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Abstract

Let E be an elliptic curve over Q without complex multiplication. Let p ≥ 5 be a prime in Q and suppose
that E has good ordinary reduction at p. We study the dual Selmer group of E over the compositum of the
GL2 extension and the anticyclotomic Zp-extension of an imaginary quadratic extension as an Iwasawa
module.
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1. Introduction

Let F be an imaginary quadratic extension of Q and let p ≥ 5 be a prime number. Let
E be an elliptic curve over Q such that E has good ordinary reduction at all primes
of F dividing p. Let Ep∞ denote the subgroup of E(F) consisting of all p-power
torsion points of E. We attach the coordinates of the points Ep∞ to F and denote the
resulting extension of F by F∞, that is, F∞ = F(Ep∞). Let Fcyc be the cyclotomic
Zp-extension of F and let Γ := Gal(Fcyc/F). Then Fcyc ⊆ F∞ because of the Weil
pairing [10, Corollary 8.1.1]. When E does not admit complex multiplication, which
we assume throughout this paper, Gal(F∞/F) is an open subgroup of GL2(Zp) due to
a result of Serre [9]. The compositum of all Zp-extensions of F is the unique Galois
extension K∞ whose Galois group is isomorphic to Zp × Zp [11, Theorem 13.4]. Let
Fanti be the anticyclotomic Zp-extension of F which is the fixed field of the subgroup of
Gal(K∞/F) on which the conjugation of F acts by inverse. Let L∞ be the compositum
of F∞ and Fanti. Let S be a finite set of primes of F containing primes dividing p
and the primes at which E has split multiplicative reduction. Let FS be the maximal
extension of F which is unramified outside S . We note that L∞ ⊆ FS since Fanti is
unramified outside p and the only primes ramified in F∞ are those that divide p and
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Figure 1. The tower of field extensions.

those at which E has bad reduction. Thus we have the tower of field extensions shown
in Figure 1.

For the above tower, we denote the various Galois groups by

G := Gal(L∞/F), H := Gal(L∞/Fcyc), G∞ := Gal(F∞/F), A := Gal(L∞/F∞),
B := Gal(F∞/Fcyc), T := Gal(K∞/Fcyc), Γ := Gal(Fcyc/F), Γanti := Gal(Fanti/F).

Recall that G∞ is an open subgroup of GL2(Zp). It is clear from the action of Gal(F/Q)
on Gal(K∞/Q) ' Zp × Zp that Fcyc and Fanti are mutually disjoint over F. Hence Γ and
Γanti are both isomorphic to Zp. Next, B is an open subgroup of SL2(Zp). Hence, from
basic Galois theory, T is isomorphic to Zp, H is an open subgroup of SL2(Zp) × Zp
and A is isomorphic to Zp. Thus L∞/F is a compact p-adic Lie extension.

For any compact p-adic Lie group Σ, the Iwasawa algebra of Σ, denoted by Λ(Σ), is
defined by

Λ(Σ) := lim
←−
Zp[Σ/U],

where U runs over the family of open normal subgroups of Σ and the inverse limit
is taken with respect to the canonical projection maps. This algebra is left and right
Noetherian [7, Theorem 1]. For any algebraic extension N of F contained in FS , the
p∞-Selmer group Selp(E/N) is defined by

Selp(E/N) := ker
(
H1(Gal(FS /N), E[p∞]) −→

⊕
v∈S

Jv(N)
)
,

where
Jv(N) = lim

−→

⊕
ω|v

H1(Lω, E)(p).
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Here L runs over all finite extensions of F contained in N and the limit is taken with
respect to the restriction maps.

The action of the Galois group on cohomology groups induces an action on the
Selmer group. In this paper, we consider Selp(E/L∞) as a left Λ(G)-module. It is a
discrete Λ(G)-module. We also consider its compact Pontryagin dual Selp(E/L∞)∨,
which is defined by

Selp(E/L∞)∨ := Hom(Selp(E/L∞),Qp/Zp).

Note that the action of G on Selp(E/L∞)∨ is given by (gφ)(x) = φ(g−1x) for g ∈ G,
φ ∈ Selp(E/L∞)∨ and x ∈ Selp(E/L∞).

We study the structure of the Selmer group as a module over the Iwasawa algebra of
the appropriate Galois groups. The main result in this paper is the following theorem.

