at the walls ∂φ/∂n = 0 (n is the normal distance to the wall), to the
condition ∂φ/∂z= 1 at the boundary where the flow rate is imposed and to the Euler–
Bernoulli equation at the free interface, which reduces to φ = 0. The straightforward
numerical solution of the Laplace equation in the simple geometrical domain sketched
in figure 1(c) or in other more complex geometries such as those reported in
Onuki et al. (2018) (see figure 1d) provides us with the initial normal velocity
distribution at the interface vr(r = rc, ψ, t = 0) = −∂φ/∂r(r = rc, ψ, t = 0) which,
due to the fact that ∂vr/∂ψ(ψ = 0) = 0, can be expressed, in the neighbourhood of
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the axis of symmetry as

vr(r= rc, ψ, t= 0)= vn0(θ) cos(k(θ)ψ) for ψ� 1, (2.1)

where vn0(θ)= vr(r = rc, ψ = 0, t= 0) and k(θ) are functions of the contact angle θ .
Notice that k > 0, which quantifies the variation of the initial radial velocity along
the azimuthal direction ψ , is calculated from the numerical solution of the Laplace
equation, which provides us with the function vr(ψ, t = 0, r = rc). Indeed, the
differentiation of (2.1) twice by ψ yields

k2
=−

1
vn0

∂2vr

∂ψ2
(ψ = 0, t= 0, r= rc). (2.2)

The initial jet velocity with respect to the tube walls, vjet is, however, larger than vn0
in (2.1) due to the flow focusing effect described in Milgram (1969), Antkowiak et al.
(2007), Tagawa et al. (2012) and Peters et al. (2013). In order to quantitatively predict
the velocity at which the jet is initially ejected, we take into account that, since the
flow field is initially perpendicular to the interface and, moreover, the liquid inertia
in the tube guarantees the constancy of the flow rate during the jet ejection process,
the integration of the continuity equation in spherical coordinates provides us with the
following equation for the radial velocity field:

vr(r, ψ, t)=
vn0 cos(kψ)r2

c

r2
. (2.3)

Equation (2.3) and the kinematic condition at the interface

dχ(ψ, t)
dt

=−vr(r= χ, ψ, t) (2.4)

provide us with the following equation for the time-evolving position of the free
interface:

χ(ψ, t)
rc
=

(
1− 3

vn0

rc
cos(kψ)t

)1/3

. (2.5)

The accuracy of expressions in (2.3) and (2.5) could be improved by adding
first-order correction terms, linear in t, accounting for the fact that the value of
potential φ at the moving free interface needs to be updated using the Euler–Bernoulli
equation. However, the simplified description provided by (2.3)–(2.5) will prove to be
sufficiently accurate to not only predict the initial jet velocity, but also the subsequent
stretching of the jet and the diameter of the ejected droplet, as it will be shown in
what follows.

Our analysis continuous by finding the expression of the time-varying vertical
position of the free surface h (see figure 1c),

h(ψ, t)
rc
= 1− cos(ψ)

χ(ψ, t)
rc
= 1− cos(ψ)

(
1− 3

vn0

rc
cos(kψ)t

)1/3

. (2.6)

As a next step, we notice that the instant at which the jet emerges is determined from
the condition that there must exist a maximum elevation of the interface at the axis
of symmetry. Since equation ∂h/∂ψ(ψ� 1)= 0 reads(

1− 3 cos(kψ)
vn0

rc
t
)
− k

sin(kψ)
tan(ψ)

vn0

rc
t= 0, (2.7)
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the instant t∗ when the jet is ejected from the base of the curved cavity, where
cos(kψ)= 1 and sin(kψ)/ tan(ψ)= k, is given by

τ ∗ =
1

3+ k2
with τ ∗ =

vn0

rc
t∗. (2.8)

The substitution of the value of τ ∗ in (2.8) into (2.3) and (2.5) particularized at
ψ = 0, yields

vjet = vr(r= χ, ψ = 0, t= t∗)= vn0

(
k2

3+ k2

)−2/3

, (2.9)

with the values of vn0 and k2 calculated from the solution of the Laplace equation
subjected to the boundary conditions detailed above.

