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Abstract

In this paper we first give a negative answer to a question of Amini-Harandi [‘Best proximity point
theorems for cyclic strongly quasi-contraction mappings’, J. Global Optim. 56 (2013), 1667–1674] on a
best proximity point theorem for cyclic quasi-contraction maps. Then we prove some new results on best
proximity point theorems that show that results of Amini-Harandi for cyclic strongly quasi-contractions
are true under weaker assumptions.
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1. Introduction and preliminaries

In 2003, Kirk et al. studied fixed points for maps satisfying cyclical contractive
conditions and presented an interesting extension of the Banach contraction principle
[8, Theorem 1.1]. The cyclical contractive condition was then studied by many authors
and was applied to optimisation and approximation (see [2, 5, 7, 9] and the references
given there). For some critical remarks on generalisations of cyclic contractions, the
reader may refer to [3].

In 2013, Amini-Harandi [1] introduced a new class of maps, called cyclic strongly
quasi-contractions, which contains the cyclic contractions as a subclass. Amini-
Harandi gave some convergence and existence results of best proximity point theorems
for cyclic strongly quasi-contraction maps in uniformly convex Banach spaces and
posed an open question on a best proximity point theorem for cyclic quasi-contraction
maps. Dung and Radenović [4] found an error in the proof of [1, Theorem 2.3] and
presented a counterexample.

In this paper we first give a negative answer to Amini-Harandi’s question on a
best proximity point theorem for cyclic quasi-contraction maps in uniformly convex
Banach spaces [1, Question 2.8]. Then we prove some new results on best proximity
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point theorems that show that results for cyclic strongly quasi-contractions in [1]
remain true under weaker assumptions. These results give affirmative answers to an
open question on best proximity point theorems for cyclic strongly quasi-contraction
maps in uniformly convex Banach spaces [4, Question 2.6]. For best proximity points
and applications, the reader may refer to [6, 9, 10].

We now recall some definitions and properties which are useful in what follows.

Definition 1.1 [5, Definition 2.3]. Let A and B be nonempty subsets of a metric space
(X, d) and let T : A ∪ B −→ A ∪ B be a map. Then T is called a cyclic contraction if:

(1) T (A) ⊂ B and T (B) ⊂ A;
(2) d(T x, Ty) ≤ kd(x, y) + (1 − k)d(A, B) for all x ∈ A, y ∈ B and some k ∈ [0, 1),

where d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Definition 1.2 [1, Definitions 2.2 and 2.3]. Let A and B be nonempty subsets of a
complete metric space (X, d) and let T : A ∪ B −→ A ∪ B be such that T (A) ⊂ B and
T (B) ⊂ A. Then:

(1) T is called a cyclic quasi-contraction if for all x ∈ A and y ∈ B and some c ∈ [0,1),

d(T x,Ty) ≤ c max{d(x, y), d(x,T x), d(y,Ty), d(x,Ty), d(y,T x)} + (1 − c)d(A, B);
(1.1)

(2) T is called a cyclic strongly quasi-contraction if it is a cyclic quasi-contraction
and for all x ∈ A and y ∈ B,

d(T 2x,T 2y) ≤ cd(x, y) + (1 − c)d(A, B). (1.2)

Amini-Harandi proved the following two best proximity point results on cyclic
strongly quasi-contraction maps.

Theorem 1.3 [1, Theorem 2.5]. Let A and B be nonempty closed subsets of a uniformly
convex Banach space X such that A is convex and let T : A ∪ B −→ A ∪ B be a cyclic
strongly quasi-contraction map. For x0 ∈ A, define xn+1 = T xn for each n ≥ 0. Then,
for each ε > 0, there exists n0 such that for all m > n ≥ n0, ‖x2m − x2n+1‖ < d(A, B) + ε.

Theorem 1.4 [1, Theorem 2.6]. Let A and B be nonempty closed convex subsets of a
uniformly convex Banach space X and let T : A ∪ B −→ A ∪ B be a cyclic strongly
quasi-contraction map. For x0 ∈ A, define xn+1 = T xn for each n ≥ 0. Then there exists
a unique x ∈ A such that limn→∞ x2n = x, T 2x = x and ‖x − T x‖ = d(A, B).

Amini-Harandi asked whether such results remain true for cyclic quasi-contraction
maps.