Theorem 1.1. Selp(E/L∞)∨ is a Λ(G)-torsion module. �

We also compute the Euler characteristic of Selp(E/L∞)∨.

Theorem 1.2. Let p be a rational prime such that p ≥ 5. Further, assume that:

(1) E has good ordinary reduction at all places v of F dividing p; and
(2) Selp(E/F) is finite.

Then we have the Euler characteristic formula

χ(G,Selp(E/L∞)) = ρp(E/F) ×
∣∣∣∣∏

v

Lv(E, 1)
∣∣∣∣
p
,

where

ρp(E/F) =
]X(E/F)(p)

∏
v|p((]Ẽv(κFv )(p))2)

(]E(F)(p))2∏
v∈S |cv|p

. �

The definition of Euler characteristic and the terms involved in the formula are
introduced at the beginning of Section 3.

2. Selmer group

In this section, we prove Theorem 1.1. To prove this theorem, we analyse the
following fundamental diagram.

0 // Selp(E/L∞)H // H1(FS /L∞, Ep∞)H //
(⊕

v|S
Jv(L∞)

)H

0 // Selp(E/Fcyc) //

α

OO

H1(FS /Fcyc, Ep∞) //

β

OO

λFcyc //
⊕
v|S

Jv(Fcyc) //

δ=⊕δv

OO

0.

(2.1)
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The vertical maps β and δ are restriction maps and α is induced by β. Note that Mazur’s
conjecture states that Selp(E/Fcyc) is Λ(Γ)-cotorsion [8]. A theorem of Kato–Rohrlich
[5, Theorem 1.5] says that Selp(E/Fcyc) is Λ(Γ)-cotorsion when F/Q is Abelian. Since
F is imaginary quadratic, Mazur’s conjecture holds in our situation and the surjectivity
of the map λFcyc follows from [3, Proposition 6.2]. Now we apply the snake lemma to
the fundamental diagram to get the exact sequence.

0 −→ ker(α) −→ ker( β) −→ ker(δ) −→ coker(α) −→ coker( β) −→ coker(δ).
(2.2)

Using the five term exact cohomology sequence, we observe that

ker( β) = H1(L∞/Fcyc, Ep∞) and coker( β) ⊆ H2(L∞/Fcyc, Ep∞).

Lemma 2.1. The groups Hi(H,Ep∞) are finite for i ≥ 0. In particular, the groups ker( β)
and coker( β) are finite.

Proof. Note that Ep∞(F∞) = Ep∞(L∞) = Ep∞ because all the p-primary torsion points
of E are defined over F∞. Clearly, A is isomorphic to a subgroup of T ' Zp. Hence
the p-cohomological dimension of A is one (A ' Zp) and

H j(A, Ep∞) = 0 for j ≥ 2. (2.3)

Further, the group A acts trivially on Ep∞ , so H0(A, Ep∞) = Ep∞ and H1(A, Ep∞) =

Hom(A,Ep∞). Since A is Abelian, the Galois group B acts on A by conjugation and we
have a homomorphism τ : B −→ Z×p = Aut(A). But B is an open subgroup of SL2(Zp)
and their Lie algebras coincide. As the Lie algebra of SL2(Zp) is simple, this implies
that there exists a subgroup B′ of B such that (i) B′ is open in B and (ii) B′ acts trivially
on A. Now consider W = F∞ ∩ K∞, which is a finite extension of Fcyc [2, Lemma 1].
The group B′ = Gal(F∞/W) satisfies both (i) and (ii). We claim that

Hom(A, Ep∞) ' Ep∞ , (2.4)

considered as B′-modules. Indeed, for a fixed topological generator γ of A, since
any homomorphism f ∈ Hom(A, Ep∞) is determined by its image on γ, it follows
that f 7→ f (γ) gives a B′-isomorphism. Here recall that the natural action of B′ on
Hom(A, E∞p ) is given by ( β · f )(γ) = β · f (τ( β−1)(γ)) for every β ∈ B′.