To predict the spatio-temporal evolution of the tip of the jet for t > t∗, we make
use of the fact that, since the jet is slender and the characteristic Weber number
verifies the condition We= ρV2v2

jetRt/σ � 1, capillary effects are subdominant and the
equations governing the flow can be approximated by those given in Gekle & Gordillo
(2010),

∂r2
j

∂t
+
∂

∂z
(r2

j u)= 0⇒
D
Dt
(ln r2

j )=−s with s=
∂u
∂z

∂u
∂t
+ u

∂u
∂z
= 0⇒

Du
Dt
= 0,

 (2.10)

with rj and u indicating, respectively, the jet radius and the axial liquid velocity,
D/Dt≡ ∂/∂t+ u∂/∂z denoting the material derivative and where the small corrections
associated with the capillary pressure gradient term have been neglected at this step
of the derivation. In Blanco-Rodríguez & Gordillo (2020), the continuity equation in
(2.10) is solved once the momentum equation in (2.10) is differentiated with respect
to z in order to obtain the following expression for the strain rate:

∂

∂z

(
∂u
∂t
+ u

∂u
∂z

)
= 0⇒

Ds
Dt
+ s2
= 0⇒−

Ds
s2
=Dt⇒ s=

s0(τ )

1+ (t− τ)s0(τ )
, (2.11)

with t > t∗, τ 6 t a parameter and s0(τ ) the time-evolving dimensionless strain rate at
the spatial position where the jet meets the base of the cavity. The particularization
of (2.11) at τ = t∗ (t = t∗) provides us with the time evolution of the strain rate at
the tip of the jet for t> t∗. The value of the strain rate at the instant of jet ejection,
s0(τ = t∗), can be calculated making use of (2.3)–(2.5) and (2.8), from where it is
deduced that

s0(τ = t∗) = −
∂vr

∂r
(r= χ, ψ = 0, t= t∗)

= 2
vr

r
(r= χ, ψ = 0, t= t∗)=

2vjet

χ(ψ = 0, t= t∗)

=
2vn0

rc

3+ k2

k2
. (2.12)

Therefore, the substitution of (2.11) and (2.12) particularized at τ = t∗ into the
continuity equation in (2.10), yields the following expression for the time evolution
of the radius of the tip of the jet:

D
Dt
(ln r2

j )=−
s0(τ = t∗)

1+ (t− t∗)s0(τ = t∗)
⇒ rjet =

rj0
√

1+ (t− t∗)s0(τ = t∗)
, (2.13)
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with rj0 the jet radius at the instant of jet ejection, determined here using the
characteristic local values of the liquid velocity and of the strain rate at the apex of
the spherical cavity at t= t∗, namely,

rj0 = β
vn0

s0(τ = t∗)
, (2.14)

with β a constant of order unity, to be calculated in what follows from just one
single experiment. Equations (2.2), (2.9), (2.12), (2.13) and (2.14) will describe the
spatio-temporal evolution of the jet tip radius, but only during a finite interval of time.
Indeed, equation (2.13) expresses that the tip radius continuously decreases in time
and tends to rj0/

√
ts0 for t�1 as a consequence of the fact that the local strain rate at

the jet tip is always positive (see (2.11)). Hence, if the result expressed by (2.13) were
valid for arbitrarily large values of t, the jet tip radius would tend to zero. However,
this unphysical result is prevented thanks to capillarity, which decreases down to zero
the value of the strain rate at the top part of the jet. Indeed, following the ideas in
Gordillo & Gekle (2010), the tip of the jet is decelerated by the action of capillary
stresses as it is dictated by the momentum balance

ρR2
t V2 dvjet

dt
r3

jet ∝−σRtrjet, (2.15)

from which it is possible to estimate the variation in time of the jet tip velocity as

1vjet ∝−
σ

ρV2Rt

t− t∗

r2
jet
. (2.16)

The instant tbulb at which a drop will start being formed is the one for which the
liquid begins accumulating at the top part of the jet, this happening when the local
strain rate at the tip of the jet changes sign from positive to negative. This condition,
which would never be fulfilled in the absence of interfacial tension stresses, reads
(Gordillo & Gekle 2010),

srjet +1vjet ≈ 0⇒
σ

ρV2Rt

tbulb − t∗

r2
jet
≈

s0(t∗)
1+ (tbulb − t∗)s0(t∗)

rjet, (2.17)

with s and 1vjet in (2.17) given, respectively, by (2.11) and (2.16). In the limit (tbulb−

t∗)s0� 1, the instant tbulb at which drop formation begins can be deduced from (2.17)
as

(tbulb − t∗)2s2
0[1+ (tbulb − t∗)s0]

3/2
∝
ρV2Rt

σ
s2

0r3
j0⇒ (tbulb − t∗)s0 ∝ (We s2

0r3
j0)

