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Scale dependence of local shearing motion is investigated experimentally in decaying
homogeneous isotropic turbulence generated through multiple-jet interaction. The
turbulent Reynolds number, based on the Taylor microscale, is between approximately
900 and 400. Velocity fields, measured using particle image velocimetry, are analysed
through the triple decomposition of a low-pass filtered velocity gradient tensor, which
quantifies the intensities of shear and rigid-body rotation at a given scale. These motions
manifest predominantly as layer and tubular vortical structures, respectively. The scale
dependence of the moments of velocity increments, associated with shear and rigid-body
rotation, exhibits power-law behaviours. The scaling exponents for shear are in quantitative
alignment with the anomalous scaling of the velocity structure functions, suggesting
that velocity increments are influenced predominantly by shearing motion. In contrast,
the exponents for rigid-body rotation are markedly smaller than those predicted by
Kolmogorov scaling, reflecting the high intermittency of rigid-body rotation. The mean
flow structure associated with shear at intermediate scales is investigated with conditional
averages around locally intense shear regions in the filtered velocity field. The averaged
flow field exhibits a shear layer structure with aspect ratio approximately 4.5, surrounded
by rotating motion. The analysis at different scales reveals the existence of self-similar
structures of shearing motion across various scales. The mean velocity jump across
the shear layer increases with the layer thickness. This relationship is well predicted
by Kolmogorov’s second similarity hypothesis, which is useful in predicting the mean
characteristics of shear layers across a wide range of scales.
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1. Introduction

Fundamental turbulence research explores the scale dependence of turbulent motion
in relation to classical turbulence theories (Davidson 2004). The scale dependence is
often discussed with the velocity difference �v between two points separated by a
distance r. According to Kolmogorov’s second similarity hypothesis, the scaling of
velocity structure functions in the inertial subrange is expressed as |�v|n = βn(εr)n/3,
where βn is a universal constant, and ε is the averaged turbulent kinetic energy dissipation
rate (Kolmogorov 1941). The notation f̄ represents the averaging procedure for a variable
f . However, discrepancies in this scaling have been reported, with the scaling exponent p
of |�v|n ∼ rp becoming progressively smaller than n/3 for larger values of n (Castaing,
Gagne & Hopfinger 1990; Kailasnath, Sreenivasan & Stolovitzky 1992; Benzi et al. 1993;
Iyer, Sreenivasan & Yeung 2020; Gauding et al. 2021; Buaria & Sreenivasan 2023).
This anomaly in the scaling exponent is attributed to the intermittency at small scales,
where eddies at a given scale become less space-filling as the scale decreases. Various
corrections to Kolmogorov’s original theory have been proposed to account for small-scale
intermittency effects (Kolmogorov 1962; Frisch, Sulem & Nelkin 1978; She & Leveque
1994). A comprehensive overview of small-scale intermittency has been provided in
Sreenivasan & Antonia (1997) and the references therein.

The velocity gradient tensor ∇u that describes local fluid motion around a point in space
is often used to define turbulent structures, manifesting as coherent patterns in the spatial
distribution of physical variables. The symmetric and anti-symmetric parts of ∇u are the
rate-of-strain tensor Sij and the rate-of-rotation tensor ij, respectively, defined as Sij =
[(∇u)ij + (∇u)ji]/2 and ij = [(∇u)ij − (∇u)ji]/2. A component of tensors and vectors
is specified using subscripts: for example, (∇u)ij = ∂ui/∂xj. At the smallest scale of
turbulence characterised by the Kolmogorov scale, vortical structures are often identified
using enstrophy, defined as ω2/2 = ijij. Regions with high ω2/2 typically concentrate
in tubular or sheet-like structures, known respectively as vortex tubes and sheets (Jiménez
et al. 1993; Vincent & Meneguzzi 1994). Vortex sheets are characterised by local shearing
motion, with their defining feature being shear rather than vorticity ω. Consequently, this
study calls the sheet-like vortices shear layers, following Eisma et al. (2015) and Nagata
et al. (2020b). Numerous identification methods have been developed for vortex tubes, and
their properties have been explored in various flow conditions (Jiménez et al. 1993; Kang,
Tanahashi & Miyauchi 2007; Mouri, Hori & Kawashima 2007; Ganapathisubramani,
Lakshminarasimhan & Clemens 2008; da Silva, Dos Reis & Pereira 2011; Ghira, Elsinga
& da Silva 2022). Various turbulence phenomena have been examined in the context of
flow associated with vortex tubes, such as turbulent entrainment (Watanabe et al. 2017;
Neamtu-Halic et al. 2021) and particle transport (Matsuda, Schneider & Yoshimatsu
2021).

Recent advancements in the identification of shear layers have been made by adopting
the triple decomposition, which separates the velocity gradient tensor into components
representing shear (S), rigid-body rotation (R) and elongation (E, or irrotational strain)
as ∇u = ∇uS + ∇uR + ∇uE (Kolář 2007). The triple decomposition is related to the
Rortex-based decomposition (Liu et al. 2018) and Schur decomposition (Kronborg &
Hoffman 2023), although their numerical algorithms were developed independently.
Kronborg & Hoffman (2023) demonstrated that triple decomposition is equivalent to the
real Schur form of the velocity gradient tensor. The mathematical properties of these
decompositions, including Galilean invariance, have been explored extensively in prior
research, as well as the theory of Schur decomposition (Keylock 2018; Wang, Gao &
Liu 2018). The second and third invariants of ∇u, defined as Q∇u = −(∇u)ij(∇u)ji/2
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and R∇u = −(∇u)ij(∇u)jk(∇u)ki/3, are commonly used to diagnose local flow patterns.
The three motions in the triple decomposition can also be identified with Q∇u and R∇u
normalised by the Frobenius norm of ∇u (Das & Girimaji 2020).

The characteristics of shear layers have been explored by analysing the shear component
of the velocity gradient tensor, ∇uS. The intensity of local shearing motion can be
quantified by the norm of ∇uS or the shear component of vorticity vector ωSi =
εijk(∇uS)jk, where εijk is the Levi–Civita symbol (Eisma et al. 2015; Nagata et al. 2020b).
By identifying the location and orientation of shear layers using components of ∇uS, the
mean flow field around these layers can be evaluated through a conditional averaging
procedure commonly used to investigate coherent structures in turbulence. Previous
studies have investigated the mean velocity profiles near shear layers (Eisma et al. 2015;
Watanabe, Tanaka & Nagata 2020; Fiscaletti, Buxton & Attili 2021; Hayashi, Watanabe
& Nagata 2021a,b). A distinct mean velocity jump is observed across the shear layer,
with the Kolmogorov scales characterising this jump and the layer thickness in freely
evolving turbulence. Recent research highlights the pivotal role of shear layers in turbulent
flows. These layers, embedded in a biaxial strain field, contribute significantly to enstrophy
production and strain amplification (Watanabe et al. 2020). Enoki, Watanabe & Nagata
(2023) examined the velocity fields of shear and rigid-body rotation, and demonstrated that
shearing motion, compared to rigid-body rotation, has a greater impact on the transport
of turbulent kinetic energy and energy cascade across scales. The prominence of shear
layers over vortex tubes was also confirmed by their contribution to the global enstrophy
and mean momentum budget, as shown by the analysis of a reconstructed velocity field
from a truncated vorticity field for these structures (Pirozzoli, Bernardini & Grasso 2010).
Additionally, the mean flow observed in a strain eigenframe, defined by the eigenvectors of
Sij, also exhibits a shear layer pattern even though the average is not taken specifically for
the shear layers (Elsinga & Marusic 2010; Elsinga et al. 2017; Sakurai & Ishihara 2018).
These studies have successfully predicted important properties, including the −5/3 law of
the energy spectrum and particle transport by turbulence, from the flow observed around
shear layers (Elsinga & Marusic 2016; Goudar & Elsinga 2018).

Turbulent structures of various sizes exist, although these studies of vortex tubes and
shear layers focus on small scales. These structures at intermediate scales, larger than
the Kolmogorov scale, can be extracted by applying the vortex identification schemes
mentioned earlier to a filtered velocity field ũ, where small-scale velocity fluctuations
are removed. In this paper, ∗̃ denotes a quantity derived from a filtered velocity field.
The vortex identification in filtered velocity fields has been conducted with enstrophy
ω̃2/2 (Leung, Swaminathan & Davidson 2012; Goto, Saito & Kawahara 2017) and the
second invariant Q̃∇u of filtered-velocity gradient tensors (Hirota et al. 2017). Leung et al.
(2012) investigated the morphology of enstrophy isosurfaces in a filtered velocity field
using Minkowski functionals. Additionally, tubular vortices have been observed for the
isosurfaces of enstrophy of the filtered velocity field (Goto et al. 2017). As is the case for
vortex tubes and shear layers at the smallest scale, ω̃2/2 and Q̃∇u encounter challenges
in distinguishing between vortical structures arising from rigid-body rotation and shear,
which are expected to manifest as tubular and sheet-like structures at intermediate scales.
Exceptionally, Bermejo-Moreno, Pullin & Horiuti (2009) adapted two local criteria to
identify tube and sheet structures at various length scales, although their discussion is
confined primarily to the geometry and configuration of these structures.

This study investigates the scale dependence of shearing motion in turbulent flows,
leveraging recent advancements in identifying small-scale shear layers. ‘Small-scale shear
layers’ in this context refer to the Kolmogorov-scale shear layers identified with fully
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resolved velocity gradients. Similar to these small-scale layers, shear layers at intermediate
scales may significantly influence the statistical properties of turbulence. The present
analysis employs velocity datasets measured using two-component, two-dimensional
particle image velocimetry (PIV) in a multiple-jet wind tunnel (Mori, Watanabe &
Nagata 2024). This facility generates decaying homogeneous isotropic turbulence with
the interaction of high-speed jets. The original PIV data presented in Mori et al. (2024)
detailed homogeneity, isotropy, stationarity and decay properties using fundamental
velocity statistics. A turbulent Reynolds number based on the Taylor microscale ranges
from approximately 900 to 400 in the decay region. This study focuses on two key
aspects of scale dependence: the scaling of shear intensity moments, and the flow structure
associated with shearing motion. The first aspect relates to the anomalous scaling in the
inertial subrange. We demonstrate that the moment of shear intensity exhibits anomalous
scaling similar to that observed in the velocity structure functions, contrasting with the
distinct scaling associated with rigid-body rotation found in vortex tubes. For the second
aspect, we evaluate conditional averages of shearing motion within the reference frame
defined with the shear orientation. Our findings indicate the existence of self-similar
structures with shearing motion at intermediate scales, and we show that their mean
characteristics align well with Kolmogorov scaling for the inertial subrange. The models of
turbulence frequently depict the flow as comprising spatially distributed simple structures
(Townsend 1976; Lundgren 1993; Marusic & Monty 2019). The current findings related
to the self-similarity of shearing motion are anticipated to be valuable in future efforts to
model turbulent flows.