This, therefore, implies that Hi(B′,H1(A, Ep∞)) ' Hi(B′, Ep∞) and by [4] the groups
Hi(B, Ep∞) and Hi(B′, Ep∞) are finite for i = 1, 2. Also H0(B,H1(A, Ep∞)) = Ep∞(Fcyc)
which is finite by Imai’s theorem [6]. Thus the Hochschild–Serre spectral sequence
along with (2.3) and (2.4) implies that the Hi(H, Ep∞) are finite for i ≥ 0. This
completes the proof of the lemma. �

We now study the maps δ =
⊕

δv. Figure 2 is obtained by completing the fields at
a compatible set of primes, that is, u |w, u |w′, w |v and w′ |v. The Galois groups
are the corresponding decomposition subgroups of the Galois groups occurring in
Figure 1. Let Hu := Gal(L∞,u/F

cyc
v ), Γv := Gal(Fcyc

v /Fv), Wv := F∞,w ∩ K∞,w′ and
Gu := Gal(L∞,u/Fv). When v - p, the extension K∞,w′ is unramified over Fv. But the
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Figure 2. The tower of local field extensions.

maximal unramified extension of Fv is contained in Fcyc
v . Hence K∞,w′ = Fcyc

v , which
implies that the Galois group Au is trivial by basic Galois theory. Further, if E has
good reduction at v, then w | v is unramified in F∞. Hence, by the same argument, Bw
and Hu are trivial. However, if v is a prime of bad reduction, then Bw has dimension
one ([3, Lemma 5.1]). Thus Gu = Gal(L∞,u/Fv) = Gal(F∞,w/Fv) has dimension two
and Hu has dimension one by [3, Lemma 5.1]. When v | p, by [3, Lemma 5.1], Gu has
dimension at most four and Hu has dimension at most three.

Lemma 2.2. The Zp-corank of ker(δ) is equal to the number of primes in Fcyc at which
E has split multiplicative reduction.

Proof. We consider two cases.

Case 1. Let v - p. In this case, it follows from Kummer theory that

H1(Fcyc
v , E)(p) ' H1(Fcyc

v , Ep∞) and H1(F∞,ω, E)(p) ' H1(F∞,ω, Ep∞).

Therefore, by the Hochschild–Serre spectral sequence,

ker(δv) = H1(Hu, Ep∞) and coker(δv) ⊆ H2(Hu, Ep∞ ).

If E has good reduction at v, then all of w, w′ and u are unramified primes. But
the maximal unramified extension of Fv is contained in Fcyc

v . This implies that
F∞,w = L∞,u = K∞,w′ = Fcyc

v . So it follows that the Hi(Hu, Ep∞) are zero for i ≥ 1. This
means that ker(δv) = coker(δv) = 0.

Suppose E has bad reduction at v. Then K∞,w′ is unramified and again K∞,w′ = Fcyc
v ,

as explained above, that is, Bw = Hu. Now using the argument from [3, Lemma 5.4],
Jv(L∞) = 0, which implies that coker(δv) = 0. Note that ker(δv) = H1(Hu, Ep∞) =

H1(Bw, Ep∞), which has Zp-corank one when E has split multiplicative reduction at
v by [3, Lemma 5.13].

Case 2. Let v | p. As in [3, Lemma 2.8], ker(δv) = H1(Hu,E(L∞,u))(p) and coker(δv) =

H2(Hu, E(L∞,u))(p). For their computation, we need some further notation and
repeated use of the Hochschild–Serre spectral sequence.
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Consider the extensions Wv = F∞,w ∩ K∞,w′ , Mv = Fv(µp∞), Nv = Mv · Wv and
K′ = Mv · K∞,w′ of Fcyc

v contained in L∞,u. Denote the corresponding Galois groups
R := Gal(L∞,u/Nv), Q := Gal(K′/Nv) and P := Gal(L∞,u/K′). Clearly, Mv is a finite
extension of Fcyc

v and K′ is a finite extension of K∞,w′ . Moreover, Wv is a finite Galois
extension of Fcyc

v [2, Lemma 6]. Therefore Nv is a finite Galois extension of Fcyc
v .

Hence it is enough to prove that Hi(R, E(L∞,u))(p) is finite for i ≥ 1. Now L∞,u and Nv

are deeply ramified extensions of Fv [3, Section 5.2]. Also E has good reduction at v
so the reduced curve Ẽv is nonsingular. Hence, from [3, Proposition 5.15],

H1(Nv, E)(p) ' H1(Nv, Ẽv,p∞) and H1(L∞,u, E)(p) ' H1(L∞,u, Ẽv,p∞).

Since the p-cohomological dimension of Q is one, applying the Hochschild–Serre
spectral sequence to the extensions Nv ⊂ K′ ⊂ L∞,u, gives, for all i ≥ 1,

0 −→ H1(Q,Hi−1(P, Ẽv,p∞)) −→ Hi(R, Ẽv,p∞) −→ H0(Q,Hi(P, Ẽv,p∞)) −→ 0.