2/7, (2.18)

with

We=
ρV2Rt

σ
(2.19)

and where use of (2.13) for rjet has been made. Inserting (2.18) into (2.13) provides
us with rbulb, namely, the radius of the jet at the instant tbulb − t∗,

rbulb ∝ rj0(We s2
0r3

j0)
−1/7. (2.20)
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Then, since the characteristic breakup time of the jet is the capillary time, the
dimensionless instant tdrop at which a drop will be issued from the tip of the jet is
given by

(tdrop − t∗)s0 ≈ (tbulb − t∗)s0 +
V
Rt

(
ρR3

t r3
bulb

σ

)1/2

s0 ≈ (We s2
0r3

j0)
2/7
+We1/2r3/2

bulbs0

⇒ (tdrop − t∗)s0 ∝ (We s2
0r3

j0)
2/7, (2.21)

where use of (2.20) has been made. Therefore, the radius of the drop can be calculated
inserting (2.21) into (2.13),

rdrop ∝ rj0(We s2
0r3

j0)
−1/7, (2.22)

a result that recovers the one deduced in Gordillo & Gekle (2010),

Rdrop 'KRtrj0 We−1/7
S with WeS =

ρV2Rt

σ
s2

0r3
j0 =We s2

0r3
j0, (2.23)

with K a constant of order unity whose value was fixed by means of potential flow
numerical experiments in Gordillo & Gekle (2010) to K = 0.95, and s0 and rj0 are
given, respectively, in (2.12) and (2.14). The velocity vdrop at which the drop is emitted
from the tip of the jet can be calculated from (2.16) particularized at the instant tdrop

given in (2.21),
vdrop = vjet −Cvn0We−3/7

s , (2.24)

where we have made use of (2.12)–(2.14) and of the definition of WeS in (2.23), C
is a constant of order unity and vjet is given in (2.9), with vn0 calculated from the
numerical solution of the Laplace equation. Notice that the final drop velocity given
in (2.24) is only slightly smaller than vjet because, in applications, WeS� 1.

With the purpose of validating our theoretical approach, we have made use of the
experimental data in Peters et al. (2013) and Onuki et al. (2018) (see the sketches
in figure 1a). The way the relative liquid velocity with respect to the solid walls, V ,
is calculated, differs depending on the type of experimental set-up. Indeed, when the
liquid is suddenly accelerated by a rapidly expanding vapour bubble, V is determined
using the expression deduced in Peters et al. (2013). However, when the jet is created
using the device described in Onuki et al. (2018), the liquid velocity with respect with
the tube walls, V , is calculated as the one induced upstream of the curved interface
once the first compression waves created after the impact, reach the free interface.
This is so because we checked that, for all the experimental data employed here,
2(L2+ L3)/(cT∗)&O(1), with c the speed of sound in water, L2 and L3 illustrated in
figure 1 and T∗=Rtrc/(V(1+L1/L2)vn0)τ

∗ the jet ejection time, with τ ∗ given in (2.8).
The use of the one-dimensional acoustic equations straightforwardly yields that, for the
case illustrated at the right of figure 1(a), the liquid velocity in a frame of reference
moving upwards with the tube, V , coincides with the vertical velocity acquired by the
tube after the impact, being this value measured experimentally using a high-speed
camera following the procedure detailed, for instance, in Onuki et al. (2018). Let us
point out here that Vjet is jet tip velocity measured either in the laboratory frame
of reference for the type of experiments reported in Peters et al. (2013) or in the
frame of reference moving vertically upwards with the tube velocity for the type of
experiments sketched at the right of figure 1(a).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.270


894 A3-8 J. M. Gordillo, H. Onuki and Y. Tagawa

0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60

120

100

80

60

40

20

0

10

8

6

4

2

0

√n0 = 0.31 cosœ + 0.90

√ n
0, 

k2

V j
et
 (m

 s-
1 )

cosœ V, (L1/L2 + 1)V (m s-1)

0 2 4 6 8

20
15
10
5
0

Peters et al. (2013)
Onuki et al. (2018)
Prediction

√n0 (simple geometry)
√n0 (complex geometry)

k2 = + 0.331.60
cosœ

k2 (simple geometry)
k2 (complex geometry)

(a) (b)

FIGURE 2. This figure provides us with the values of the functions vn0 and k2

corresponding to the different geometries sketched in figure 1 and also compares the
predicted and measured jet velocities under different experimental conditions. For the case
of the simple tube illustrated at the left of figure 1(a), Vjet =Vvn0(k2/(3+ k2))−2/3 with V
calculated using the result in Peters et al. (2013), while for the geometrical arrangement
sketched at the right of figure 1(a), Vjet = (L1/L2 + 1)Vvn0(k2/(3+ k2))−2/3 (Onuki et al.
2018), with V the vertical tube velocity measured experimentally. In panel (a) it is shown
that the values of vn0 ' 0.31 cos θ + 0.90 and k2