The structure of the paper is as follows. Section 2 describes the experimental facility
and the PIV measurements. Section 3 details the post-processing techniques applied to
the PIV data, involving scale separation via a low-pass filter, the triple decomposition of
the velocity gradient tensor, and conditional analysis in the local shear coordinate system.
The results are presented in § 4, providing the statistics of shearing motion. The paper
concludes in § 5, where the findings are summarised succinctly.

2. Experiments of decaying turbulence generated by high-speed jet interaction

2.1. Multiple-jet wind tunnel
The current study analyses velocity data obtained through two-dimensional, two-component
PIV in a multiple-jet wind tunnel. The experiments are described briefly here as
comprehensive details are available in Mori et al. (2024). Figure 1 illustrates the wind
tunnel schematic, comprising a plenum chamber and a test section. The plenum chamber
features a tubular design with internal diameter 330 mm and length 180 mm. Its front
chamber plate is fitted with 36 Laval nozzles, each having nozzle outlet diameter 4.31 mm
and throat diameter 4.12 mm, with centre-to-centre distance 12 mm between adjacent
nozzles. Experiments were conducted under plenum pressure 200 kPaG, generating ideally
expanded supersonic jets with Mach number 1.36. This actual Mach number was verified
using the Prandtl formula for shock-cell structures visualised in Schlieren images (Pack
1950), confirming alignment with the design Mach number. The flow in the nozzle
becomes choked at plenum pressures exceeding 38.8 kPaG, above which the jet Mach
number is not sensitive to the plenum pressure. The back surface of the plenum chamber
connects to two air tanks, each with capacity 220 l. Dry air is supplied by moisture
separators and compressors, and stored in these tanks. Each tank is linked to the plenum
chamber via a moisture separator, a pressure regulator and a pilot kick 2-port solenoid
valve. The pressure regulator is adjusted to maintain plenum pressure 200 kPaG.
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36 nozzles

Plenum chamber

Test section

1000

100

100

7.5

12

Figure 1. A schematic of a multiple-jet wind tunnel (Mori et al. 2024). All dimensions are in mm.

Compressed air enters the plenum chamber when the valves are opened, initiating
the jet flows in the test section. The test section of the wind tunnel is designed with
length 1000 mm and a square cross-section, each side measuring 100 mm. Optical-grade
acrylic plates of thickness 1.5 mm are used as the side and bottom walls of the test
section. Homogeneous isotropic turbulence is generated through the interaction of jets,
and subsequently decays along the streamwise direction. The streamwise, vertical and
spanwise directions are denoted by x, y and z, respectively, with corresponding velocities
u, v and w. The coordinate origin is the centre of the 36 nozzle outlets. The wind tunnel
is capable of sustaining a statistically steady turbulent flow for approximately 3 s. This
duration is significantly longer than the integral time scale of turbulence, which is typically
approximately 10−3 s. Here, the integral time scale of turbulence is defined as the ratio of
the integral length scale to the root-mean-square velocity fluctuations.

2.2. Measurements
Velocity measurements were performed using the DANTEC PIV system, which includes
a double-pulse Nd:YAG laser (Dantec Dynamics, Dual Power 65-15) and a high-speed
camera (Dantec Dynamics, SpeedSense 9070). The camera was equipped with a 105 mm
focal length lens (Nikkon, AI AF Micro Nikkor 105 mm F2.8D). Light sheet optics
attached to the laser generated a thin light sheet with thickness less than 1 mm. Both
the laser unit and the camera were synchronised and controlled using a synchroniser
(Dantec Dynamics, 80N77) and PIV software (Dantec Dynamics, Dynamic Studio). The
tracer particles used for PIV were condensed ethanol droplets. In each experiment, 70 ml
of liquid ethanol was sprayed into the air tanks, where it evaporated. Air was then
compressed and supplied to the tanks. As the ethanol–air mixture passes through the Laval
nozzles, the temperature drops due to fluid expansion in the diverging sections, resulting
in the ethanol condensation and creating the tracer droplets for the test section. Even in
cases of supersaturation, the ethanol mass fraction remains below 1 %, ensuring that the
condensation has a negligible impact on the turbulent flow in the test section (Clemens
& Mungal 1991; Pizzaia & Rossmann 2018). This seeding technique is commonly used
in supersonic wind tunnels, employing divergent nozzles to produce supersonic flows.
Previous studies have validated the efficacy of this seeding technique, confirming that the
generated particles are smaller than 1 μm in diameter. Pizzaia & Rossmann (2018) reported
that the diameter of ethanol droplets was approximately 0.05–0.2 μm, and Kouchi et al.
(2019) used acetone droplets produced by a Laval nozzle for PIV measurement, estimating
the droplet diameter at approximately 160 nm.
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Figure 2. (a) Measurement locations for PIV. (b) An example of velocity fluctuation vectors u′ = (u′, v′)
measured by PIV. The colour represents the magnitude of the vectors, |u′|.

The camera, positioned at the side of the test section, captured images of tracer particles
illuminated by the laser sheet on the x–y planes at z = 0. Particle-pair images were
captured at frequency 15 Hz and processed using an adaptive PIV algorithm (Theunissen
2010) and universal outlier detection (Westerweel & Scarano 2005), as implemented in
Dynamic Studio. The interrogation area for the adaptive PIV algorithm ranges from
a minimum of 16 × 16 pixels to a maximum of 32 × 32 pixels. Our previous study
reported PIV measurements conducted at six different streamwise locations, centred at
x = 0.150 m, 0.267 m, 0.360 m, 0.465 m, 0.605 m and 0.746 m (Mori et al. 2024). The
flow is highly inhomogeneous in the cross-section at the first two measurement stations.
Homogeneous isotropic turbulence decays from the measurement station at x = 0.360 m.
Therefore, the present study analyses velocity fields measured at x = 0.360 m, 0.465 m,
0.605 m and 0.746 m. The time interval between two laser pulses was set at 4 μs. The
measurement area covered approximately 70 mm in the streamwise direction, and 40 mm
in the vertical direction, with spatial resolution (vector spacing) approximately 1 mm in
both directions. Figure 2(a) illustrates the measurement locations and the field of view
in the homogeneous and isotropic region. In each wind tunnel run, an average of 30
velocity vector snapshots were captured by the PIV. The experiments were repeated until
approximately 600 velocity vector profiles were obtained at each measurement location.
Velocity statistics are calculated using ensemble averages and averages in the y direction
as functions of x. The average of any variable f is denoted by f̄ , with the fluctuations
represented as f ′ = f − f̄ . Figure 2(b) visualises the flow field with velocity fluctuation
vectors (u′, v′) measured at approximately x = 0.360 m. At this location, the mean flow
from the jet nozzles leaves no imprints due to the interaction of multiple jets.

Our previous study presented fundamental velocity statistics of turbulence, such as mean
velocity, root-mean-square velocity fluctuations, autocorrelation functions and energy
spectra (Mori et al. 2024). The accuracy of the PIV measurements was validated by
comparing the energy spectra, autocorrelation functions and non-dimensional energy
dissipation rate with those of other incompressible turbulence, and by comparing the
turbulence-induced Pitot pressure (Bailey et al. 2013) with velocity variances measured
by the PIV. The spatial resolution of the PIV is close to the Taylor microscale, and spectral
analysis has confirmed that scales larger than the small-scale end of the inertial subrange
are well resolved by the PIV. The scale dependence of velocity fluctuations in these
resolved scales is considered accurately measured, as suggested by comparisons of energy
spectra with other turbulent flows (Mori et al. 2024). Similar approaches to investigating
turbulent structures at intermediate scales using under-resolved PIV have been reported in
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Figure 3. Vertical profiles of (a) mean velocity and (b) turbulence intensity at x = 0.465 m and x = 0.605 m.

other studies, such as Coriton, Steinberg & Frank (2014). Spatial distributions of various
velocity statistics indicate that the flow is statistically homogeneous and isotropic for
x � 0.35 m. Additionally, mean static pressure and temperature were measured along the
centreline of the test section.

Although the jets emanating from the nozzles are supersonic, they mix rapidly with the
low-speed ambient fluid, leading to a rapid decay in mean velocity before homogeneous
isotropic turbulence develops due to jet interaction. Consequently, the flow transitions
to a subsonic regime before turbulence begins to decay. Beyond x = 0.35 m, the mean
flow Mach number M = ū/a is approximately 0.1, with the turbulent Mach number

MT =
√

u′2 + 2v′2/a being even lower, under 0.1, where a is the speed of sound.
Additionally, the mean temperature and density in the decay region remain constant at
T = 303 K and ρ = 1.16 kg m−3, respectively, without streamwise variations. As a result
of these conditions, compressibility effects are locally negligible in the decay region of
homogeneous isotropic turbulence. However, it is important to note that the findings of
this study may not be restricted to incompressible turbulence alone, as both compressible
and incompressible turbulences share the same dynamical properties described by the
Navier–Stokes equations.

2.3. Decay properties
Some fundamental velocity statistics in turbulence generated by jet interaction are
presented here, with further details on flow characteristics available in Mori et al.
(2024). Figure 3(a) shows the vertical profiles of mean velocity, ū and v̄, in the
streamwise and vertical directions at two measurement locations. The mean streamwise
velocity is approximately 39 m s−1, consistent across the vertical direction. The vertical
mean velocity is negligibly small, indicating a uniform mean flow in the wind tunnel.
Figure 3(b) presents the turbulence intensity, defined by the root-mean-square (r.m.s.)

velocity fluctuations, urms =
√

u′2 and vrms =
√

v′2, normalised by the mean velocity ū.
The turbulence intensity decreases in the streamwise direction, reflecting the decay of the
turbulence, yet remains uniformly distributed in the vertical direction for both velocity
components. The turbulence intensity at these two streamwise locations exceeds 0.2, a
value higher than that typically observed in grid turbulence, where turbulence intensity
is usually less than 0.05 (Melina, Bruce & Vassilicos 2016; Nagata et al. 2017). The
high turbulence intensity in this experiment is attributed to the nature of the turbulence
generated by jet interaction (Tan et al. 2023). The ratio of the root-mean-square velocity
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Figure 4. The decay properties of turbulence generated by the jet interaction measured in Mori et al. (2024):
(a) turbulent kinetic energy per unit mass, kT = (u′2 + 2v′2)/2; and (b) Taylor microscale, Kolmogorov scale
and turbulent Reynolds number. A power law kT = ak(x − x0)

−nk is compared with the measured data in (a).

fluctuations, urms/vrms, is approximately 1.1, aligning with values reported for turbulence
generated by grids and multiple-jet interactions (Krogstad & Davidson 2012; Isaza, Salazar
& Warhaft 2014; Kitamura et al. 2014; Watanabe & Nagata 2018; Tan et al. 2023).
Consequently, the nearly homogeneous and isotropic turbulence generated by the jets
decays in the test section.