Question 1.5 [1, Question 2.8]. Does the conclusion of Theorem 1.4 remain true for
cyclic quasi-contraction maps?
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As noted, Dung and Radenović [4] recently gave a counterexample to some of the
statements in [1] which were used in the proofs of the Theorems 1.3 and 1.4.

Example 1.6 [4, Example 2.1]. Let X = R2 with the Euclidean norm and set

M = (0, 0),N = (2, 0), P = (2, 1),Q = (0, 1), I =
(
1, 1

2
)
.

Let A = [M, P], B = {N,Q} and define T : A ∪ B −→ A ∪ B by

T x = N for x ∈ [M,N] and T x = Q for x ∈ (I, P]

and T N = P, T Q = M. Then:

(1) X is a uniformly convex Banach space;
(2) A and B are nonempty subsets of X, A is convex and T A ⊂ B,T B ⊂ A;
(3) T is a cyclic quasi-contraction;
(4) there exist x0 ∈ A ∪ B and xn+1 = T xn for all n ≥ 0 such that

lim
n→∞

d(xn, xn+1) , d(A, B), lim
n→∞
‖x2n+2 − x2n‖ , 0, lim

n→∞
‖x2n+3 − x2n+1‖ , 0;

(5) T and T 2 are fixed point free.

This is not a counterexample to Theorems 1.3 and 1.4 because B is not convex. It
therefore suggests a further question.

Question 1.7 [4, Question 2.6]. Prove or disprove Theorems 1.3 and 1.4.

2. Main results

First we show that there exist nonempty closed convex subsets A and B of a
uniformly convex Banach space X, a cyclic quasi-contraction map T : A ∪ B −→ A ∪ B
and some x0 ∈ A such that the sequence {x2n} defined by xn+1 = T xn for each n ≥ 0 is
not convergent. So the answer to Question 1.5 is negative.

Example 2.1. Let X = R2 with the Euclidean norm, a = (0, 0), b = (2, 0), c = (2, 2),
e = (0, 2), f = (1, 1), A = [a, c], B = [b, e] and

Ta = b, Tb = c, Tc = e, Te = a, T x = f for x ∈ (a, c) or x ∈ (b, e).

Then:

(1) X is a uniformly convex Banach space and A and B are nonempty closed convex
sets in X;

(2) T : A ∪ B −→ A ∪ B is a cyclic quasi-contraction map;
(3) for x0 = a ∈ A, the sequence {x2n} is not convergent, where xn+1 = T xn for each

n ≥ 0.

Proof.
(1) It is clear.
(2) By definition of T , we have T A ⊂ B and T B ⊂ A. Moreover, d(A, B) = 0. We

will check that T satisfies (1.1) by exhausting the following cases.
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Case 1. x = a, y = b. Then d(T x, Ty) = d(b, c) = 2 and d(x, Ty) = d(a, c) = 2
√

2. So
d(T x,Ty) ≤ 1

√
2
d(x,Ty).

Case 2. x = a, y ∈ (b, e). Then d(T x, Ty) = d(b, f ) =
√

2 and d(x, T x) = d(a, b) = 2.
So d(T x,Ty) ≤ 1

√
2
d(x,T x).

Case 3. x = a, y = e. Then d(T x, Ty) = d(b, a) = 2 and d(y, T x) = d(e, b) = 2
√

2. So
d(T x,Ty) ≤ 1

√
2
d(y,T x).

Case 4. x ∈ (a, c), y = b. Then d(T x, Ty) = d( f , c) =
√

2 and d(y, Ty) = d(b, c) = 2.
So d(T x,Ty) ≤ 1

√
2
d(y,Ty).

Case 5. x ∈ (a, c), y ∈ (b, e). Then d(T x,Ty) = d( f , f ) = 0.

Case 6. x ∈ (a, c), y = e. Then d(T x, Ty) = d( f , a) =
√

2 and d(y, Ty) = d(e, a) = 2.
So d(T x,Ty) ≤ 1

√
2
d(y,Ty).

Case 7. x = c, y = b. Then d(T x, Ty) = d(e, c) = 2 and d(y, T x) = d(b, e) = 2
√

2. So
d(T x,Ty) ≤ 1

√
2
d(y,T x).

Case 8. x = c, y ∈ (b, e). Then d(T x, Ty) = d(e, f ) =
√

2 and d(x, T x) = d(c, e) = 2.
So d(T x,Ty) ≤ 1

√
2
d(x,T x).