' 1.6/ cos θ + 1.33 do not depend on
the two different types of geometries sketched in figure 1(a), further validating the results
in Onuki et al. (2018). Panel (b) compares the experimental data in Peters et al. (2013)
and Onuki et al. (2018) with our predictions for the case θ = 30◦. The inset represents
the data for V 6 8 m s−1. The predicted jet velocities are in agreement with experiments.
Notice that the experimental values for the case reported in Peters et al. (2013) are slightly
smaller than the predicted ones as a consequence of the jet tip capillary deceleration
quantified in (2.16).

The values of the functions vn0 and k2, obtained by solving the Laplace equation
using COMSOL in either a simple tube for the experiments reported in Peters et al.
(2013) or in the geometry of the devices reported in Onuki et al. (2018) (see figure 1a
right), are represented in figure 2(a) as a function of cos θ . Indeed, dimensional
analysis indicates that the local functions vn0(θ) and k2(θ) should only depend on the
local radius of curvature, which in dimensionless terms reads rc= 1/ cos θ . Figure 2(a)
also provides us with useful fits to the numerical values of vn0 and k2 as a function
of cos θ . Interestingly, the result in Onuki et al. (2018), where it is reported that the
liquid velocity upstream of the concave interface is (1 + L1/L2)V , is confirmed in
figure 2(a), where it is shown that the jet velocity can be calculated, for the type of
geometry sketched at the right of figure 1(a), as Vjet=Vvn0(1+L1/L2)(k2/(3+ k2))−2/3.
The comparison depicted in figure 2(b) between the predicted and measured values
of the jet tip velocity for the geometrical arrangements considered in Peters et al.
(2013) and in the more complex geometry illustrated in figure 1(a) (Onuki et al.
2018), validates the expression for vjet given in (2.9). Figure 3(a) reveals that the
theoretical values calculated by means of (2.12)–(2.14) with β = 1.1, agree with the
time evolution of the jet tip radius measured experimentally. Figure 3(b) shows that
the predicted radii of the droplets ejected, given by (2.23) with K = 1.2, a value
which is very close to K = 0.95 found in the numerical experiments in Gordillo &
Gekle (2010), also agree with observations. Finally, figure 4 confirms the prediction
given in (2.24) for the velocities of the droplets ejected using the experimental data
in Onuki et al. (2018).
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FIGURE 3. (a) Comparison between experiments and the temporal evolution of the jet tip
radius predicted in (2.12)–(2.14) for the type of set-up described in Onuki et al. (2018)
once the value of the constant β is fixed to β = 1.1. (b) The radii of the ejected droplets
measured experimentally compare favourably with the values predicted by (2.23) with
K = 1.2. Notice that this value is very close to the one found numerically in Gordillo
& Gekle (2010), K = 0.95. In this figure, Rt = 1.0 × 10−3 m and the working fluid is
silicone oil purchased from the Japanese company Shin-Etsu Chemical Co., Ltd., with
ρ = 818 kg m−3, ν =µ/ρ = 10−6 m2 s−1, σ = 16.9 mN m−1 and θ = 30◦. The blue scale
bar indicates 1 mm.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.270


894 A3-10 J. M. Gordillo, H. Onuki and Y. Tagawa

0 0.1 0.2 0.3 0.4 0.5

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Prediction
Experiments

√n0Wes
-3/7

√ je
t -

 √ d
ro

p

FIGURE 4. In this figure, we have made use of the experimental data in Onuki et al.
(2018), where Rt = 1.0 × 10−3 m and the working fluid is silicone oil purchased from
the Japanese company Shin-Etsu Chemical Co., Ltd., with ρ = 818 kg m−3, ν = µ/ρ =
10−6 m2 s−1, σ =16.9 mN m−1 and θ =30◦. The continuous line represents the theoretical
prediction given in (2.24) with C= 2.69.

3. Conclusions
In this paper we have provided a theoretical description of the type of impulsive

jets issued from the base of curved cavities as a consequence of the so-called flow
focusing effect, which has been fully quantified and characterized by providing a set
of algebraic equations expressing the jet tip velocities and the radii of the droplets
ejected in terms of the material properties of the liquid, of the geometry of the device,
of the radius of curvature of the interface and of the liquid velocity which is suddenly
imposed upstream of the cavity. Since the predicted values agree with experimental
measurements, we believe that our results could find applicability in the design of
new printing or needle-free drug delivery devices using different geometries to those
investigated here.
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