Figure 4(a) illustrates the streamwise decay of turbulent kinetic energy per unit mass
kT , within the homogeneous isotropic region, calculated as kT = (u′2 + 2v′2)/2. In
decaying isotropic turbulence, such as that observed in grid turbulence, the decay of kT
is commonly approximated by a power law kT = ak(x − x0)

−nk with a coefficient ak, a
virtual origin x0, and a decay exponent nk (Mohamed & Larue 1990; Davidson 2004).
The Levenberg–Marquardt method was employed to simultaneously determine these
three parameters from the measured kT values (Mori et al. 2024). The analysis yielded
ak = 21.0 m2 s−2, x0 = 0.12 m and nk = 2.1. The power law effectively approximates
the decay of kT in figure 4(a). Notably, the exponent nk is higher than the typical values
observed in grid turbulence.

Since the turbulence is statistically homogeneous within the cross-sectional plane, the
decay of the turbulent kinetic energy per unit mass, kT , is related directly to its dissipation
rate ε. This relationship can be expressed mathematically as

ε = −ū
∂kT

∂x
= ūaknk(x − x0)

−nk−1. (2.1)

This formula is frequently employed to evaluate the dissipation rate in grid turbulence,
as the mean velocity ū and kT are typically more straightforward to measure than the
dissipation rate ε itself (Kistler & Vrebalovich 1966; Thormann & Meneveau 2014). The
energy spectrum within the inertial subrange, when normalised by the dissipation rate
estimated using (2.1), has been shown to agree with results from other incompressible
turbulent flows (Mori et al. 2024).

The turbulent Reynolds number Reλ and Kolmogorov scale η are evaluated as
Reλ = √

2kT/3 λ/ν and η = ν3/4ε−1/4. Here, λ = √
10νkT/ε is the Taylor microscale,

and ν = μ/ρ is the kinematic viscosity (where μ is the viscosity coefficient).
Figure 4(b) displays the streamwise variations of λ, η and Reλ. The Reynolds number
varies approximately between 900 and 400. The Taylor microscale is estimated to be
approximately 1 mm, which is close to the spatial resolution of the PIV. In addition,
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Figure 5. Normalised longitudinal energy spectra of streamwise and vertical velocities, Eu(kx) and Ev(ky),
measured at x = 0.605m, where kx and ky represent the wavenumbers in the x and y directions, respectively. For
comparison, the figure also includes energy spectra from direct numerical simulations (DNS) of homogeneous
isotropic turbulence (HIT) with Reλ = 202 (Watanabe & Nagata 2023) and from experiments of passive-grid
turbulence with Reλ = 520 (Kistler & Vrebalovich 1966), a boundary layer with Reλ = 1450 (Saddoughi &
Veeravalli 1994; Nieuwstadt, Westerweel & Boersma 2016), and active-grid turbulence with Reλ = 241 (Zheng,
Nagata & Watanabe 2021).

the Kolmogorov velocity and time scales are defined respectively as uη = (νε)1/4 and
τη = (ν/ε)1/2. These scales are utilised to normalise the statistics of shearing motions.

Figure 5 presents the longitudinal energy spectra of streamwise and vertical velocities,
Eu(kx) and Ev(ky), at x = 0.605 m, where kx and ky represent the wavenumbers in the
x and y directions, respectively. The spectra and wavenumbers are normalised using ε,
ν and η to facilitate comparison with other turbulent flows. The measurement area and
spatial resolution of the PIV determine the lowest and highest wavenumbers. Within
the available range, the spectra follow Eu ∼ k−5/3

x and Ev ∼ k−5/3
y , as expected for the

inertial subrange. Additionally, the normalised spectra align quantitatively with those
from other studies, further confirming the full development of turbulence. An inset in
the figure displays the ratio of energy spectra Eu/Ev , providing a scale-dependent measure
of statistical isotropy. The ratio is approximately 1.08 across all wavenumbers, indicating
that the velocity fluctuations at each scale are approximately statistically isotropic.

Table 1 summarises the turbulence characteristics at the centre of each PIV
measurement area. Here, U = √

2kT/3 represents the characteristic velocity scale
of large-scale motions, Lu is the integral scale evaluated using the longitudinal
autocorrelation function of streamwise velocity, and T = Lu/U is the integral time scale.

3. Scale-dependent analysis of shearing motion

3.1. Low-pass filtered velocity field
The scale dependence of shearing motion is explored with the PIV data. The present
approach involves examining local fluid motion through a coarse-grained velocity gradient,
defined as the gradient of a low-pass filtered velocity field. The low-pass filter applied to
the two-dimensional components of the velocity vector (u, v) measured on an x–y plane is
characterised by a filter Kernel function G(r):

ũ(x, y) =
∫∫

u(x′, y′) G(r, Lf ) dx′ dy′, (3.1)
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Measurement location x (m) 0.360 0.465 0.605 0.746

Reλ 732 600 498 433
U (m s−1) 16.7 11.4 8.0 6.1
uη (m s−1) 1.22 0.92 0.71 0.58
Lu (m) 0.022 0.024 0.028 0.026
λ (m) 7.1 × 10−4 8.5 × 10−4 1.0 × 10−4 1.1 × 10−3

η (m) 1.3 × 10−5 1.8 × 10−5 2.3 × 10−5 2.8 × 10−5

Δ (m) 9.5 × 10−4 8.9 × 10−4 9.2 × 10−4 9.1 × 10−4

T (s) 1.3 × 10−3 2.1 × 10−3 3.4 × 10−3 4.2 × 10−3

τη (s) 1.1 × 10−5 1.9 × 10−5 3.2 × 10−5 4.8 × 10−5

Lu/η 1635 1390 1207 932
λ/η 53.3 48.2 43.9 40.9
U/uη 13.8 12.5 11.3 10.6
T/τη 119 112 106 88

Table 1. Summary of turbulence characteristics: the turbulent Reynolds number Reλ, the characteristic
velocity scale of large-scale motions U = √

2kT/3, the Kolmogorov velocity scale uη, the integral scale Lu,
the Taylor microscale λ, the Kolmogorov scale η, the spatial resolution of PIV Δ, the integral time scale
T = Lu/U , and the Kolmogorov time scale τη.

ṽ(x, y) =
∫∫

v(x′, y′) G(r, Lf ) dx′ dy′, (3.2)

r =
√

(x′ − x)2 + ( y′ − y)2, (3.3)

where the integration is calculated over the entire field of view, and Lf is the cutoff length
scale of the filter. We utilise the Gaussian filter (Pope 2000), with G(r) given by

G(r, Lf ) =
√

6
πL2

f
exp

(
−6r2

L2
f

)
. (3.4)

The integral ranges of x′ and y′ in (3.1) and (3.2) extend over a length 2Lf , specifically
defined as −Cf Lf ≤ x′ − x ≤ Cf Lf and −Cf Lf ≤ y′ − y ≤ Cf Lf , with Cf = 1. At the
distance r = Lf , the Gaussian function G is less than 0.25 % of its peak value at r = 0.
Extending the integral ranges beyond this does not influence the results. This has been
verified by performing the analyses described in this paper with Cf = 1, 2, 3. In this
paper, f̃ denotes a quantity f defined with the filtered velocity field of (3.1) and (3.2).
For instance, the vorticity of the filtered velocity field is ω̃ = ∂ṽ/∂x − ∂ ũ/∂y. The analysis
described below has also been conducted using DNS databases of incompressible isotropic
turbulence (Watanabe & Nagata 2023), where different filters are tested. It has been
confirmed that similar results are obtained with both the Gaussian filter and a sharp
spectral filter (described by a top-hat transfer function in Fourier space) (Pope 2000).
However, a box filter, defined as a top-hat function of G(r), has led to unphysical results
due to oscillations in the transfer function in wavenumber space (Pope 2000).

The statistics of the filtered velocity are evaluated for a range of the filter length Lf . This
filter length is determined relative to the spatial resolution of the PIV, Δ, as Lf = CLΔ.
The coefficient CL varies in the range 4.8–9.2. The maximum value of Lf is less than
a half of the integral scale of the turbulence. Conversely, the minimum value of Lf is
greater than 140η. Using the same PIV data, Mori et al. (2024) have demonstrated that the
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Scale dependence of local shearing motion in turbulence

energy spectra follow the −5/3 law across the wavenumber range corresponding to Lf /η
examined in this study.

3.2. The triple decomposition of the coarse-grained velocity gradient tensor
The triple decomposition of the velocity gradient tensor is applied to the filtered velocity
(ũ, ṽ). This approach follows the methodology outlined in Eisma et al. (2015), where the
triple decomposition was similarly applied to two-dimensional and two-component PIV
data of a turbulent boundary layer. Three-dimensional turbulent motions are described
on two-dimensional planes, where out-of-plane motions are not accurately captured. This
limitation is anticipated based on previous studies of flow topology (Perry & Chong
1994; Rabey, Wynn & Buxton 2015). The disparity between the triple decompositions
of two- and three-dimensional velocity gradient tensors is examined with DNS of
homogeneous isotropic turbulence in Appendix A. The present experimental analysis is
also conducted on nearly homogeneous isotropic turbulence generated by jet interaction.
It is demonstrated that the intensities of the motions considered in the triple decomposition
are underestimated on two-dimensional planes due to the absence of out-of-plane motions.
However, the scale dependence of the intensities of decomposed motions is similar
for both two- and three-dimensional decompositions. Thus the analysis using the triple
decomposition on two-dimensional planes still offers valuable insights into local turbulent
motions.

The velocity gradient of (ũ, ṽ) characterises local fluid motion at a specific point (x, y)
and a scale determined by the filter length Lf . The two-dimensional velocity gradient
tensor ∇ũ is represented as

∇ũ =
(

∂ ũ/∂x ∂ ũ/∂y
∂ṽ/∂x ∂ṽ/∂y

)
. (3.5)

As introduced earlier, the triple decomposition splits the velocity gradient tensor into three
components: shear (S), rigid-body rotation (R) and elongation (E), formulated as ∇ũ =
∇ũS + ∇ũR + ∇ũE. The decomposition algorithm is the same as in Kolář (2007) and
Eisma et al. (2015), and is explained briefly herein. For a deeper understanding of the
physical meaning and mathematical properties of this decomposition, readers can refer to
the previous studies on the triple decomposition, as discussed in § 1.