We claim that Hi(R, Ẽv,p∞) is finite for all i ≥ 1. It is sufficient to show that Hi(P, Ẽv,p∞)
is finite for all i ≥ 1. Let Gal(F∞,w/Nv) = B′w. Now P ' B′w and their actions on Ẽv,p∞

are the same as F∞,w ∩ K′ = Nv. Hence it is enough to show that Hi(B′w, Ẽv,p∞) is finite
for all i ≥ 1, which is indeed true from [3, Lemma 5.25]. Hence we conclude that
ker(δv) and coker(δv) are finite when v | p.

Compiling all the cases for δv, we conclude that ker(δ) has Zp-corank equal to the
number of primes v in Fcyc at which E has split multiplicative reduction. �

Proof of Theorem 1.1. From Equation (2.2) and the two preceding lemmas, we see
that coker(α) and ker(δ) have the same Zp-corank. Consider the left vertical exact
sequence in the fundamental diagram (2.1), namely,

0 −→ ker(α) −→ Selp(E/Fcyc) −→ Selp(E/L∞)H −→ coker(α) −→ 0.

By definition, the Zp-corank of Sel(E/Fcyc) = λ, which is the Iwasawa λ-invariant of
E over Fcyc. Hence the Pontryagin dual of Selp(E/L∞)H is a finitely generated Zp-
module of rank λ + r, where r is the number of primes of Fcyc at which E has split
multiplicative reduction. By the Nakayama lemma [1], the dual of Selp(E/L∞) is a
finitely generated Λ(H)-module of rank λ + r. Hence Selp(E/L∞) is a Λ(G)-cotorsion
module. �

3. Euler characteristic

For a p-adic Lie group Σ and a discrete Σ-module M, the Euler characteristic
χ(Σ,M) is defined as

χ(Σ,M) :=
∏
i≥0

]Hi(Σ,M)(−1)i
,

whenever it is defined [3]. In our case, the Euler characteristic is defined under the
hypotheses of Theorem 1.2. Now we introduce the terms which appear in the formula
of the G-Euler characteristic of Selp(E/L∞):
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• X(E/F) is the Tate–Shafarevich group of E over F;
• cv = |E(Fv) : E0(Fv)| denotes the local Tamagawa factor at a prime v, where

E0(Fv) is the subgroup of E(Fv) consisting of the points with nonsingular
reduction at v;

• Lv(E, 1) denotes the Euler factor of E at v;
• κFv is the residue field of F at v;
• when E has good reduction at v, Ẽv is reduction of E over Fv; and
• S1 is the set of primes of F at which E has bad reduction.

We need the following lemmas.

Lemma 3.1. We have χ(G, Ep∞) = 1.

Proof. Since cdp(Γ) = 1, the Hochschild–Serre spectral sequence takes the form

0 −→ H1(Γ,Hi−1(H, Ep∞)) −→ Hi(G, Ep∞)� H0(Γ,Hi(H, Ep∞)), (3.1)

for all i ≥ 1. The Hi(H, Ep∞) are finite for all i ≥ 0 by Lemma 2.1. When M is a finite
Γ-module, the cardinality of H1(Γ,M) and H0(Γ,M) are equal. Let

hi = ]H1(Γ,Hi−1(H, Ep∞)) = ]H0(Γ,Hi−1(H, Ep∞)).

Then, by (3.1),
]H1(G, Ep∞) = hi−1hi.

Now H6(G, Ep∞) = 0, which implies that h5 = 1. Hence

χ(G, Ep∞) = h0(hoh1)−1 · · · (h4h5)−1 = 1. �

We state the following lemma which follows exactly as for Lemma 3.1 above.

Lemma 3.2. When v | p, we have χ(Gu, Ẽv,p∞) = 1, where Gu ' Gal(L∞.u/Fv).

We will analyse the following fundamental diagram.

0 // Selp(E/L∞)G // H1(FS /L∞, Ep∞)G ψL∞ //
(⊕

v|S
Jv(L∞)

)G

0 // Selp(E/F) //

α1

OO

H1(FS /F, Ep∞) //

β1

OO

λF //
⊕
v|S

Jv(F).

δ1=
⊕

δ1v

OO

(3.2)

Lemma 3.3. In diagram (3.2), ker( β1) and coker( β1) are finite.