Case 9. x = c, y = e. Then d(T x, Ty) = d(e, a) = 2 and d(x, Ty) = d(c, a) = 2
√

2. So
d(T x,Ty) ≤ 1

√
2
d(x,Ty).

By the above nine cases, d(T x, Ty) ≤ 1
√

2
max{d(x, T x), d(y, Ty), d(x, Ty), d(y, T x)}.

So (1.1) holds for any c ∈
[ 1
√

2
, 1
)
.

(3) For x0 = a ∈ A, we have x1 = Ta = b, x2 = Tb = c, x3 = T x = e, x4 = Te =

a, . . . , x4n = a, x4n+1 = b, x4n+2 = c, x4n+3 = e, . . . . This proves that the sequence {x2n}

is not convergent. �

Next we prove that the conclusions of Theorems 1.3 and 1.4 remain true for maps
satisfying only the contraction condition (1.2) in uniformly convex Banach spaces.
This answers Question 1.7 and proves Theorems 1.3 and 1.4 for this wider class of
maps.

The following two lemmas state particular properties of uniformly convex Banach
spaces that will be used later.

Lemma 2.2 [5, Lemma 3.7]. Let A be a nonempty closed convex subset and B a
nonempty closed subset of a uniformly convex Banach space. Let {xn}, {zn} be two
sequences in A and {yn} a sequence in B such that:

(1) limn→∞ ‖zn − yn‖ = d(A, B);
(2) for each ε > 0, there exists n0 such that for all m > n ≥ n0,

‖xm − yn‖ ≤ d(A, B) + ε.

Then, for each ε > 0, there exists n1 such that for all m > n ≥ n1, ‖xm − zn‖ ≤ ε.
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Lemma 2.3 [5, Lemma 3.8]. Let A be a nonempty closed convex subset and B a
nonempty closed subset of a uniformly convex Banach space. Let {xn}, {zn} be two
sequences in A and {yn} a sequence in B such that

lim
n→∞
‖xn − yn‖ = lim

n→∞
‖zn − yn‖ = d(A, B).

Then limn→∞ ‖xn − zn‖ = 0.

Theorem 2.4. Let A and B be nonempty closed subsets of a uniformly convex Banach
space X such that A is convex and let T : A ∪ B −→ A ∪ B be a map satisfying (1.2).
For x0 ∈ A, define xn+1 = T xn for each n ≥ 0. Then:

(1) for each ε > 0, there exists n0 such that for all m > n ≥ n0,

‖x2m − x2n+1‖ < d(A, B) + ε;

(2) there exists a unique x ∈ A such that limn→∞ x2n = x, T 2x = x.

Proof. (1) By (1.2),

d(x2n, x2n+1) = d(T 2nx0,T 2n+1x0) = d(T 2T 2n−2x0,T 2T 2n−2T x0)
≤ cd(T 2n−2x0,T 2n−2T x0) + (1 − c)d(A, B)
≤ c[cd(T 2n−4x0,T 2n−4T x0) + (1 − c)d(A, B)] + (1 − c)d(A, B)
= c2d(x2n−4, x2n−3) + (1 − c2)d(A, B). (2.1)

By induction, d(x2n, x2n+1) ≤ cnd(x0, x1) + (1 − cn)d(A, B). Letting n→∞ yields

lim
n→∞

d(x2n, x2n+1) = d(A, B). (2.2)

Similarly,

d(x2n+2, x2n+1) = d(T 2n+2x0,T 2n+1x0) = d(T 2T 2nx0,T 2T 2n−2T x0)
≤ cd(T 2nx0,T 2n−2T x0) + (1 − c)d(A, B)
≤ c[cd(T 2n−2x0,T 2n−4T x0) + (1 − c)d(A, B)] + (1 − c)d(A, B)
= c2d(x2n−2, x2n−3) + (1 − c2)d(A, B).