The application of the triple decomposition begins with searching for a basic reference
frame, which is defined at each position. This reference frame is determined by the
eigenvectors of the rate-of-strain tensor S̃ij = [(∇ũ)ij + (∇ũ)ji]/2. The eigenvalues of
S̃ij are denoted as s1 and s2, where s1 ≥ s2. The corresponding eigenvectors are e1 =
(e1x, e1y) and e2 = (e2x, e2y), respectively. Here, enx and eny represent the x and y
components of en for n = 1 or 2. The transformation matrix Qe that converts coordinates
from the laboratory coordinates x = (x, y) to the reference frame xe of the principal axes,
defined by the eigenvectors e1 and e2, is expressed as

Qe =
(

e1x e1y
e2x e2y

)
. (3.6)

The basic reference frame is obtained by rotating the coordinate system xe = Qex by θ =
45◦. The rotational transformation matrix Qr(θ) is given by

Qr(θ) =
(

cos θ sin θ

− sin θ cos θ

)
. (3.7)
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Consequently, the coordinate transformation from the laboratory coordinates to the basic
reference frame is expressed as Qb = Qr(45◦)Qe. The filtered velocity gradient tensor in
the basic reference frame, denoted as ∇ũ(b), is calculated as ∇ũ(b) = Qb ∇ũ QT

b , where
the superscript (b) indicates quantities evaluated in the basic reference frame, and QT

b is
the transposed matrix of Qb. Subsequently, ∇ũ(b) is decomposed into three components,
∇ũ(b)

S , ∇ũ(b)
R and ∇ũ(b)

E , in the basic reference frame, as follows:

(∇ũ(b)
RES)ij = sgn[(∇ũ(b))ij] min[|(∇ũ(b))ij|, |(∇ũ(b))ji|], (3.8)

(∇ũ(b)
S )ij = (∇ũ(b))ij − (∇ũ(b)

RES)ij, (3.9)

(∇ũ(b)
R )ij = [(∇ũ(b)

RES)ij − (∇ũ(b)
RES)ji]/2, (3.10)

(∇ũ(b)
E )ij = [(∇ũ(b)

RES)ij + (∇ũ(b)
RES)ji]/2, (3.11)

for i, j = 1, 2, where sgn is the sign function. Here, ∇ũRES, referred to as the residual
tensor, is the remnant from ∇ũ after extracting shear ∇ũS. Finally, the components of
shear, rigid-body rotation and elongation in the original coordinate system are obtained
by applying the inverse transformation of Qb, i.e. Q−1

b = QT
b , as ∇ũα = QT

b ∇ũ(b)
α Qb for

α = S, R, E.
The intensities of shear and rigid-body rotation are defined using the norm

of the decomposed velocity gradient tensors as ĨS = √
2(∇ũS)ij(∇ũS)ij and ĨR =√

2(∇ũR)ij(∇ũR)ij (Hayashi et al. 2021a). The vorticity vector of filtered velocity,
ω̃ = ∂ṽ/∂x − ∂ ũ/∂y, is decomposed into two components corresponding to shear and
rigid-body rotation: ω̃ = ω̃S + ω̃R. The shear vorticity ω̃S and the vorticity of rigid-body
rotation ω̃R are defined as ω̃S = (∇ũS)21 − (∇ũS)12 and ω̃R = (∇ũR)21 − (∇ũR)12. The
magnitudes of ω̃S and ω̃R are related to the intensity of the corresponding motion as√

2 |ω̃S| = ĨS and |ω̃R| = ĨR. For the fully resolved velocity gradient tensor ∇u, IS and
IR are associated with shear layers (vortex sheets) and vortex tubes with sizes of the
Kolmogorov scale, respectively. For this reason, the present study focuses on these two
motions, for which the statistics of ĨS and ĨR are evaluated at various length scales.

3.3. The analysis of flow structures associated with shearing motion
The flow structure associated with shearing motion in the filtered velocity fields is explored
using a conditional averaging procedure. This method involves taking averages around
regions exhibiting locally intense shear within a local reference frame that is oriented
according to the direction of the shear. This approach aligns with the methodologies
employed previously for investigating small-scale shear layers identified with the fully
resolved velocity gradient tensor (Eisma et al. 2015; Watanabe et al. 2020; Fiscaletti et al.
2021; Hayashi et al. 2021a; Watanabe & Nagata 2022). As such, the techniques used
previously to study small-scale shear layers are adapted and applied to the filtered velocity
field.

The initial step is to identify locations of locally intense shear within the filtered velocity
field. Following Hayashi et al. (2021a) and Fiscaletti et al. (2021), the present study
analyses flow around points where two conditions are met: first, the shear intensity ĨS

reaches a local maximum, and second, ĨS exceeds a threshold, denoted as ISth. The shear
layer exhibits a high shear intensity at its centre, as observed in the spatial distribution of
shear intensity, and this central location can be identified as the local maximum of shear
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Scale dependence of local shearing motion in turbulence

intensity (Fiscaletti et al. 2021; Hayashi et al. 2021a). Additionally, the local maximum of
shear intensity can be detected even in regions of very weak shear, which may be partially
attributed to measurement errors. To mitigate this issue, these regions of weak shear are
excluded by applying a threshold. This threshold to analyse small-scale shear layers was
implemented previously in Fiscaletti et al. (2021), where the threshold dependence was

also addressed. In the present study, the threshold is defined as ISth = CthĨS, where Cth is
a constant. We adopt Cth = 1.5, 2.0, 2.5, 3.0, 3.5 to examine Cth dependence.

The second step is identifying a local reference frame that characterises the shear
orientation. This frame is referred to as a shear coordinate, denoted by xs = (ζ1, ζ2), where
quantities are represented with a superscript (s). The shear coordinate is defined such that
the shear component ∇ũS in this coordinate system takes the form

∇ũ(s)
S =

(
0 |ωS|
0 0

)
. (3.12)

To establish the transformation matrix Qs from the laboratory coordinate to the shear
coordinate, we utilise the matrix Qb for the basic reference frame. The matrix Qs is defined
as Qs = Q2Q1Qb, where Q1 and Q2 are given by

Q1 =
{

Qr(90◦) when |(∇ũ(b)
S )12| = 0,

I otherwise,
(3.13)

and

Q2 =
{

Qsym when |(Q1∇ũ(b)
S )12| < 0,

I otherwise,
(3.14)

where I is the identity tensor, and Qsym is a symmetric transformation matrix written as

Qsym =
(

1 0
0 −1

)
. (3.15)

This derivation of Qs is based on the characteristics of ∇ũS, which has only one non-zero
component in the basic reference frame, either (∇ũ(b)

S )12 or (∇ũ(b)
S )21 (Kolář 2007). In the

shear coordinate, the shear relates to flows in the −ζ1 direction for ζ2 > 0 and in the ζ1
direction for ζ2 < 0.

Finally, ensemble averages of all local maxima of ĨS are evaluated in the shear
coordinate. At each local maximum of ĨS, the shear coordinate xs = (ζ1, ζ2) is given by
xs = Qsx. The shear coordinate is discretised using the function

ζi(n) = −ζmax

αζ

atanh
[

tanh(αζ )

(
1 − n + Nζ

Nζ

)]
, (3.16)

where n = −Nζ , . . . , Nζ is an integer specifying discrete points, Nζ = 60 determines the
resolution, αζ = 2.5 is a stretching parameter, and ζmax = 7.5Lf defines the range of ζi as
−ζmax ≤ ζi ≤ ζmax. The spacing between discrete points decreases as |ζi| approaches zero,
providing enhanced spatial resolution near the shear layer where the velocity gradient
is large. This function has also been employed for spatial discretisation in DNS, and
the distribution of discrete points has been detailed in previous studies (Watanabe et al.
2018; Akao, Watanabe & Nagata 2022). The velocity vector in the shear coordinate,
ũ(s) = (ũ(s)

1 , ũ(s)
2 ), is calculated as ũ(s) = Qsũ. Furthermore, the shear vorticity in the
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Figure 6. Distributions of the intensities of (a) rigid-body rotation ĨR, and (b) shear ĨS in a filtered velocity
field with filter length Lf /η = 343.

shear coordinate, ω̃
(s)
S , is determined using the shear tensor in the shear coordinate,

∇ũ(s)
S = Qs ∇ũS QT

s . Other vectors and tensors in the shear coordinate are evaluated
in this manner using Qs. For the velocity vectors, the relative velocity with respect to
(ζ1, ζ2) = (0, 0) is analysed to reveal the local flow pattern around shearing motion. These
quantities are evaluated on the discrete shear coordinate by interpolating the PIV data
in the laboratory coordinate system. The present study employs a third-order Lagrange
polynomial interpolation scheme. For each local maximum of ĨS, this procedure computes
the variable f as a function of (ζ1, ζ2), where the range of (ζ1, ζ2) is confined within the
measurement area of PIV. Consequently, no extrapolation of the PIV data is utilised in
the analysis of the shear layer. Thus the number of statistical samples varies depending
on the location of (ζ1, ζ2). The ensemble average of f is then computed as a function of
(ζ1, ζ2) with all local maxima of ĨS. This average is denoted by 〈 f 〉.

4. Results and discussion

4.1. Intensities of shearing motion and rigid-body rotation

Figure 6 visualises the instantaneous intensities of rigid-body rotation ĨR and shear ĨS
in the filtered velocity field at the PIV measurement centred at x = 0.360 m. The filter
length is set at Lf /η = 343. The distribution of ĨR is highly intermittent in space. Most
parts of the flow exhibit ĨR ≈ 0, with large ĨR values concentrated in small, discrete spots.
These large values of ĨR, often circular in shape, are indicative of vortex tubes with axes
perpendicular to the measurement plane. Smaller but non-zero values of ĨR do not always
have a circular shape but exhibit an elliptic shape elongated in one direction. These regions
possibly indicate vortex tubes with axes nearly parallel to the measurement planes. As the
out-of-plane component of rigid-body rotation is not captured on the two-dimensional
plane, ĨR for these vortices can be underestimated by the analysis of two-dimensional
velocity fields, as confirmed in Appendix A. Shearing motion, represented by ĨS > 0, is
almost everywhere throughout the flow. Consequently, turbulent motion at intermediate
scales is predominantly governed by shear. While ĨR and ĨS are related to turbulent
motions at intermediate scales, their spatial distributions are consistent with rigid-body
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Figure 7. Scale dependence of the mean intensities of shear and rigid-body rotation, ĨS and ĨR. The DNS
results of isotropic turbulence are shown for comparison (Watanabe & Nagata 2023).

rotation and shear at the smallest scales, where the former is intermittently present at the
smallest scales, while the latter is more pervasive than rigid-body rotation (Hayashi et al.
2021a). The predominance of shearing motion at the smallest scales has been reported
consistently for various turbulent flows in analyses employing the three-dimensional triple
decomposition, and this observation is unlikely to be influenced by the two-dimensional
triple decomposition (Das & Girimaji 2020; Nagata et al. 2020b; Hayashi et al. 2021a).
This tendency persists even in random velocity fields that are not solutions to the
Navier–Stokes equations (Watanabe & Nagata 2022). Thus the highly intermittent nature
of rigid-body rotation is considered a kinematic characteristic of fluctuating velocity fields.