Proof. Using the Hochschild–Serre spectral sequence, we have ker( β1) = H1(G, Ep∞)
and coker(β1) ⊆ H2(G,Ep∞). Now G/H ' Zp, that is, cdp(G/H) = 1. The Hochschild–
Serre spectral sequence gives the exact sequence

0 // H1(G/H,Hn−1(H, Ep∞)) // Hn(G, Ep∞) // Hn(H, Ep∞)G/H // 0 .

Hence, from Lemma 2.1, ker( β1) and coker( β1) are finite. �
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Lemma 3.4. In the fundamental diagram (3.2), ker(δ1) and coker(δ1) are finite.

Proof. Considering the vertical map δ1, we note that ker(δ1v) ' H1(Gu, E(L∞,u))(p)
and coker(δ1v) ' H2(Gu, E(L∞,u))(p). First we consider the case v | p. We let Ê be the
formal group of E defined over Fv. LetM andM(L∞,u) be the maximal ideals of the
rings of integers of Fv and L∞,u, respectively. Then we have the exact sequence

0 −→ Ê(M(L∞,u)) −→ E(L∞,u) −→ Ẽv,p∞ −→ 0. (3.3)

By following [3, Lemma 5.18],

Hi(Gu, Ê(M(L∞,u))) ' Hi(Fv, Ê(M)) for all i ≥ 1, (3.4)

Hi(Fv, Ê(M)) = 0 for all i ≥ 2. (3.5)

Applying Gu-cohomology to the exact sequence (3.3), and using equations (3.4) and
(3.5), we conclude that

] coker(δ1v) = ]H2(Gu, Ẽv,p∞).

Moreover, from [3, Lemmas 5.18 and 5.19],

] ker(δ1v) = ]Ẽv(κFv )(p) × ]H1(Gu, Ẽv,p∞).

Now L∞,u contains Fv(µp∞). So, from [3, Lemma 5.4], when E has bad reduction
at v, it follows that Jv(L∞) = 0, that is, coker(δ1v) = 0. In this case, from [3, Lemma
5.6], ker(δ1v) = |Lv(E, 1)/cv|p. Here | · |p denotes the p-adic absolute value. Suppose
v - p and E has good reduction at v. Then v is unramified in L∞,u. Hence Gu = Γv

has p-cohomological dimension one. This implies that coker(δ1v) = 0. In addition,
ker(δ1v) = 0 from [3, Lemma 5.10]. �

In the following, we assume that Selp(E/F) is finite. Note the following lemma
from [3].

Lemma 3.5 [3, Lemma 2.7]. If p is an odd prime and Selp(E/F) is finite, then
coker(λF) ' ̂E(F)(p).

Lemma 3.6. If Selp(E/F) is finite and if E has good ordinary reduction at all primes v
of F that divides p and p ≥ 5, then H0(G,Selp(E/L∞)) and coker(ψL∞) are finite.

Proof. We consider the following diagram

0 // im(ψL∞) //
(⊕

v|S
Jv(L∞)

)G
// coker(ψL∞) // 0

0 // im(λF) //

δ2

OO

⊕
v∈S

H1(Fv, E)(p) //

δ1

OO

// coker(λF) //

η

OO

0.

(3.6)
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Here ker(δ2) = ker(δ1) ∩ im(λF) and coker(δ2) = im(ψL∞)/δ1(im(λF)). By applying
the snake lemma to the fundamental diagram (3.2), we get the exact sequence

0 // ker(α1) // ker( β1) // ker(δ1) ∩ im(λF)

// coker(α1) // coker( β1) // im(ψL∞)/δ1(im(λF)) // 0.

(3.7)

Now, using Lemmas 3.3 and 3.4, the terms ker(α1) and coker(α1) in the exact sequence
(3.7) are finite. Hence we consider the vertical map α1. By assumption, Selp(E/F)
is finite, so H0(G, Selp(E/L∞)) is finite. Applying the snake lemma to the diagram
(3.6) and using Lemma 3.4, it follows that coker(η) is finite. Also, from Lemma 3.5,
coker(λF) = ̂E(F)(p). The latter is finite, which, in turn, implies that ker(η) is finite.
So considering the vertical map η, we conclude that coker(ψL∞) is finite. �

Lemma 3.7. The map λL∞ in the following exact sequence is surjective.

