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Engineering the physical and device properties of two-dimensional (2D) materials requires precise 

understanding of the position and bonding environment of individual atoms [1,2]. Numerous 

characterization techniques, such as X-ray diffraction (XRD) [3], spatially resolved photoluminescence 

(PL) [4], X-ray photoelectron spectroscopy (XPS) [5], and Raman spectroscopy [6], are frequently 

applied to the study of 2D materials and provide a wealth of information. However, most 

characterization techniques do not directly probe individual atoms and are unable to map atomic 

positions locally and across length scales. 

 

Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) 

enables the direct visualization of alloy structures and the atomic number-dependent scattering that 

makes it possible to identify the distributions of dopants or alloying atoms. Several examples have 

demonstrated this for the alloy W1-xMoxS2 [6-9] and linked the atomic distributions with physical 

properties such as vibrational anisotropy [8] and composition-dependent spin–orbit splitting [9]. For 

instance, density functional theory predicts that striping of metal atoms in the alloy W1-xMoxS2 can lead 

to a material that is electronically isotropic but possesses anisotropic thermal conductivity [8], and 

angle-resolved photoemission spectroscopy (ARPES) shows that increasing the W concentration leads 

to increased spin–orbit splitting between the upper valence bands [9]. The understanding of such 

phenomena is critical to engineering physical properties, and it is especially important for the controlled 

design of lateral heterojunctions, which are an emerging class of 2D material monolayers. In monolayer 

2D materials such as transition metal dichalcogenides (TMDs), lateral heterojunctions hold great 

promise for new designs of transistors and other electronic devices that take advantage of the unique 

geometry, properties, and precise covalent, in-plane bonding in 2D materials [10]. 

 

To date, efforts to analyze and quantify metal atoms in 2D material alloys have yielded information 

about nearest neighbors and coordination shells, and they have shown that overall, many of the materials 

synthesized display a nearly random distribution of metals [6-9]. A recent analysis of MoxRe1-xS2 

investigated the thermodynamics of metal distributions and proposed a model from which it is possible 

to make predictions about the statistics of atomic ordering and the thermodynamic history of the sample. 

In our work, we build on previous efforts to characterize and classify metal distributions in 2D 

monolayer alloys. We present results from W1-xMoxS2 films grown by metal–organic chemical vapor 

deposition (MOCVD) that have been intentionally grown with various degrees of anisotropy. Because 

MOCVD allows the controllable introduction of precursors, it is possible to target the growth of 
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predominantly random alloys, as well as alloys with ordering of the metal atoms. This, we present 

quantification of the atomic positions and make connections between the atomic structure and the 

growth conditions. We have previously demonstrated the importance of considering growth parameters 

when analyzing atomic-scale features in 2D material monolayers [11-13], and the work presented here 

makes it possible to uncover trends and engineering principles for the more complicated case of TMD 

alloys [14]. 
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