Figure 7 displays the mean intensities of shear and rigid-body rotation, ĨS and ĨR,
as functions of the filter length Lf . The mean intensities and Lf are normalised by the
Kolmogorov time and length scales, respectively. These experimental results are presented
with data from a DNS database of statistically steady, homogeneous and isotropic
turbulence with Reλ = 202 in Watanabe & Nagata (2023). The graph reveals a decrease in
the mean intensities of both motions with an increase in scale. While the maximum Lf /η
value available in the DNS is smaller than the experimental range, an extrapolation of
the DNS results shows alignment with the experimental data. According to Kolmogorov’s
second similarity hypothesis, the first moment of the filtered velocity gradient, such as the
mean vorticity magnitude |ω̃|, varies as L−2/3

f when Lf is in the inertial subrange (Naso

& Pumir 2005). Figure 7 also compares ĨS and ĨR with the Kolmogorov scaling of L−2/3
f .

Both ĨS and ĨR in the experiments conform to this power-law decay, with exponents close
to that predicted by Kolmogorov scaling. The exact values of these exponents, determined
using a least squares method, are further discussed in relation to higher-order moments
below.

Figure 8 compares the probability density functions (PDFs) of ĨS and ĨR for three
different values of the filter length Lf . In this comparison, the mean vorticity magnitude of
the filtered velocity, |ω̃|, is utilised to normalise ĨS and ĨR. The PDFs are displayed using
linear and logarithmic scales in figures 8(a) and 8(b), respectively. The distribution of the
PDFs remains consistent across different scales. The PDF of ĨR displays a pronounced
peak at ĨR = 0, indicating that rigid-body rotation is mostly negligible. Conversely, the
PDF of ĨS peaks at ĨS/|ω̃| = 0.35, signifying the prevalence of weak shearing motion in
the flow. This observation aligns with the visualisations presented in figure 6. The minimal
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Figure 8. The PDFs of the intensities of shear, ĨS, and rigid-body rotation, ĨR, of filtered velocity fields in (a)
linear and (b) logarithmic scales. The results are presented for the PIV data measured at x = 0.360 m.

scale dependence of the PDFs suggests that both shear and rigid-body rotation motions are
distributed within turbulence independently of scale at intermediate scales.

4.2. Scaling of higher-order moments
Kolmogorov’s second similarity hypothesis suggests that the nth-order moment of the
velocity difference between two points separated by a distance r, commonly referred to
as the nth-order structure function, should follow a power law rn/3. Previous research
has demonstrated extensively that the scaling exponents deviate from n/3 as n increases.
This study revisits this topic, particularly focusing on shearing motion and rigid-body
rotation associated with shear layers and vortex tubes. It is important to clarify that our
aim is not to establish the precise scaling exponents but rather to discuss the relevance of
small-scale intermittency with these motions, which can be instrumental in understanding
the statistical properties of turbulence in terms of flow structures. In the filtered velocity
field with filter length Lf , the velocity increments due to shear and rigid-body rotation
over the distance Lf are measured as ĨSLf and ĨRLf , respectively. The present study

investigates the Lf dependence of nth-order moments of ĨSLf and ĨRLf , denoted as (ĨSLf )n

and (ĨRLf )n. According to Kolmogorov’s hypothesis, these are predicted to scale as Ln/3
f

in the inertial subrange, while smaller exponents are expected under the influence of
small-scale intermittency. Figure 9 compares the results for n = 3 and 5 at x = 0.360 m
with the Kolmogorov scaling. The maximum filter length considered here is Lf /η = 659,
which is significantly smaller than the integral scale Lu/η = 1635. The longitudinal energy
spectrum of streamwise velocity, Eu(kx), at this measurement location has been detailed
in Mori et al. (2024). At the wavenumber corresponding to Lf /η = 659η, specifically
kxη = 9 × 10−3, the spectrum exhibits a clear power law Eu ∼ k−5/3

x . This indicates that
the fitting range of Lf /η falls well within the inertial subrange. For shearing motion, both

(ĨSLf )3 and (ĨSLf )5 conform to power laws as functions of Lf . However, the results for
rigid-body rotation tend to diverge from these power laws, particularly for Lf /η > 500.

The exponents p for the power laws (ĨSLf )n ∼ Lp
f and (ĨRLf )n ∼ Lp

f are determined using

a least squares method. For shear, the exponent associated with (ĨSLf )n is evaluated across
the entire range of Lf examined in the experiments. Because of the limited range of the
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Figure 9. Scale dependence of (a) third-order and (b) fifth-order moments of the velocity increments due to
shear, ĨSLf , and rigid-body rotation, ĨRLf . The solid lines indicate the Kolmogorov scaling.
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Figure 10. The power law exponents p for the nth-order moments of the velocity increments due to shear,
ĨSLf , and rigid-body rotation, ĨRLf , at x = 0.360 m.

power law for (ĨRLf )n, p for rigid-body rotation is calculated using data points for Lf /η ≤
480. In this range, the slopes of (ĨSLf )3 and (ĨRLf )3 are found to be similar, as shown in

figure 9(a). Figure 10 presents the exponents p of (ĨSLf )n and (ĨRLf )n at x = 0.360 m. We
have also confirmed that similar results are obtained for different measurement locations.
These results are compared with the scaling exponents of the longitudinal structure
function reported in Arneodo et al. (1996) and Iyer et al. (2020). For shear intensity, the
exponents closely match those of the structure function: p aligns with the Kolmogorov
scaling p = n/3 for n ≤ 4, but diverges for higher n. The extent of deviation from p = n/3
is quantitatively consistent between the shear intensity and the longitudinal structure
function. The deviation from p = n/3 for n ≤ 4 in rigid-body rotation is also minimal.
However, the exponent p for higher-order moments of ĨRLf is significantly smaller than
n/3, and differs from those for ĨSLf and the structure functions. Shearing motion is
characterised by a transverse velocity gradient of ∇ũS in the basic reference frame of the
triple decomposition. However, in other frames, such as the laboratory coordinates x, ∇uS
can exhibit non-zero diagonal components (longitudinal velocity gradient). Therefore,
comparing the exponents between shear intensity and longitudinal structure function is
meaningful. While it is known that the transverse structure function for n ≥ 4 has smaller
scaling exponents than the longitudinal one, this discrepancy is not substantial for n ≤ 8
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Figure 11. The mean shear intensity 〈ĨS〉 and mean velocity vectors (〈ũ(s)
1 〉, 〈ũ(s)

2 〉) around locally intense shear
regions of filtered velocity fields at filter lengths (a) Lf /η = 343 and (b) Lf /η = 458. The vector lengths
indicate the velocity magnitude. The coordinate is normalised by the Kolmogorov scale η. The results are
shown for x = 0.360 m and Cth = 2.

examined here (Dhruva, Tsuji & Sreenivasan 1997; Gotoh, Fukayama & Nakano 2002;
Iyer et al. 2020).

The alignment of the scaling exponent between shear intensity and structure function
suggests that velocity increments between two points separated by a distance r
are influenced predominantly by shearing motion at the scale of r. Consistently,
regions characterised by intense velocity gradients even at the smallest scale are
influenced predominantly by shear (Das & Girimaji 2020). Additionally, the intensity
of rigid-body rotation demonstrates scaling exponents that are considerably smaller than
the Kolmogorov scaling n/3. This observation aligns with the markedly intermittent
distribution of rigid-body rotation, characterising vortex tubes, as visualised in figure 6(a).
As discussed with conditional averages below, shearing motion at intermediate scales is
concentrated in sheet-like structures, manifesting as shear layers. These results suggest
that velocity increments between two points are influenced predominantly by shear layers.
Iyer et al. (2020) explored the scaling exponents of longitudinal and transverse structure
functions, noting that the exponents for high-order transverse structure functions tend
to stay at approximately 2. This behaviour and the fractal description of small-scale
turbulence also suggest that sheet-like structures dominate transverse velocity increments.
The present analysis further provides direct evidence supporting the relevance of shearing
motion associated with layer structures to the observed deviation from the Kolmogorov
scaling.

4.3. Characteristics of shear layers at intermediate scales
The conditional statistics evaluated near the local maxima of shear intensity are examined
to investigate the flow structure associated with shearing motion at intermediate scales.
The results are first presented for different filter lengths and turbulent Reynolds numbers.
In § 4.4, the findings are then compared with small-scale shear layers characterised by the
Kolmogorov scales.

Figure 11 provides a visualisation of the mean shear intensity 〈ĨS〉 and mean velocity
vectors in the filtered velocity fields for filter lengths Lf /η = 343 and 458. The mean
velocity vectors indicate that flows in both ±ζ1 directions, for ζ2 > 0 and ζ2 < 0,
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Figure 12. The distribution of mean vorticity of rigid-body rotation 〈ω̃(s)
R 〉 near the shear layers at filter lengths

(a) Lf /η = 343 and (b) Lf /η = 458. The white solid line is the isoline of mean shear intensity 〈ĨS〉 = 1.5ĨS,
indicating the shear layer location. The results are shown for x = 0.360 m and Cth = 2. The arrows illustrate
the orientation of vortical motions.

contribute to the shear. The area exhibiting large shear intensity is narrow in the ζ2
direction but elongated along the ζ1 axis. This observation confirms the formation of layer
structures with shearing motion at intermediate scales. Notably, the mean flow pattern
remains consistent across both length scales examined. The aspect ratio of the shear layer
is determined by analysing the profiles of 〈ĨS〉 along the ζ1 and ζ2 axes. The normalised
mean shear intensity is defined as ÎS(ζ1, ζ2) = (〈ĨS〉(ζ1, ζ2) − ĨS)/(〈ĨS〉(0, 0) − ĨS), which
diminishes from 1 to 0 as |ζ1| or |ζ2| increases from 0. The extent of the shear layer in
the ζ1 direction, L1, is measured as the distance between two points where ÎS(ζ1, 0) = 0.1.
Likewise, the dimension of the layer in the ζ2 direction, L2, is determined from two points
where ÎS(0, ζ2) = 0.1. The profiles of ÎS have been evaluated for all measurement locations
and filter lengths, confirming an aspect ratio AR = L1/L2 ≈ 4.5, which remains consistent
irrespective of Lf and Reλ.