By induction, d(x2n+2, x2n+1) ≤ cnd(x2, x1) + (1 − cn)d(A, B) and letting n→∞ yields

lim
n→∞
‖x2n+2 − x2n+1‖ = lim

n→∞
d(x2n+2, x2n+1) = d(A, B). (2.3)

From (2.2), (2.3) and Lemma 2.3,

lim
n→∞
‖x2n+2 − x2n‖ = 0. (2.4)

Repeating the argument with T x0 playing the role of x0, we also find that

lim
n→∞
‖x2n+3 − x2n+1‖ = 0. (2.5)
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Now, suppose contrary to (1), that there exists ε > 0 such that for all k there are
mk > nk ≥ k satisfying ‖x2mk − x2nk+1‖ ≥ d(A, B) + ε. We can choose mk such that it is
the least integer greater than nk to satisfy the above inequality. Consequently, we find
that ‖x2mk−2 − x2nk+1‖ < d(A, B) + ε and so

d(A, B) + ε≤ ‖x2mk − x2nk+1‖

≤ ‖x2mk − x2mk−2‖ + ‖x2mk−2 − x2nk+1‖

≤ ‖x2mk − x2mk−2‖ + d(A, B) + ε.

Letting k→∞ and using (2.4),

lim
n→∞
‖x2mk − x2nk+1‖ = d(A, B) + ε. (2.6)

By (2.1),

‖x2mk − x2nk+1‖ ≤ ‖x2mk − x2nk+2‖ + ‖x2mk+2 − x2nk+3‖ + ‖x2mk+3 − x2nk+1‖

≤ ‖x2mk − x2mk+2‖ + c2‖x2mk − x2nk+1‖ + (1 − c2)d(A, B) + ‖x2mk+3 − x2nk+1‖.

Letting k→∞ and using (2.4), (2.5) and (2.6),

d(A, B) + ε ≤ c2[d(A, B) + ε] + (1 − c2)d(A, B) = d(A, B) + c2ε.

This is a contradiction. Therefore, for each ε > 0, there exists n0 such that for all
m > n ≥ n0, ‖x2m − x2n+1‖ < d(A, B) + ε.

(2) By (1), for each ε > 0, there exists n0 such that for all m > n ≥ n0, ‖x2m − x2n+1‖ <
d(A, B) + ε. By (2.3), limn→∞ ‖x2n+2 − x2n+1‖ = d(A, B). By Lemma 2.2, we conclude
that for each ε > 0 there exists n1 such that for all m > n ≥ n1, ‖x2m − x2n+2‖ ≤ ε. Thus,
{x2n} is a Cauchy sequence in X and there exists x ∈ X such that

lim
n→∞

x2n = x. (2.7)

Since x2n ∈ A for all n and A is closed, x ∈ A. So

d(A, B) ≤ d(x2n+1,T 2x) ≤ d(x2n+1, x2n) + d(x2n,T 2x) ≤ d(x2n+1, x2n) + d(x2n−2, x).

Letting n→∞ and using (2.3),

lim
n→∞

d(x2n+1,T 2x) = d(A, B). (2.8)

From (2.3), (2.8) and Lemma 2.2, we find that for each ε > 0 there exists n2 such that
for all n ≥ n2, ‖x2n+2 − T 2x‖ ≤ ε. It implies that

lim
n→∞

x2n+2 = T 2x. (2.9)

From (2.7) and (2.9), we deduce that x = T 2x. �

Corollary 2.5 [1, Theorem 2.6]. Let A and B be nonempty closed convex subsets of
a uniformly convex Banach space X and T : A ∪ B −→ A ∪ B a cyclic strongly quasi-
contraction map. For x0 ∈ A, define xn+1 = T xn for each n ≥ 0. Then there exists a
unique x ∈ A such that limn→∞ x2n = x, T 2x = x and ‖x − T x‖ = d(A, B).
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Proof. By Theorem 2.4, there exists a unique x ∈ A such that limn→∞ x2n = x, T 2x = x.
We will prove that ‖x − T x‖ = d(A, B). By (1.1),

d(x2n+2,T x) ≤ d(x2n+2, x2n+1) + d(x2n+1,T x)
≤ d(x2n+2, x2n+1) + c max{d(x2n, x), d(x2n+1, x2n), d(x,T x), d(x2n,T x), d(x, x2n+1)}

+ (1 − c)d(A, B).

Letting n→∞,

d(x,T x)≤ c max{0, d(A, B), d(x,T x), d(x,T x), 0} + (1 − c)d(A, B)
≤ cd(x,T x) + (1 − c)d(A, B). (2.10)

If d(A, B) < d(x, T x), then, from (2.10), d(x, T x) < d(x, T x), which is a contradiction.
So d(A, B) = d(x,T x) = ‖x − T x‖. �
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