0 // Selp(E/L∞) // H1(FS /L∞, Ep∞)
λL∞ //

(⊕
v|S

Jv(L∞)
)
. (3.8)

Proof. The proof of this lemma is the same as that of [2, Lemma 12]. �

Applying G-cohomology to the exact sequence (3.8) gives the long exact sequence

0 // Selp(E/L∞)G // H1(FS /L∞, Ep∞)G ψL∞ //
(⊕

v|S
Jv(L∞)

)G

// H1(G,Selp(E/L∞)) // H1(G,H1(FS /L∞, Ep∞))

.

From this exact sequence,

0 // coker(ψL∞) // H1(G,Selp(E/L∞)) // H1(G,H1(FS /L∞, Ep∞)) .
(3.9)

Lemma 3.8. For i ≥ 1,

Hi(G,H1(FS /L∞, Ep∞)) ' Hi+2(G, Ep∞).

Proof. From [3, Theorem 2.10], H2(FS /F∞, Ep∞) = 0 and H2(FS /L∞, Ep∞) = 0.
Thus, using the Hochschild–Serre sequence in group cohomology and following
[3, Lemmas 4.3 and 4.4], we conclude that, for i ≥ 1,

Hi(G,H1(FS /L∞, Ep∞)) ' Hi+2(G, Ep∞). �

Lemma 3.9. For i ≥ 1,

Hi(G, Jv(L∞)) ' Hi+2(Gu, Ẽv,p∞) for v | p, Hi(G, Jv(L∞)) ' 0 for v - p.
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Proof. For v - p, the argument is the same as in [3, Lemmas 5.4 and 5.5]. Similarly,
for the proof in the other case, we argue as in Case 2 of Lemma 2.2 and [3, Lemma
5.16] to get the required result. �

Now, from Lemmas 3.8 and 3.9, we see that all the terms of the exact sequence (3.9)
are finite. Also G has p-cohomological dimension less than or equal to five. Hence,
from the exact sequence (3.9),

] coker(ψL∞) =

∏
3≤i≤5

]Hi(G, Ep∞)(−1)i

∏
1≤i≤5

]Hi(G,Selp(E/L∞))(−1)i∏
v|p

(
∏

3≤i≤5
]Hi(Gu, Ẽv,p∞)(−1)i )

. (3.10)

Proof of Theorem 1.2. Applying the snake lemma to diagram (3.6),

] ker(δ2)
] coker(δ2)

=
] ker(δ1)
] coker(δ1)

×
] coker(ψL∞)
] coker(λF)

. (3.11)

Now, taking alternating products along the exact sequence (3.7) and using (3.11),

]H0(G,Selp(E/L∞)) =
] ker(δ1)
] coker(δ1)

×
] coker(ψL∞)
] coker(λF)

×
] coker( β1)
] ker( β1)

× ]Selp(E/F).

Consider the vertical map β1. The inflation restriction cohomology sequence gives
ker( β1) = H1(G, Ep∞). Also, from [3, Lemma 4.3], H2(FS /F, Ep∞) = 0. Hence
coker(β1) = H2(G,Ep∞). Now we note that ]Selp(E/F) = ]Xp(E/F) and coker(λF) =
̂E(F)(p) [3, Lemma 2.7]. Thus,

]H0(G,Selp(E/L∞)) =
] ker(δ1)
] coker(δ1)

×
] coker(ψL∞)

] ̂E(F)(p)
×
]H2(G, Ep∞)

]H1(G, Ep∞)
× ]Xp(E/F).

(3.12)
From Lemma 3.4 , it follows that

] ker(δ1)
] coker(δ1)

=
∏
v∈S 1

∣∣∣∣Lv(E, 1)
cv

∣∣∣∣
p
×

]Ẽv(κFv )(p)∏
v|p

(
∏

1≤i≤2
]Hi(Gu, Ẽv,p∞)(−1)i )

. (3.13)

Finally, combining (3.10), (3.12), (3.13) and using Lemmas 3.1 and 3.2,

χ(G,Selp(E/L∞)) =
]X(E/F)(p)

∏
v|p((]Ẽv(κFv )(p))2)

(]!E(F)(p))2 ∏
v∈S |cv|p

×

∣∣∣∣∏
v

Lv(E, 1)
∣∣∣∣
p

= ρp(E/F) ×
∣∣∣∣∏

v

Lv(E, 1)
∣∣∣∣
p
,

as desired. �
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