Figure 12 displays the conditional average of the mean vorticity of rigid-body rotation,
〈ω̃(s)

R 〉, in the shear coordinate. These results are obtained from the filtered velocity fields
with filter lengths Lf /η = 343 and 458. The white solid line represents the location of
the shear layer, marked by the isoline of the mean shear intensity. Large positive values
of 〈ω̃(s)

R 〉 are observed at the edges of the shear layer on ζ2 = 0. Furthermore, regions of
negative 〈ω̃(s)

R 〉 are present on both sides of the shear layer. This distribution pattern is
the same for both filter lengths. Figure 12(a) also illustrates the orientation of the vortical
motion, as determined by the sign of 〈ω̃(s)

R 〉. The flow induced by rigid-body rotation is
aligned with the mean flow surrounding the shear layer, as visualised in figure 11.

Figure 13(a) shows the mean shear vorticity 〈ω̃(s)
S 〉 and the mean velocity in the ζ1

direction, 〈ũ(s)
1 〉, across the shear layer at ζ1 = 0. The shear vorticity is significantly

large within the thin layer. It approaches zero for large |ζ2|, indicating that the shearing
motion identified at ζ2 = 0 weakly influences the far-field characteristics with large |ζ2|.
Concurrently, the mean velocity associated with the shear, 〈ũ(s)

1 〉, exhibits a distinct jump
within the region where 〈ω̃(s)

S 〉 is large. The observed pattern of the mean velocity jump
in the shear layers within the filtered velocity field aligns with the mean velocity profiles
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Figure 13. (a) The mean shear vorticity 〈ω̃(s)
S 〉 and the mean velocity in the ζ1 direction, 〈ũ(s)

1 〉, across the
shear layer at ζ1 = 0 in filtered velocity fields at filter length Lf /η = 343. (b) The scale dependence of the
mean shear vorticity normalised by the maximum value. The results are shown for x = 0.360 m.

around small-scale shear layers in prior studies (Eisma et al. 2015; Watanabe et al. 2020;
Fiscaletti et al. 2021). Figure 13(b) shows 〈ω̃(s)

S 〉 at ζ1 = 0 normalised by its maximum
value at (ζ1, ζ2) = (0, 0). The distribution of the normalised shear vorticity is identical for
different filter lengths, indicating the presence of self-similar structures of shearing motion
at intermediate scales.

The thickness δS and velocity jump �u of the averaged shear layers are quantified with
the half-width of 〈ω̃(s)

S 〉. The definitions of δS and �u are chosen to compare directly with
previous studies on small-scale shear layers, which employ the half-width to quantify δS
and �u. The layer thickness δS is determined as the distance between the two points with
〈ω̃(s)

S 〉/〈ω̃(s)
S 〉max = 0.5, where 〈ω̃(s)

S 〉max is 〈ω̃(s)
S 〉 at (ζ1, ζ2) = (0, 0). The mean velocity

gradient caused by shear is represented by 〈ω̃(s)
S 〉 at (ζ1, ζ2) = (0, 0), by which the mean

velocity jump across the shear layer is evaluated as �u = δS〈ω̃(s)
S 〉.

Randomly fluctuating velocity fields exhibit shearing motion, even if they are not the
solutions to the Navier–Stokes equations (Watanabe et al. 2020). The scale dependence
of shear layers is explored for a multi-scale, random and solenoidal velocity field. This
velocity field possesses the same energy spectrum as homogeneous isotropic turbulence
at Reλ = 128, but with phases in wavenumber space generated by random numbers.
The random velocity, free from the dynamics of Navier–Stokes equations, is frequently
investigated to understand the kinematic nature of multi-scale velocity fields (Shtilman,
Spector & Tsinober 1993; Tsinober 2009). Details on the generation of random velocity are
provided in Appendix B. Figure 14 presents the conditional statistics of shear layers for the
random velocity, while analogous statistics in genuine turbulence are depicted in figure 13.
In figure 14(a), the shear layer within the random velocity also displays significant shear
vorticity at its centre, across which the velocity changes abruptly. These profiles show
little difference between turbulence and random velocity. Moreover, the shear vorticity
near shear layers at different scales, as shown in figure 14(b), maintains a self-similar
profile even in random velocity. These findings indicate that the self-similar layer structure
with shear at intermediate scales arises primarily from the kinematic nature of multi-scale
random velocities.

Figure 15 presents the relationship between the layer thickness δS and the filter length
Lf at four measurement locations. The figure also compares results obtained using various
thresholds Cth. As expected from the filter characteristics, δS increases linearly with Lf . A
least squares method yields δS = 0.79Lf . Notably, this relationship is independent of Cth.
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Figure 14. The same plots as in figure 13 obtained for random velocity: (a) the mean shear vorticity and
mean velocity for Lf /η = 30; (b) the mean shear vorticity normalised by its peak value.
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Figure 15. The scale dependence of the shear layer thickness δS estimated as the half-width of the mean
shear vorticity. The line indicates δS = 0.79Lf obtained with a least squares method.

When analysing shear layers in the filtered velocity field, the thickness of these layers is
determined by the chosen filter length.

Figure 16(a) displays the relationship between the velocity jump of the shear layer,
�u(Lf ), and the shear layer thickness δS(Lf ). The Kolmogorov velocity and length scales,
independent of Lf , normalise �u and δS, respectively. The range of Lf , the measurement
locations and the values of Cth are the same as in figure 15. Applying larger Cth values
leads to the exclusion of weaker shearing motions from the analysis, which consequently
results in an increase in �u as Cth increases. Despite this increase, the scale dependence
of �u remains similar for all Cth values, showing that �u increases with δS. According to
the Kolmogorov scaling, the velocity jump across a shear layer of thickness δS is predicted
to scale as �u ∼ (εδS)

1/3. The slope of �u closely follows this power law. This power
law is more evident in the compensated plot shown in figure 16(b), where �u/(εδS)

1/3

is plotted against δS/η. The scale dependence of �u/(εδS)
1/3 is insignificant, suggesting

that �u ∼ (εδS)
1/3 is generally valid for the present data. However, the results also indicate

that the coefficient A in �u = A(εδS)
1/3 is not universal but varies with Cth. This variation

is attributed to the elimination of weaker shearing motions at higher Cth values. For
Cth = 1.5, the value of A is in the range approximately 2.5 ± 0.2 for Reλ = 433–732. The
velocity jump �u evaluated on two-dimensional planes is underestimated by a factor of
about 1/

√
3 compared to that in three-dimensional fields, as demonstrated in Appendix A.
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Figure 16. (a) The scale dependence of the mean velocity jump �u across the shear layer. (b) The
compensated plots of �u normalised by (εδS)

1/3. Symbols are the same as in figure 15.
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Figure 17. The scale dependence of the shear Reynolds number. The results are presented for Cth = 1.5.

Consequently, the actual velocity jump is expressed more accurately as �u = A′(εδS)
1/3,

where A′ ≈ √
3 A ≈ 4.3.

Figure 17 illustrates the scale dependence of the shear Reynolds number ReS, a crucial
parameter characterising the dynamics of shear layers. The shear Reynolds number is
defined using the thickness and velocity jump of the shear layer as ReS = δS �u/ν.
Given the Kolmogorov scaling for the velocity jump, �u ∼ δ

1/3
S , ReS is expected to

obey a power law of δS written as ReS ∼ δ
4/3
S . Consistently, ReS ∼ (δS/η)1.3 is obtained

with a least squares method. The shear Reynolds number is also underestimated by
the two-dimensional analysis of three-dimensional shearing motions, as discussed in
Appendix A. The actual shear Reynolds number is about

√
3 times larger than the values

presented in figure 17. The shear Reynolds number in the intermediate scales is sufficiently
large for the shear layers to be unstable. This point is discussed further in § 4.4.

4.4. Comparisons of shear layers at intermediate scales and the smallest scale
The findings from this study on shear layers at intermediate scales show similarities to
the characteristics of small-scale shear layers investigated previously. The latter has been
investigated with the triple decomposition of the fully resolved velocity gradient tensor
(Eisma et al. 2015; Fiscaletti et al. 2021; Hayashi et al. 2021a; Watanabe & Nagata 2022,
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2023). Here, these shear layers are compared between the intermediate scales and the
smallest scale.

The mean profile of shear intensity depicted in figure 11 reveals that the aspect ratio AR
of the shear layer in the mean flow pattern is approximately 4.5. This same methodology
for assessing the aspect ratio is applicable to the mean shear intensity profile of the
small-scale shear layer presented in previous studies. For instance, in a turbulent planar
jet with Reλ = 97 in Hayashi et al. (2021a), the small-scale shear layer has AR = 4.6,
which aligns closely with AR = 4.5 observed for the shear layers at intermediate scales.
Moreover, the two-dimensional distribution of the mean shear intensity and mean velocity
vector, as shown in figure 11, resembles the distribution pattern found for small-scale shear
layers (Hayashi et al. 2021a).

Figure 12 indicates the presence of vortex tubes exhibiting rigid-body rotation near the
shear layers at intermediate scales. The sign of the rigid-body rotation vorticity ω̃

(s)
R reveals

that the vortices within the shear layer (where ω̃
(s)
R > 0) rotate in the same direction as

the shear-induced vorticity (ω̃(s)
S > 0). Conversely, vortices located alongside the shear

layers exhibit the opposite rotating direction. Watanabe & Nagata (2022) presented similar
observations for small-scale shear layers, where pairs of anti-rotating vortices associated
with rigid-body rotation were also noted in the mean profile around the shear layers.
Thus the arrangement of vortices around shear layers appears consistent across both
intermediate and small scales. In the case of small-scale shear layers, it is understood
that the vortices on the sides of the shear layer contribute to the flow that drives the
shearing motion (Watanabe & Nagata 2022). This role of vortices is likely comparable
at the intermediate scale because of the similar configurations of vortices. These findings
suggest that shear layers often emerge adjacent to rotating motion, aligning with earlier
research on tubular and sheet-like structures at intermediate scales (Bermejo-Moreno et al.
2009). These structures tend to appear next to each other. However, given that rigid-body
rotation is more spatially intermittent than shearing motion, such vortex configurations
may not be present for all shear layers in instantaneous flow fields.

Watanabe & Nagata (2023) investigated the shear Reynolds number ReS for small-scale
shear layers in homogeneous isotropic turbulence, defined using the half-width of the shear
intensity δS and the velocity jump �u across the layers. The characteristics of small-scale
shear layers are compared with the scale dependence of �u and ReS at intermediate scales
(greater than 100η) derived from the current experimental data. Figure 16 demonstrates the
Kolmogorov scaling for the velocity jump �u = A′(εδS)

1/3, with A′ ≈ 4.3 for the smallest
Cth. This lowest threshold value is selected to include even weak shearing motions, akin to
the analyses of small-scale shear layers in Watanabe & Nagata (2023). The present results
for �u yield the following relationship for the mean velocity jump of shear layers in the
inertial subrange:

�u/uη = A′(δS/η)1/3. (4.1)

The time scale associated with the evolution of shear layers is defined as τS = δS/�u. The
small-scale shear layers often collapse, forming small-scale vortex tubes through shear
instability, as described in Vincent & Meneguzzi (1994). The time scale of this shear
instability is comparable to τS and is of the same order as the Kolmogorov time scale
τη for the small-scale shear layers (Watanabe & Nagata 2023). Equation (4.1) yields the
following expression for τS:

τS/τη = A′−1
(δS/η)2/3, (4.2)
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which can be related to the time period for vortex formation from shear layers at scale δS.
Finally, (4.1) yields the shear Reynolds number as

ReS = A′(δS/η)4/3. (4.3)

These relationships are based on the Kolmogorov scaling of the velocity jump �u within
the inertial subrange. However, they align well with the characteristics of small-scale shear
layers. Typically, these small-scale shear layers were shown to have δS ≈ 4η, Δu ≈ 5uη

and therefore ReS = (δS/η)(Δu/uη) ≈ 20 (Watanabe & Nagata 2023). Equation (4.1)
specifically predicts �u = 6.8uη for a shear layer thickness δS = 4η, closely matching
the direct observation of �u ≈ 5uη for the small-scale shear layers. This congruence
suggests that other characteristics of small-scale shear layers are also consistent with the
estimations based on the Kolmogorov scaling. For instance, (4.2) with δS = 4η predicts
τS = 0.6τη, aligning with τS = 0.8τη, which is evaluated directly for small-scale shear
layers. Additionally, (4.3) with δS ≈ 4η yields ReS = 27, closely resembling the reported
value ReS = 20 for small-scale shear layers. Despite the strong influence of viscosity
on small-scale shear layers, as evidenced by the kinetic energy and enstrophy budgets
(Pirozzoli et al. 2010; Hayashi et al. 2021a; Watanabe & Nagata 2022), the empirical
relations rooted in Kolmogorov scaling are surprisingly consistent with the small-scale
shear layers. This implies that (4.1)–(4.3) are applicable even to the shear layers at scales
smaller than those examined in this study.

The shear layers at intermediate scales exhibit a high shear Reynolds number (ReS  1),
indicating their instability against perturbations (Betchov & Szewczyk 1963; Lin & Corcos
1984). The mean shear intensity profile displayed in figure 11 reveals an aspect ratio of
approximately 4.5 for these layers. Such a low aspect ratio suggests that the shear layers
are absolutely unstable, even in the absence of external perturbations. This is due to the
self-induced velocity of the shear layers, which initiates the self-roll-up process of the
layers (Watanabe & Nagata 2023). The present results imply that the instability of shear
layers with thickness δS within the inertial subrange readily leads to the formation of
vortex tubes of a similar scale. Theoretical and numerical analyses of shear instability have
confirmed that the shear layer possesses an optimal wavelength for disturbances, which
most effectively accelerates the roll-up of the shear layers (Betchov & Szewczyk 1963;
Lin & Corcos 1984). For shear layers with a finite aspect ratio, this optimal wavelength is
around seven times the thickness defined as the half-width of the shear intensity (Watanabe
& Nagata 2023). Both perturbation-induced and self-induced instabilities of shear layers
with a finite aspect ratio are further accelerated by external disturbances with length scale
7δS. Small-scale shear layers with δS ≈ 4η in isotropic turbulence are indeed particularly
unstable against perturbations at this wavelength, which corresponds to approximately
28η (Watanabe & Nagata 2023). This scale dependence of the response of shear layers
to perturbations can be important in understanding the interaction of turbulent motions
with different scales in terms of flow structures. Additionally, the instability of shear
layers within the inertial range can also be crucial in understanding the modulation of
turbulence by disturbances, such as flows interacting with cylinders, spheres or particles
(Nagata et al. 2020a; Takamure, Kato & Uchiyama 2023), when the disturbance scale
matches the instability mode of shear layers at a specific scale. This aspect will also be
important in studies of flow control, which often leverage flow instability to maximize
the impact of disturbances introduced into flows (Cattafesta & Sheplak 2011; Watanabe
2024).

997 A14-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.727
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5. Conclusion

The scale dependence of local shearing motion has been explored through wind tunnel
experiments of decaying homogeneous isotropic turbulence generated by multiple jets,
with the turbulent Reynolds number ranging approximately from 900 to 400. The PIV
datasets in Mori et al. (2024) were analysed using the triple decomposition (Kolář 2007)
applied to filtered velocity fields. This decomposition separates the coarse-grained velocity
gradient tensor into three components: shear, rigid-body rotation and elongation, each
associated with a specific scale determined by the filter cutoff Lf . Vortex tubes and shear
layers (also called vortex sheets) are linked to rigid-body rotation and shear. Here, Lf falls
within intermediate scales, specifically greater than 100η, and is expected to lie in the
inertial subrange.

The analysis of the instantaneous distribution of rigid-body rotation and shear, along
with the PDFs of their intensities, ĨS and ĨR, at the scale of Lf reveals that rigid-body
rotation exhibits more spatial intermittency compared to shearing motion. Shearing motion
is present almost everywhere in turbulence, whereas most flow regions exhibit negligible
rigid-body rotation. As the scale Lf increases, the mean intensities of rigid-body rotation
and shear decrease, following power laws with exponents close to the Kolmogorov scaling
L−1/3

f for the inertial subrange. Additionally, the moments of velocity increments caused
by shear and rigid-body rotation, defined through their intensities as ĨSLf and ĨRLf , are
investigated across various scales. The moments of the velocity increment due to shear,
(ĨSLf )n, obey power laws of Lf , denoted as (ĨSLf )n ∼ Lp

f . This analysis reveals anomalous
scaling for the shear intensity, where the exponent p(n) is smaller than the Kolmogorov
scaling p = n/3 for larger values of n. This deviation from the Kolmogorov scaling aligns
quantitatively with that observed for the longitudinal structure function, suggesting that
the velocity increment between two points is influenced predominantly by shearing motion
with the scale of two-point distance. The moments of the velocity increment attributable to
rigid-body rotation, (ĨRLf )n, also follow power laws, albeit over a narrower range compared

to shear. The exponent for (ĨRLf )n ∼ Lp
f deviates more significantly from n/3 than that

of shear. This larger deviation is consistent with the more intermittent distributions of
rigid-body rotation observed in the flow.

The mean flow structure associated with shearing motion was explored further through
conditional averages around regions with locally intense shear. In these analyses, the
shear layer manifests between parallel mean flows in opposite directions. The observed
shear layer exhibits an aspect ratio of approximately 4.5 and is found in proximity to
rotational motions, characteristic of vortex tubes. The aspect ratio of the shear layer, and
the configuration of these vortices at intermediate scales, align with those of small-scale
shear layers at the Kolmogorov scale. The mean shear layer pattern remains consistent
when scaled with the filter length, suggesting self-similar structures of shearing motion
across different scales. A comparison between turbulence and random velocity has
indicated that the self-similar shear layers at different scales arise from the kinematic
nature of multi-scale velocity fluctuations. The mean velocity jump �u across the
shear layer increases with the layer thickness δS. This increase aligns well with the
Kolmogorov scaling, as denoted in (4.1), leading to similar power laws for the time
scale and Reynolds number of shear layers, as given in (4.2) and (4.3). Although these
power laws are based on the Kolmogorov scaling within the inertial subrange, their
extension to smaller scales effectively predicts the characteristics of small-scale shear
layers.
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The scaling exponents of shear intensity underscore the significance of shearing
motion at intermediate scales, which may surpass rigid-body rotation in influencing some
scale-dependent turbulence properties. These motions are manifested as vortex tubes and
shear layers. Numerous efforts have been made to model turbulence by conceptualising it
as being composed of spatially distributed simple structures (Townsend 1976; Lundgren
1993; Marusic & Monty 2019). Notably, a simple model of small-scale shear layers,
based on the mean flow pattern observed directly for small-scale shearing motion within
turbulent flows, has successfully elucidated the response of turbulence to small-scale
perturbations (Watanabe & Nagata 2023). The self-similarity observed in the shear layers
offers an advantage in constructing models of these layers at various scales. The mean
flow structure of shearing motion and its scaling properties, revealed in this study, hold
the potential for enhancing our understanding of turbulent flows in the context of flow
structures.
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Appendix A. Comparison of the triple decomposition between two- and
three-dimensional velocity gradient tensors

The present study has analysed the two-dimensional velocity gradient measured by
PIV. The triple decomposition is used to extract three motions from two-dimensional
planes even though turbulence involves three-dimensional fluid motions. This appendix
investigates the discrepancies in the triple decomposition between two-dimensional
(2-D) and three-dimensional (3-D) velocity gradient tensors using the DNS database of
homogeneous isotropic turbulence, the same database utilised previously in Watanabe
et al. (2020) and Watanabe & Nagata (2023). The DNS were conducted using an in-house
finite difference code, which applies a fourth-order fully conservative finite difference
scheme and a third-order Runge–Kutta method (Morinishi et al. 1998). The statistically
steady state was achieved through a linear forcing scheme (Carroll & Blanquart 2013).
The turbulent Reynolds number is Reλ = 202, and the simulation uses 20483 grid points.

The triple decomposition is applied to the low-pass filtered 3-D velocity gradient tensor
(∇ũ)ij, where i, j = 1, 2, 3, resulting in ∇ũS, ∇ũR and ∇ũE. A 3-D Gaussian filter with
filter length Lf is employed in wavenumber space, as described by Pope (2000). The
algorithm for triple decomposition follows Nagata et al. (2020b). Similarly, the triple
decomposition of the 2-D filtered velocity gradient tensor described in § 3.2 is applied
to the same DNS database. Both analyses provide flow statistics as functions of the filter
length Lf .
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Figure 18. Two-dimensional distributions of the intensities of (a) rigid-body rotation and (b) shear, evaluated
using the 3-D triple decomposition for filter length Lf /η = 30 in DNS.

Figure 18 visualises 2-D distributions of ĨR and ĨS derived from the 3-D triple
decomposition. A highly intermittent distribution of ĨR is observed, with values close
to zero across most of the flow, while shear dominates a significant portion of the flow.
This predominance of shear over rigid-body rotation aligns with findings from the triple
decomposition of fully resolved velocity gradient tensors (Das & Girimaji 2020; Nagata
et al. 2020b; Hayashi et al. 2021a). Additionally, this tendency is also evident in the triple
decomposition applied to 2-D planes, as shown in figure 6.

Figure 19(a) compares the 2-D and 3-D triple decompositions regarding the Lf

dependence of the mean intensities of shear and rigid-body rotation, ĨS and ĨR. Both
decompositions yield a similar trend: ĨS and ĨR decrease with Lf at a comparable rate.
The mean intensities for the 2-D decomposition are smaller than those for the 3-D case.
This discrepancy arises because the 2-D decomposition considers only motions defined on
an examined plane. The shear component of the velocity gradient tensor for the 2-D case
can be expressed in a basic reference frame as

∇ũS =
(

0 a
0 0

)
. (A1)

For the 3-D case, ∇ũS in a basic reference frame is written as

∇ũS =
⎛
⎝0 a b

0 0 c
0 0 0

⎞
⎠ . (A2)

It should be noted that other forms are possible as long as ∇ũS remains purely asymmetric
(Kolář & Šístek 2014). The shear intensity is ĨS = √

2 a for the 2-D case, and ĨS =√
2(a2 + b2 + c2) for the 3-D case, suggesting that the shear intensity is inherently smaller

on a 2-D plane, which does not account for two of the three non-zero components.
This explanation also holds true for the intensity of rigid-body rotation. As all non-zero
components in ∇ũS are statistically identical in isotropic turbulence, it can be expected
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ĨS

ĨR
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Figure 19. (a) The scale dependence of the mean intensities of shear and rigid-body rotation, ĨS and ĨR,
evaluated using 2-D and 3-D triple decompositions applied to DNS data of homogeneous isotropic turbulence.
(b) Plots of ĨS and ĨR, multiplied by

√
3 in the 2-D case to account for the underestimation due to dimensionality

reduction.

that the average of ĨS in the 3-D decomposition is about
√

3 times larger than that in the
2-D case. Here,

√
3 for the mean intensities is not the exact value derived theoretically.

Figure 19(b) presents the compensated plots, where ĨS and ĨR for the 2-D case are
multiplied by

√
3. The compensated intensities align with their 3-D counterparts. Thus

the discrepancy between the 2-D and 3-D decompositions in figure 19(a) is attributed to
the out-of-plane components of the velocity gradient tensor. Despite the difference by a
factor of

√
3, the Lf dependence remains consistent for both 2-D and 3-D decompositions.

Therefore, evaluating the scale dependence of shear and rigid-body rotation on 2-D
planes still provides valuable insights into local turbulent motions considered in the triple
decomposition.

Figure 20(a) presents the third- and fifth-order moments of the velocity increments
due to shear, ĨSLf , evaluated using the 2-D and 3-D triple decompositions. Similar to the
mean shear intensity, the 2-D decomposition underestimates the higher-order moments of
ĨSLf . However, the Lf dependence is consistent between the 2-D and 3-D decompositions,

suggesting that the scaling exponents in (ĨSLf )n ∼ Lp(n)
f are also similar for both cases.

A direct evaluation of p using a least squares method on the plots of (ĨSLf )n is unsuitable
because the Reynolds number is not sufficiently high in the DNS. The scaling exponents of
structure functions at moderate Reynolds numbers are often estimated with the extended
self-similarity (ESS) method (Benzi et al. 1993; Saw et al. 2018; Matsushima, Nagata
& Watanabe 2021), which determines the scaling exponents for n /= 3 by plotting the
nth-order structure functions against the third-order structure function. This study applies
the ESS method to the nth-order moments of ĨSLf to determine the scaling exponents.
Although previous studies have shown that scaling exponents estimated with ESS align
with those measured directly in experiments, it has also been argued that the ESS method
can yield inaccurate estimations due to low-Reynolds-number effects on the third-order
structure function (Tang et al. 2017). Here, the ESS method is utilised solely to compare
the scaling exponents of (ĨSLf )n between the 2-D and 3-D triple decompositions, and is not
intended to provide exact values for the exponents. In addition, the discussion is limited
to shearing motion here because power laws are not observed for high-order moments
of ĨRLf with the ESS method for both the 2-D and 3-D cases. Figure 20(b) displays the
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Figure 20. (a) The scale dependence of the third- and fifth-order moments of the velocity increments due
to shear, ĨSLf , evaluated using 2-D and 3-D triple decompositions applied to DNS data. (b) The power-law
exponents p for the nth-order moments of ĨSLf . These exponents are evaluated using the extended self-similarity
method.

scaling exponents of (ĨSLf )n ∼ Lp(n)
f , estimated using the ESS method. The exponents

are evaluated for 20 ≤ Lf /η ≤ 100. Both the 2-D and 3-D decompositions yield identical
scaling exponents, indicating that they are unlikely to be affected by out-of-plane motions
not captured on 2-D planes. These exponents are also consistent with those observed in
the current experiments and those derived from longitudinal structure functions, as shown
in figure 10.

The conditional statistics of shear layers are compared between the 2-D and 3-D triple
decompositions. In both cases, the centre of shear layers is identified as a local maximum
of ĨS where ĨS ≥ 2ĨS. For the 3-D analysis, the shear coordinate (ζ1, ζ2, ζ3) is defined
using the methodology described in Hayashi et al. (2021a). The filtered velocity vector in
the shear coordinate is represented as (ũ(s)

1 , ũ(s)
2 , ũ(s)

3 ). Here, the direction of ζ3 aligns with
the direction of the shear vorticity vector ω̃Si = εijk(∇ũS)jk and is given by ω̃S/|ω̃S|. The
orthogonal directions ζ1 and ζ2 are determined such that shear is represented by ∂ ũ(s)

1 /∂ζ2.
Details of the numerical algorithm for determining the shear coordinate are available
in Hayashi et al. (2021a). Flow variables defined at computational grid points in DNS
are interpolated onto the shear coordinate system. The discretisation and interpolation
methods used are consistent with those described in § 3.3. The analysis with the 2-D triple
decomposition, as outlined in § 3.3, is also conducted using DNS data for comparison.
The filter length Lf is set at Lf /η = 60, although the following discussion remains valid
regardless of the chosen Lf .

Figure 21(a) compares the mean shear vorticity in the ζ3 direction, 〈ω̃(s)
S3 〉, plotted

against ζ2 across the centre of the shear layer at (ζ1, ζ3) = (0, 0). The corresponding
plots obtained from the experiments are presented in figure 13(a). Both 2-D and 3-D
decompositions effectively capture the prominent peak in shear vorticity within the shear
layers. The layer thickness, estimated by the mean shear vorticity, is similar for both
decompositions. However, consistent with observations for the mean shear intensity in
figure 19, the mean shear vorticity within the shear layer is underestimated by the 2-D
triple decomposition. The peak value of 〈ω̃(s)

S3 〉 in the 3-D case is 0.32τ−1
η , approximately√

3 times greater than that in the 2-D decomposition, which is 0.18τ−1
η . This indicates
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〈ũ 1
(s

) 〉/u
η
, 
〈ũ 2
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Figure 21. Conditional statistics of shear layers obtained using 2-D and 3-D triple decompositions in DNS of
isotropic turbulence: (a) mean shear vorticity, and (b) mean velocity at Lf /η = 60. Indices 1 and 2 of vectors
denote the parallel and normal directions to the shear layers, respectively, while 3 represents the direction of
shear vorticity at the centre of the shear layers.

that the effect of evaluating shear in 2-D planes is consistent across both conditional and
unconditional averages.

Figure 21(b) compares the conditional average of velocity components in the ζ1 and
ζ2 directions. The experimental results are also presented in figure 13(a). Due to the
presence of shear, ũ(s)

1 displays a velocity jump within the shear layer. The mean velocity
jump, evaluated using the mean layer thickness as defined in § 4.3, is 13.2uη in the 3-D
decomposition, approximately

√
3 times larger than 7.1uη observed in the 2-D case. This

discrepancy indicates that analyses conducted on 2-D planes underestimate the mean
velocity jump by a factor of approximately

√
3. While the mean velocity in the layer

parallel direction, 〈ũ(s)
1 〉, is similar for both 2-D and 3-D decompositions, a qualitative

difference is observed in the velocity in the layer normal direction, ũ(s)
2 . In the 3-D

decomposition, 〈ũ(s)
2 〉 displays positive and negative values around ζ2 = 0. This profile

suggests that the shear layer experiences compression, indicated by ∂ ũ(s)
2 /∂ζ2 < 0. This

compression is also characteristic of small-scale shear layers and is related to an expanding
flow in the direction of shear vorticity, contributing to vortex stretching (Watanabe et al.
2020). The presence of straining flows with both compression and expansion highlights
a 3-D feature of shear layers. Consequently, the 2-D triple decomposition fails to capture
this compressive flow in the ζ2 direction, as evidenced by 〈ũ(s)

2 〉 ≈ 0.

Appendix B. Generation of multi-scale, random and solenoidal velocity

This appendix details the generation of random velocity fields used in the comparative
analysis with genuine turbulence to investigate the kinematic aspects of shear layers. The
procedure follows the method described by Johnsen et al. (2010): velocity vectors in the
physical domain, u = (u, v, w), are generated by applying the inverse Fourier transform to
their counterparts in the wavenumber domain, û = (û, v̂, ŵ). These solenoidal velocity
vectors (û, v̂, ŵ) possess a predefined 3-D energy spectrum E(k) and random phase
components. The formula for the velocity vector components is

û(kx, ky, kz) =
(

ky

kxy
a + kxkz

kxyk
b,

kykz

kxyk
b − kx

kxy
a, −kxy

k
b
)

, (B1)
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with

a =
√

2E(k)
4πk2 eiφx cos(φz), b =

√
2E(k)
4πk2 eiφy cos(φz). (B2a,b)

In this expression, φα(kx, ky, kz) (α = x, y or z) is a random phase between 0 and 2π.

The wavenumber vector is (kx, ky, kz), with kxy =
√

k2
x + k2

y and k =
√

k2
x + k2

y + k2
z . After

specifying E(k) based on a model spectrum or DNS of turbulence, the components
(û, v̂, ŵ) are calculated using (B1) by assigning random values to φx, φy and φz.
Performing the inverse Fourier transform of these components yields a random solenoidal
velocity field consistent with the chosen energy spectrum. In this study, E(k) is derived
from the DNS database of forced homogeneous isotropic turbulence at Reλ = 128, as
detailed in Watanabe et al. (2020).

The present study examines 10 random velocity fields, each generated using distinct sets
of random numbers for the phase assignments. These random velocity fields are discretised
using 10243 grid points, identical to the grid resolution in the original DNS where the
energy spectrum was determined. Ensemble averages across these random velocity fields
result in a turbulent Reynolds number Reλ = 128. Visualisations of shear and rigid-body
rotation at the smallest scale in these random velocity fields were presented in Watanabe
& Nagata (2022).
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